
A New Method for Indexing Genomes
Using On-Disk Suffix Trees

Marina Barsky
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada

mgbarsky@cs.uvic.ca

Ulrike Stege
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada
stege@cs.uvic.ca

Alex Thomo
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada
thomo@cs.uvic.ca

Chris Upton
Dept. of Biochemistry &

Microbiology
University of Victoria

BC, V8W 3P6, Canada
cupton@uvic.ca

ABSTRACT
We propose a new method to build persistent suffix trees
for indexing the genomic data. Our algorithm DiGeST

(Disk-Based Genomic Suffix Tree) improves significantly
over previous work in reducing the random access to the in-
put string and performing only two passes over disk data.
DiGeST is based on the two-phase multi-way merge sort
paradigm using a concise binary representation of the DNA
alphabet. Furthermore, our method scales to larger genomic
data than managed before.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems; J.3 [Computer Applications]: Life and Medical
Sciences

General Terms
Algorithms, Design, Performance

Keywords
suffix tree, disk structures, DNA indexing

1. INTRODUCTION
Since the Phi-X174 phage was sequenced in 1977, the DNA
sequences of thousands of organisms have been decoded and
stored in databases. Many biological advances heavily de-
pended on the success of computational methods. However,
genomic data is generated in vast quantities and the algo-
rithms for exploring and analyzing such data are notorious
for their high computational needs.

Large scale indexing of genomic data is a necessary ingre-
dient in developing new methods to explore the molecular
evolution of the species, to integrate cross-species genomic
data, and to study gene structure, function, and regula-
tion. In addition to the effective search for exact and ap-
proximate patterns, genome indexes can help discovering
“ultra-conserved” regions in DNA of several species, as well

as unique DNA markers which occur only in some species
(cf. [33, 29]).

Since DNA cannot be effectively broken into words1, the
common text indexing methods, such as inverted indexes
or B-trees, cannot be efficiently used. In [9], a new data
structure, the String B-tree, was proposed a combination
of the suffix tree and the B-tree. However, so far there is
no practical method to build such a structure in external
memory for large data sets.

Very well suited for the purposes of comparative genomics
is a (generalized) suffix tree built on the available genomic
data. If a suffix tree for multiple genomes could be efficiently
built, then conserved regions would be easily “read” from the
suffix tree, unique sequences would be found, and sequences
of species would be efficiently compared.

Unfortunately, the size of the suffix trees is very large even
for moderate genomic sequences, and thus the trees quickly
outgrow the available main memory. For example, for an
input string of 6 GB one would need at least 60 GB of RAM
to hold its suffix tree. This calls for a disk-based method for
building suffix trees.

The problem of efficiently building suffix trees in secondary
storage for very large genomic data sets has recently drawn
a lot of attention, cf. [13, 4, 2, 30, 31, 3, 8, 22, 23]. The
most efficient methods, TDD and Trellis proposed in [31]
and [22] respectively, scale up to the entire human genome –
approximately 3 GB – resulting into a persistent suffix tree
of a size in the tens of gigabytes (see [22]).

Unfortunately, being able to index a single genome is not
good enough when it comes to perform comparisons of mul-
tiple genomes. Instead, one needs to build a common suffix
tree for a set of DNA sequences (at least two). Often, the
size of both such input and resulting suffix tree exceed what
TDD and Trellis can handle. In their current form, both

1For example in the non-coding regions, which make about
95% of genomic DNA [33].

[31] and [22] are unable to efficiently handle inputs larger
than 4 GB.

Can the algorithms of [31] and [22] be extended to handle
such inputs? Although this might not be impossible, we
point out (see Sections 3 and 5) some limitations which sug-
gest that extending these methods would not scale well.

Thus, instead, we propose a new method to efficiently build
persistent suffix trees for genomic datasets of larger size,
allowing the indexing of more than one genome which is re-
quired for the envisioned applications. Specifically, we make
the following contributions:

1. We present DiGeST2, an efficient, secondary storage
algorithm based on the well-known two-phase multi-
way merge sort paradigm. Notably, DiGeST performs
only two passes on disk data, and has a very good
locality of accesses to the input strings.

2. We present a new way for dividing the output suffix
tree into subtrees of equal size. Previous methods,
like TDD and Trellis divide the output in pieces
which can be significantly unbalanced. In contrast,
our method, based on the lexicographical ordering of
suffixes, guarantees subtrees of equal sizes.

3. We show that DiGeST easily scales for larger inputs
than before. For example, DiGeST is able to handle
with ease real DNA inputs of size 6 GB and to build
suffix trees of size in the hundreds of gigabytes in just
four hours, which TDD and Trellis+ (an improved
version introduced in [23]) are unable to handle.

4. We show that, for other large inputs, which TDD

and Trellis+ can handle, DiGeST significantly out-
performs them. We present an experimental analysis
and discussion of the performance of DiGeST versus
Trellis+, which, as the best algorithm known so far,
we use for our benchmarking.

The rest of the paper is organized as follows. Section 2
describes the background and terminology on strings and
suffix trees. Section 3 reviews the related work, highlight-
ing the so far best methods TDD and Trellis. Section 4
describes our new algorithm DiGeST, which is then com-
pared to Trellis+ in Section 5. Section 6 concludes with
final remarks.

2. BACKGROUND
Let an input string S be a sequence of N consecutive char-
acters from an alphabet Σ. We denote by S[i, j], where
0 ≤ i < j ≤ N , the substring of S starting at position i and
ending at position j. The suffix of S starting at position i is
the substring S[i, N]. A suffix tree for string S of size N is a
rooted directed tree with exactly N leaves. The key feature
of a suffix tree is that each suffix S[i, N] of S is represented
by a path from the root to a leaf node Li.

2DiGeST is an anagram of the phrase:
Disk-Based Genomic Suffix Tree. The program is available
at: http://webhome.cs.uvic.ca/∼mgbarsky/digest/

Each internal node other than the root has at least two chil-
dren and each edge is labeled with a corresponding substring
from S. A suffix tree is a compact index of all distinct sub-
strings of a given string with each edge representing one such
distinct substring.

An example of a suffix tree for input string S = abbabbaa
is depicted in Figure 1. Any substring of S can be located
starting from the root by traversing the edges according to
their labels.

L3 L0 L2 L1L4L5

a

L6

a

L7

Figure 1: A suffix tree for input string S = abbabbaa.
In order to find all occurrences of query string abb
in S, match abb starting from the root and then
reaching to the least common ancestor of the leaves
L0 and L3. The positions specified by these leaves
indicate the start of occurrences of the query string
in S.

L3 L0 L2 L1L4L5

7
-7

L6

7
-7

L7

Figure 2: Compressed suffix tree for string S =
abbabbaa. In order to find all occurrences of query
string bbabb, traverse the tree matching at positions
0,1, and 3 of the query string, then retrieve L1 and
perform character-by-character verification of the
query. Note, that for query string bbaba the tree
traversal is identical, but after verification against
the suffix of S starting at position 1 we find that the
query string does not occur in S.

Note that, if we label each edge with the actual characters
of S, the size of the resulting tree is O(N2), which is pro-
hibitive for most real-life applications. Such a tree is called
uncompressed suffix tree and is mainly of theoretical interest.
In practice, all methods build compressed suffix trees.

A compressed suffix tree does not store explicitly the labels
of the edges. The edge labels are represented by an ordered
pair of integers denoting its start and end positions in the
input string. The compressed suffix tree for the input string
above is shown in Figure 2.

Note that, to search for a query string q in a compressed
suffix tree, we could (naively) compare the characters of q
to the characters of S as indicated by the positions of the
edge labels. This type of search, unfortunately, requires
multiple random accesses to the input string, and this is
quite inefficient when S is large. So, is it really worth to
build a compressed suffix tree?

Notably, massive random access to S during a search can be
avoided by performing a “blind search” as suggested in [9].
Observe that the outgoing edges from an internal node are
indexed according to the character specified by their start
position. Only these (implied) first characters of the tra-
versed edges are in fact matched against corresponding char-
acters in q. Thus we “jump” in q by the lengths of the tra-
versed edges. If matching q (in this way) fails, we conclude
that q is not a substring of S. Otherwise, if q matches some
path π in the tree, we retrieve a leaf Li from the subtree in-
duced by π and perform a follow up validation of q against
S[i, i + |q|]. Note that this requires at most one random
access to string S per query.

Our approach for building suffix trees. In this paper,
we focus on generalized suffix trees (see [11]) which index
more than one input string. In this case, all suffixes of each
of the input strings are inserted into the tree. In comparison
to suffix trees for one input string some leaves may represent
multiple suffixes belonging to different input strings. Thus,
the leaves now store possibly more than one start position
along with input string identifiers. An example of a gener-
alized suffix tree for two input strings is shown in Figure 3.
Note, that now more information should be stored at each
edge label, namely the particular input string identifier.

In our approach, we perform only sequential reads and writes
of disk data. Specifically, we carry out a special two-phase
multi-way merge sort (cf. [10]), but instead of sorting records
we sort suffixes of the input string. The suffixes are repre-
sented only by their start positions. The input string is first
divided into partitions and then their suffixes are sorted in
lexicographical order using an efficient algorithm by Lars-
son [19]. The result of this sorting phase is a set of suffix
arrays [20], each being a list of start positions of sorted suf-
fixes.

In our merge phase, consecutive pieces of each of the suffix
arrays are read from the disk into input buffers. A “com-
petition” is run among the top elements of each buffer and
the “winning” suffix migrates to an output buffer organized
as a suffix tree. When the output buffer is full we empty it
to disk.

3. RELATED WORK
Several approaches for disk-based construction of suffix trees
are considered in the literature, cf. [13, 4, 2, 30, 3, 8, 31,
23]. The most recent and scalable methods are [31] and [22]
which we describe in the following.

TDD. A new chapter in building suffix trees on disk was
started by the research of Tata et al. [30, 31]. Their top-

L0-AL3-A L2-A L1-AL4-A L0-BL1-B

L2-BL3-B L4-B

L0-AL3-A L2-A L1-AL4-A L0-BL1-B

L2-BL3-B L4-B

Figure 3: Example of generalized suffix trees for in-
put strings A = abbab and B = babab. Queries of type
“what is the longest substring common to A and B”
can be solved in linear time. An answer to this query
is the path corresponding to substring bab, common
to the suffixes starting at position 2 in A and B.

down disk based technique (TDD) significantly reduces, al-
though not completely avoids, massive random access to the
suffix tree being built.

However, TDD accesses the input string randomly and this
degrades the performance when the string is large. TDD
also degrades when the input data is skewed. This is be-
cause TDD partitions the input according to prefixes of
equal length. For real life data, the size of partitions can
be quite different and consequently there may exist large
subtrees causing memory overflow.

TDD combines the top-down technique with the prefix-based
partitioning of the input. The problem is that the total num-
ber of different prefixes grows exponentially with the prefix
length. For example, a prefix length of 7, used by authors to
process 3 GB of the human genome, causes 16,384 indepen-
dent suffix trees to be built. For building each one of these
trees, the entire input string is randomly accessed. Thus,
this partitioning technique cannot scale to handle bigger in-
puts as for instance several eucariotic genomes.

Trellis. Phoophakdee and Zaki in [22] propose a new me-
thod for building suffix trees. Trellis is a partition and
merge strategy. It breaks the input string into several small
partitions and builds the suffix tree for each partition using
the in-memory linear time algorithm by Ukkonen [32]. Each
such suffix tree is written to disk. After this first phase, a
collection of variable-length prefixes is created, addressing

the data skew problem. Then for each prefix p in the collec-
tion, Trellis loads into main memory the subtrees (of the
previously built trees) for prefix p. These subtrees are then
merged into one subtree containing all the suffixes sharing
p as a prefix.

In [23], an improved version of Trellis, namely Trellis+
was introduced which is based on the same principles as
Trellis, but uses fewer and larger partitions resulting in
less tree merge operations.

In the merge phase, edges of subtrees are compared chara-
cter-by-character according to the positions on each edge
label. Since the trees are compressed, massive random ac-
cess to the input string is performed.

The tree merge phase performs multiple random disk reads
of the trees built in the previous phase. In fact, a tree of each
partition (substring) is accessed on disk as many times as the
number of variable-length prefixes. This implies that these
random I/Os will cause significant performance degradation
for larger inputs, when the total number of prefixes and
the total number of partitions grows. The total number of
random disk reads in the merge phase is proportional to the
number of prefixes multiplied by number of partitions, and
depends, therefore, on the square of the input length.

Despite using variable length prefixes in order to balance
the sizes of the resulting subtrees, we observed that these
subtrees are not completely balanced as some are very small
while others are an order of magnitude larger.

Trellis also contains a post-processing step for the suffix
links recovery. In our opinion, the suffix links in the on-disk
tree have a limited usage, since they point in most cases to
different suffix sub-trees, layered in distant disk locations.
This means that an assumed constant-time jump following
suffix link causes in fact an entire random disk access. For
example, the streaming algorithm for finding all maximal
unique matches between two genomic sequences as a part
of the MUMmer program for alignment genomes [7, 18],
uses suffix links to stream the second genome against the
suffix tree built for the first genome. If the sub-trees are on
disk, following the suffix link causes another sub-tree to be
uploaded from disk, which leads to the same number of disk
reads as if this new sub-tree was traversed from the root.

To summarize, both TDD and Trellis incur a great num-
ber of random disk I/Os which are heavily felt when trying
to process large inputs.

As it was shown in [22], Trellis significantly outperforms
TDD for input sizes larger than 1 GB, thus being the fastest
known method for building persistent suffix trees. There-
fore, we use Trellis+, as a benchmark for evaluating our
method.

4. BUILDING SUFFIX TREES ON DISK
For simplicity, in the following we work with only one input
string, but clearly explain in the appropriate places how
some particular step of our method is extended to multiple
input strings.

Our method for building a suffix tree on disk consists of the
following main components:

1. Preprocessing. We create, from the original input
string, a small number, say k, of input files of approx-
imately the same size. In this step we also encode the
input string (DNA) as a sequence of bits with two bits
per character.

2. Sorting of suffixes. We sort suffixes in each parti-
tion by using Larsson’s algorithm [19]. In addition to
the output of this algorithm, we also attach to each
suffix start position a short prefix of the suffix. These
prefixes significantly improve the performance of the
merging phase. At the end of this phase, for each par-
tition, we have on disk a suffix array with attached
prefixes.

3. Merging of prefix-attached suffix arrays. Con-
secutive pieces of each of the k suffix arrays are read
from the disk into input buffers. A “competition” is
run among the top elements of each buffer and the
“winning” suffix migrates to an output buffer orga-
nized as suffix tree. When the output buffer is full we
empty it to disk.

These components are illustrated in Figure 4.

We further describe our method in more details.

4.1 Preprocessing of the input
The size of partitions is determined based on the amount of
available memory. To build a suffix array for each partition
using Larsson’s algorithm [19], we need 8× partition size
bytes. In addition we need an output buffer to collect the
suffix positions along with 64-bit long prefixes attached. We
found that we can quickly process partitions of size 100 MB.
Note, that even though we could fit more into the available
memory, the Larsson’s algorithm involves random accesses
to the input string, and thus, its performance degrades for
bigger partition sizes due to cache misses. After choosing
the size of the partitions, we determine their number k.

We partition an input string into consecutive substrings of
size N/k. For a technical reason to become clear soon, we
add a “tail” to each partition (except the last). Let Pi and
Pi+1 be two consecutive partitions. We attach a prefix t of
Pi+1 as a tail to Pi. Prefix t is the shortest prefix of Pi+1

such that it does not occur anywhere as a substring of Pi.
For random and real DNA sequences, the length of t was
never more than 1000.

For more than one input string (for example, a set of human
chromosomes), we partition only the input strings of size
greater than 100 MB, leaving the rest of the input strings
in their separate files.

4.2 Sorting of suffixes
The sorting of suffixes in each partition is performed by Lars-
son’s quicksufsort algorithm [19], using the implementation
from [34].

$

$

$

$

$

$

$

$

$

$

Partitioning

Sorting

Merge

$

Figure 4: Overview of our method. Textured patterns at the end of each suffix correspond to tails, added to
preserve the correct lexicographical order of the suffixes. The detailed description of each step is presented
in Sections 4.1, 4.2, and 4.3 respectively.

Larsson improves the practical behavior of Manber-Myers
algorithm [20] by avoiding the scanning of the entire array
in each of the algorithm’s logN passes and using a ternary-
split Quicksort as a sorting subroutine. Our choice in using
this algorithm for sorting suffixes was influenced by the ex-
perimental results of [25]. Note that one can use any efficient
suffix sorting algorithm for main memory (cf. [21, 16, 14,
15, 12]) in the first phase. We were interested in optimizing
the method for disk accesses rather than improving running
time of in-memory sub-routines.

While sorting the suffixes of the partition, we need to guar-
antee that the sort is consistent with the lexicographical
order of suffixes in the whole input string. For this, recall
that, in the preprocessing phase, when an input file is broken
into several partitions, a tail t was attached to the end of
each partition – the prefix of the next partition which does
not occur anywhere else in the current partition. We next
prove that this is necessary and sufficient to ensure that all
suffixes in the partition are in the correct order.

Proposition 1. Let

1. P be a partition of the input string S

2. t be the tail appended to P

3. pi, pj be two suffixes of P starting at (global) positions
i and j, respectively,

4. si, sj be the suffixes of S starting at positions i and j,
respectively.

Then, the concatenation pi · t ≤lex pj · t if and only if si ≤lex

sj.

Proof. Only if. Straightforward.

If. Without loss of generality suppose that i < j. Since t is
not a substring of P , pj · t cannot be a prefix of pi · t.

As such, let ci+k and cj+k be the first characters in pi · t
and pj · t, respectively, where pi · t and pj · t differ. Clearly,
if ci+k <lex cj+k (ci+k >lex cj+k) then si <lex sj (si >lex

sj).

Note that if a tail t cannot be found, we cannot guarantee
a correct sorting of suffixes in each partition. However, in
practice, we have not yet encountered such a case.

Once the suffixes are sorted, we write their start positions
to disk. For each partition, we have a list of suffix start
positions. The order of these positions is according to the
lexicographical order of their corresponding suffixes. Fur-
ther, next to each start position, we store the 32 character
(64 bits) prefix of the suffix in the form of two four-byte
numbers. This is possible because the alphabet of DNA has
only four letters, and thus, each letter can be compactly
represented by two bits.

In the rest of the paper, for simplicity we blur the distinction
between a suffix and its starting position.

4.3 Merging of prefix-attached suffix arrays
Merging of suffix arrays into a suffix tree incurs multiple
random accesses to the input string. In order to increase
the amount of the input that can fit in the available main
memory we encode each distinct letter of the meaningful
DNA alphabet {a, c, g, t} as a 2-bit string. The same encod-
ing was used by Trellis+, the program we compare our
results to.

Thus, we consider Σ = {0, 1}, and use a special symbol $
for denoting the end of a string. Note that a string over any
alphabet can always be reduced to the binary alphabet by
representing each character as a sequence of bits and then
concatenating these binary sequences.3

We set M = 2N for the length of the DNA input string
coded in binary as above.

Our merge is as follows. We use one input buffer for each
of the k sorted lists of suffixes. The input buffers are loaded
with suffixes from the corresponding lists. Then a compe-
tition is run among the top elements of each input buffer.
The winning element migrates to an output buffer organized
as a suffix tree.

For the competition we use a priority queue implemented
as a heap of size k (number of partitions). To determine
the relative order of the suffixes from different lists, we first
compare their attached prefixes, stored as two long integers.
Only if both of them are equal, we access the input string
at the corresponding positions. We found that, this only
happens in practice for a very small fraction of the suffixes,
approximately 2.5% in real DNA sequences and basically
never for synthetic DNA sequences. Without storing such
prefixes, different suffix comparisons would cause multiple

3We note that in real DNA sequences there are unidenti-
fied (or “unknown”) characters denoted by n, which does
not belong to the {a, c, g, t} alphabet. For example, human
chromosome 22 contains a large block of of such symbols at
its beginning. We discard these characters from our binary
encoded input. Trellis also discards such characters from the
input. We remark that this does not create a problem when
using suffix trees. For this, one can record the cut positions
and easily map the characters in the transformed string to
characters in the original string.

random accesses to the input string, which is not desirable
due to excessive cache misses.

The smallest element removed from the heap is added to a
growing suffix tree in the output buffer. A naive method
of adding a new suffix into a suffix tree involves comparing
the characters of the new suffix to the corresponding edges of
the tree starting from the root. Since we only have positions
rather than characters, this would involve massive random
access to the input string. Thus, in order to avoid these
comparisons, we first find the length LCP of the longest
common prefix between the last added suffix, say s1, and
the next suffix, say s2, to be added. The prefixes attached
to the elements of the heap help us determine the LCP of
these two suffixes without accessing the input string in the
vast majority of the cases.

Once we know the LCP of s1 and s2, we can add the leaf cor-
responding to s2 by traversing the lexicographically largest
path in the existing tree up to LCP characters and creating
a new internal node and a new leaf.

In the following we describe our merge algorithm in more
details.

The growing tree is represented as an array of nodes. This
array fills an output buffer of a pre-calculated size which is
then flushed to disk. The lexicographically largest suffix in
this tree, is added to a collection of “dividers” which serve
locating multiple trees on disk. We call the path in the suffix
tree corresponding to the lexicographically largest suffix the
boundary path.

At the end of the merging phase, we have on disk a forest
of M/outputBufferSize suffix trees as well as a collection of
the same number of dividers corresponding to the boundary
path of each tree.

All trees are of equal size, and thus, the problem of data
skew is now completely avoided.

Let Ti be one of the suffix trees obtained by the algorithm.
The leaves of tree Ti correspond to suffixes of a certain lex-
icographical range as captured by dividers di−1 and di.

Further, each tree is small enough to be quickly loaded into
the main memory to perform search or comparative analysis.
Since the number of dividers is small, and we store only their
first 64 bit prefixes, they can be loaded entirely into the main
memory. For example, for the human genome the number
of dividers is approximately 6,500.

Descriptive pseudocode of the suffix merge

1. Create k input buffers of size buf each.

2. Fill these k buffers with suffixes from the correspond-
ing k sorted suffix arrays.

3. Initialize a heap H with the first suffixes of each of the
k input buffers.

Sorted

suffixes

Suffix

start

LCP

a 7 0

aa 6 1

abbaa 3 1

abbabbaa 0 4

a

L3

b

L6

7
-7

L7

a

L3

b

c

L6

7
-7

L7

a

L3

b

c

L6

7
-7

L7 L0

ST edge a - b b - L3

depth 1 8

ST edge a - b b - c c - L0

depth 1 4 5

Sorted

suffixes

Suffix

start

LCP

a 7 0

aa 6 1

abbabbaa 0 1

abbaa 3 4

baa 5 0

babbaa 2 2

bbaa 4 1

a

L2

b

L5

a

c

L2

b

L5

a

c

L2

b

L4L5

ST edge a - b b – L2

depth 2 5

ST edge a - c c – L4

depth 1 7

Figure 5: Two examples of adding a suffix for input string abbabbaa. [Left] Adding the suffix starting at
position 0. In this case, the LCP of this suffix with the previous suffix, starting at position 3, is larger than
the LCP between the latter and the suffix starting at position 6. The last edge bL3 on the boundary path
(abL3) splits, and new internal node c and leaf L0 are created. [Right] Adding the suffix starting at position 4.
Here, the LCP of this suffix with the previous suffix, starting at position 2, is smaller than the LCP between
the latter and the suffix starting at position 5. In this case, we first need to locate the corresponding edge
ab on the boundary path abL2 (for example using binary search). Then edge ab splits and new internal node
c and leaf L4 are created. The sorted suffixes are shown in the tables left of the trees. The boundary path
arrays are shown below the trees.

4. Remove the top element (the lexicographically small-
est suffix) from H. Let this top element belong to
partition Pi.

5. Initialize the suffix tree of the output buffer by creating
one leaf node for this first suffix. Store this suffix and
its 64-bit prefix in a variable lastAdded.

6. Insert into H the next suffix from the buffer corre-
sponding to Pi.

7. Remove top element curr from H.

8. Find the length LCP of the longest common prefix of
curr and lastAdded. Further record the bit of curr in
position curr+LCP+1. Call this bit firstBitAfterLCP.

9. Traverse the suffix tree starting from the root and
following the boundary path continuing until depth
LCP . At depth LCP split the edge reached, creating
a new internal node ν. Create a new leaf child of ν
representing the rest of suffix curr.

10. If the output buffer is full, then

(a) flush it to disk,

(b) store the 64-bit prefix of curr and a reference to
the flushed tree in array dividers,

(c) go to step 4.

Otherwise, go to step 6.

In the next proposition we show that adding new nodes to
the growing suffix tree by the procedure of step 9 is correct,
i.e. that the split point for each next suffix cannot be found
anywhere except on the boundary path of the tree built so
far.

Proposition 2. Let

1. T be a suffix tree currently being built in the output
buffer,

2. s1 be the suffix last added to T ,

3. s2 be the suffix to be added next into T in step 9.

Then, split point ν (the parent node for leaf s2) lies on the
boundary path of T .

Proof. There does not exist a suffix s3 such that
S[s1, j] <lex S[s3, j] <lex S[s2, j] for any 1 ≤ j ≤ N . This
is true because otherwise s3 would be the next suffix to be
inserted after s1.

Since s1 corresponds to the (lexicographically) greatest suf-
fix added to T , the boundary path of T corresponds to
S[s1, N], and thus, covers all the prefixes of s1 including
substring S[s1, s1 + LCP]. Hence, in order to locate sub-
string S[s1, s1 + LCP] =lex S[s2, s2 + LCP], we need to
follow the boundary path of T . Therefore split point ν lies
on the boundary path.

The next proposition shows how we make use of the binary
alphabet during step 9 of the above merge procedure, with-
out additional random access to the input string. Note that
each node has exactly two children, namely the 0-child and
1-child.

Proposition 3. Let

1. T be a suffix tree currently being built in the output
buffer,

2. s1 be the suffix last added to T ,

3. s2 be the suffix to be added next into T in step 9.

Then the insertion of s2 splits an existing edge such that it
creates the 1-child leading to the leaf s2.

Proof. The suffix starting at s2 has a common prefix of
length LCP with the suffix starting at s1. Then the charac-
ter S[s2 + LCP + 1] is greater than S[s1 + LCP + 1]. Since
our alphabet is binary, we have S[s2 + LCP + 1] = 1.

The only case a new 0-child can lead to the leaf correspond-
ing to suffix s2 is when s1 + LCP = M . That is, suffix s1 is
a prefix of suffix s2 and the leaf corresponding to s2 will be a
child of the node corresponding to s1, which is transformed
from a leaf to an internal node.

Note that, if using {a, c, g, t} as alphabet instead of {0, 1},
then it is not possible to build the suffix tree as described
above without incurring random accesses to input string S.
This is because when splitting an edge for adding a leaf
corresponding to s2, we would have needed to check the
character S[s1 + LCP + 1].

Several cases of adding a suffix to a growing suffix tree are
shown in Figure 5.

Remarks

1. With our method, the total number of suffixes remains
N (not M = 2N) as we sort only N suffixes (in the
sorting phase) and merge these suffixes creating one
leaf for each suffix.

2. Any internal node in a suffix tree has at least two chil-
dren. As we use the binary alphabet, the number of
children is limited to be at most two. This allows us-
ing two child pointers only (per node) and a constant
time access to these children.

Finally, our algorithm performs only two passes on the disk
data, namely two reads and two writes. The random access
to the tree being built is now completely avoided.

Notably, exactly the same merge algorithm can be used for
creating on-disk suffix arrays, since each next suffix added
to the tree is in lexicographical order.

4.4 Properties of the output
Let us now look at the on-disk suffix tree forest produced
by DiGeST. It is a collection of suffix trees each of which
is of such a size that it can be quickly loaded into main
memory by one sequential disk read. Each tree corresponds
to some lexicographical interval. The collection of minimum
and maximum prefixes of constant length (dividers) for each
tree can be kept entirely in main memory due to its small
size.

Searching for an exact pattern is easy with this layout of
the suffix trees on disk. First, we locate the lexicographical
range of the pattern by finding the corresponding divider (in
main memory). Next we load into memory the suffix tree
corresponding to this divider. We perform the blind search
for the exact pattern described in detail in Section 2. Note
that this search requires not more than two random disk
accesses - one for uploading the tree and one for verification
of pattern against one substring of the input string (in case
that the input string resides on disk).

When the depth-first traversal of the entire suffix tree is
required, for example in the case of finding common sub-
strings for the set of input strings, the consecutive trees are
loaded and traversed in main memory. This is performed by
sequential disk reads.

The efficiency of other algorithms for this on-disk suffix tree
layouts is yet to be investigated.

5. EXPERIMENTAL RESULTS
In this section, we present the performance evaluation of
DiGeST in comparison with Trellis+, which is the best
algorithm known so far for building suffix trees on disk. The
source code of Trellis+ was obtained from [36]. DiGeST

was implemented in C and was compiled with GNU gcc com-
piler, version 4.1.2. All experiments were performed on a
machine with an Intel Core Duo 2.66 Ghz CPU, 2 GB RAM
and 4MB L2 cache under Ubuntu 7.04, 32-bit Linux. Both
programs were compared for different input lengths with the

Human Chimpanzee Zebrafish

1 1,2,20,21 1,2,20,21 0.9

2 2 - 6 2 - 6 1.8

3 1 - 8 1 - 8 2.7

4 1 - 12 1 - 12 3.6

5 1 - 18 1 - 18 4.5

6 1 - 23 1 - 23 5.4

7 1 - 23 1 - 23 1 - 25 6.3

Chromosomes of Total

Size, GBData set

Table 1: Datasets used in our experiments. For ex-
ample, line 1 of the table says that dataset 1 con-
sists of sequences of chromosomes 1, 2, 20 and 21 of
both human and chimpanzee, with the total input
length of approximately 0.9 GB. Each chromosome
was stored in a separate input file. Their total size is
shown in the last column of the table. The last line
represents a data set generated from three entire
genomes of human, chimpanzee and zebrafish.

same amount of available main memory (namely, 2 GB). Re-
call that all recent algorithms, including TDD, Trellis and
DiGeST, to be efficient require that the input string resides
in main memory. The 2-bit per character compression of
the input made it possible to build the suffix tree for the
input string of 6 GB with 2 GB of total RAM. This tree
is of size approximately 180 GB. In practice, RAM cannot
be extended to such sizes to build the suffix tree entirely in
main memory.

Data Sets 1 (0.9GB) 2 (1.8GB) 3 (2.7GB) 4 (3.6GB) 5 (4.5GB) 6 (5.4GB) 7(6.3GB)

Trellis 46 92 148 216

DiGeST 34 68 102 135 174 208 244

0

50

100

150

200

250

300

1 2 3 4 5 6 7

Da ta se ts

T
im

e
,

m
in

Trellis

DiG eS T

Figure 6: Running times (in minutes) for real
DNA. Observe that, for real DNA inputs of to-
tal size 3.5 GB DiGeST outperforms Trellis+ by
about 40%. Furthermore, for larger sizes there is
only DiGeST that is able to produce results.

First, we evalaluated the performance of DiGeST versus
Trellis+ for the human genome which is about 3 GB. Di-

GeST was able to build the suffix tree in 1.5 hours, while
Trellis took 2.5 hours.

In the following, we present further results demonstrating

Data Sets 1 (0.9GB) 2 (1.8GB) 3 (2.7GB) 4 (3.6GB) 5 (4.5GB) 6 (5.4GB) 7(6.3GB)

Trellis 39 79 126 191

DiGeST 33 54 86 118 155 188 229

0

50

100

150

200

250

1 2 3 4 5 6 7

Da ta se ts

T
im

e
,

m
in

Trellis

DiG eS T

Figure 7: Running times (in minutes) for synthetic
DNA. Similar to the previous figure, it is only Di-

GeST that is able to produce results for sequences
larger that 4 GB.

the performance of DiGeST. Namely, we evaluated the per-
formance of DiGeST versus Trellis for the following DNA
types:

1. Collection of the corresponding chromosome pairs of
the genomes of several species, namely human, chim-
panzee, and zebrafish (obtained from [35]). We grou-
ped the corresponding chromosome pairs into inputs
of approximate total size from 1 GB to 6 GB. We be-
lieve that such combinations correspond to the goal of
comparative genomics.

2. Synthetic DNA sequences which we generated using a
uniform random distribution of characters.

The details of the input datasets for type 1 are presented in
Table 1.

The running times for DiGeST and Trellis+ are given
in Figure 6 and Figure 7 for the data sets of Table 1 and
synthetic DNA sequences, respectively.

Observe that DiGeST significantly outperforms Trellis+
for inputs greater than 1 GB. For example, for real DNA
inputs of total size 3.5 GB DiGeST outperforms Trellis+
by about 40%.

Our gain in performance is due to the fact that DiGeST

performs mostly sequential disk I/Os, whereas Trellis+,
in its tree merge phase, performs multiple random reads of
the trees built in the previous phase.

We believe that, for inputs of size greater than 4 GB, the
number of tree merges of Trellis+ , and the number of
partition trees to load for each merge, will cause a great
deal of random I/Os.

0

25

50

75

100

125

150

175

Trellis DiGeST

T
im

e
,

m
in

rand

human

human-chimp

Figure 8: Running times (in minutes) for Trellis+
and DiGeST on three different inputs of size approx-
imately 3 GB each.

On the other hand, DiGeST scales because it never reads
the same piece of disk data more than once, and writes
the suffix trees corresponding to the lexicographically parti-
tioned suffixes performing only one random disk access per
tree.

Next we study the behavior of DiGeST and Trellis+ with
respect to the type of input. In Figure 8, we fix an input
size of approximately 3 GB which is about the size of the
human genome and plot the results of DiGeST and Trel-

lis+ for the three types of data. Namely, we consider syn-
thetic DNA with uniform distribution of characters, human
genome, and two genome subsets of similar species, human
and chimpanzee. Human genome has more and longer repe-
titions than synthetic DNA. On the other hand, the human
and chimpanzee genomes are quite similar and have even
more and longer common substrings.

Both DiGeST and Trellis+ perform slightly better on syn-
thetic DNA than on the other data sets used in the experi-
ments.

6. CONCLUSIONS
We presented DiGeST, a new algorithm for indexing large
DNA sequences using generalized suffix trees in secondary
storage. DiGeST significantly improves over the former best
method, Trellis+. Our algorithm is the first one able to
index more than one genome at a time.

7. REFERENCES

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch

Replacing suffix trees with enhanced suffix arrays. J.
of Discrete Algorithms, 2(1): 53–86, 2004.

[2] S.J. Bedathur and J.R. Haritsa Engineering a fast
online persistent suffix tree construction. 20th Intl.
Conf. on Data Engineering, 2004.

[3] C.F. Cheung, J.X. Yu, and H. Lu Constructing
suffix tree for gigabyte sequences with megabyte
memory. IEEE Transactions on Knowledge and Data

Engineering, 17(1): 90–105, 2005.

[4] R. Clifford, and M.J. Sergot Distributed and
paged suffix trees for large genetic databases. Proc. of
14th Symposium on Combinatorial Pattern Matching:
70–82, 2003.

[5] A. Crauser and P. Ferragina A Theoretical and
Experimental Study on the Construction of Suffix
Arrays in External Memory. Algoritmica, 32(1): 1–35,
2002.

[6] A.L. Delcher, S. Kasif, R.D. Fleischmann,

J. Peterson, O. White and S.L. Salzberg

Alignment of whole genomes. Nucl. Acids. Res.,
27(11): 2369–2376, 1999.

[7] A.L. Delcher, A. Phillippy, J. Carlton, and

S.L. Salzberg Fast algorithms for large-scale genome
alignment and comparison. Nucl. Acids. Res., 30(11):
2478–2483, 2002.

[8] R. Dementiev, J. Krkkinen, J. Mehnert, and

P. Sanders Better external memory suffix array
construction. Proc. of the 7th Workshop on Algorithm
Engineering and Experiments, 2005.

[9] P. Ferragina and R. Grossi The string B-tree: a
new data structure for string search in external
memory and its applications. J. of the ACM, 46(2):
1999.

[10] H. Garcia-Molina, J.D. Ullman, J.D. Widom

Database System Implementation. Prentice-Hall, Inc,
1999.

[11] D. Gusfield Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[12] W-K. Hon, K. Sadakane, and W.-K. Sung

Breaking a Time-and-Space Barrier in Constructing
Full-Text Indices. Proc. of the 44th Annual IEEE
Symposium on Foundations of Computer Science: 251,
2003

[13] E. Hunt, M.P. Atkinson, and R.W. Irving A
database index to large biological sequences. The
VLDB Jornal, 7(3): 139–148, 2001.

[14] J. Kärkkäinen, and P. Sanders Simple linear work
suffix array construction. Proc. 13th Int. Conf. on
Automata, Languages and Programming, 2003

[15] D.K. Kim, J.S. Sim, H. Park, and K. Park

Linear-time construction of suffix arrays: (Extended
abstract). Proc. of CPM Conf., LNCS 2676: 189–199,
2003

[16] P. Ko and S. Aluru Space efficient linear time
construction of suffix arrays. J. of Discrete
Algorithms, 3 (2-4): 143–156, 2005

[17] S. Kurtz Reducing Space Requirement of Suffix
Trees. Software Practice and Experience, 29(13):
1149–1171, 1999.

[18] S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot,

M. Shumway, C. Antonescu, and S.L. Salzberg

Versatile and open software for comparing large
genomes. Genome Biology, 5(R12): 2004.

[19] N.J. Larsson and K. Sadakane Faster suffix
sorting. Tech. Rep. LUCS-TR:99-214 of the Dept. of
Comp. Sc., Lund University, Sweden, 1999.

[20] U. Manber and E. Myers Suffix Arrays: A New
Method for On-Line String Searches. SIAM J. of

Computing, 22(5):935–948, 1993.

[21] G. Manzini and P. Ferragina Engineering a
lightweight suffix array construction algorithm.
Algorithmica, 40: 33–50, 2004.

[22] B. Phoophakdee and M.J. Zaki Genome-scale
Disk-based Suffix Tree Indexing. ACM SIGMOD
Int. Conf. on Management of Data, 2007.

[23] B. Phoophakdee and M.J. Zaki Trellis+: An
Effective Approach for Indexing Massive Sequence.
Pacific Symposium on Biocomputing, 2008.

[24] E. Pennisi DNA Study Forces Rethink of What It
Means to Be a Gene. Science, 316 (5831): 1556–7,
2007

[25] S.J. Puglisi, W.F. Smyth and A.H. Turpin A
taxonomy of suffix array construction algorithms.
ACM Comput. Surv., 39(2): 2007.

[26] T. Ryan Gregory The evolution of the genome.
Academic Press, 2005.

[27] K. Schurmann, J. Stoye Suffix-tree construction
and storage with limited main memory.
Tech. Rep. 2003-06 of the University of Bielefeld,
Germany, 2003.

[28] R. Sinha, S.J. Puglisi, A. Moffat, and A. Turpin

Improving suffix array locality for fast pattern
matching on disk. Proc. of 2008 SIGMOD Conf.,
661–672, 2008.

[29] A. Stark et al. Discovery of functional elements in
12 Drosophila genomes using evolutionary signatures.
Nature, 450 : 219–232, 2007.

[30] S. Tata, R.A. Hankins, and J.M. Patel Practical
suffix tree construction. Proc. of 30th VLDB Conf.,
36–47, 2004

[31] Y. Tian, S. Tata, R. Hankins, and J. Patel

Practical methods for constructing suffix trees. The
VLDB Journal, 14(3) : 281–299, 2005.

[32] E. Ukkonen On-line construction of suffix trees.
Algorithmica, 14(3): 1995.

[33] A. Woolfe et al. Highly conserved non-coding
sequences are associated with vertebrate development.
PLoS Biology, 3(1), e7
doi:10.1371/journal.pbio.0030007

[34] Strings, Compression, and Orchestra:
www.larsson.dogma.net/research.html

[35] USCS Genome Browser:
hgdownload.cse.ucsc.edu/downloads.html

[36] Benjarath Pupacdi’s Home Page:
www.cs.rpi.edu/∼zaki/software/trellis

