
Suffix Trees for Very Large Genomic Sequences

Marina Barsky
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada

mgbarsky@cs.uvic.ca

Ulrike Stege
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada
stege@cs.uvic.ca

Alex Thomo
Dept. of Computer Science

University of Victoria
BC, V8W 3P6, Canada
thomo@cs.uvic.ca

Chris Upton
Dept. of Biochemistry &

Microbiology
University of Victoria

BC, V8W 3P6, Canada
cupton@uvic.ca

ABSTRACT
A suffix tree is a fundamental data structure for string search-
ing algorithms. Unfortunately, when it comes to the use of
suffix trees in real-life applications, the current methods for
constructing suffix trees do not scale for large inputs. All the
existing practical algorithms perform random access to the
input string, thus requiring that the input be small enough
to be kept in main memory.

We are the first to present an algorithm which is able to
construct suffix trees for input sequences significantly larger
than the size of the available main memory. As a proof of
concept, we show that our method allows to build the suffix
tree for 12GB of real DNA sequences in 26 hours on a single
machine with 2GB of RAM. This input is four times the size
of the Human Genome, and the construction of suffix trees
for inputs of such magnitude was never reported before.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Design, Performance

Keywords
External memory algorithms, Suffix tree

1. INTRODUCTION
If we want to use the information from genetic databases

to its full potential, we need to design more efficient tech-
niques to support user-defined queries for this data. One of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

the promising directions is the preprocessing of entire col-
lections of genomic data into indexing structures. In this
paper we consider suffix trees, the full-text indexes which
are crucial for many applications on genome data (cf. [4]).

As suffix trees are significantly larger than their input se-
quences and quickly outgrow the main memory, constructing
suffix trees for large inputs calls for disk-based methods.

The scalability of all previously proposed methods does
not go beyond inputs that fit into main memory.

The attempts to overcome this inpit string bottleneck were
undertaken in [10, 8, 1], and they clearly indicate that the
problem is far from being solved.

In [10] the authors proposed the Suffix Tree Merge (ST-
Merge) algorithm, which was expected to have better local-
ity of references in the access to the input string than their
original TDD algorithm. However, the experimental evalua-
tion reported in [10] has shown that the ST-merge algorithm
runs an infeasible amount of time for moderate input sizes.
For example, the construction of the suffix tree for an input
of size 20MB using 6MB of main memory (allocated for the
input string buffer) took about 8 hours. The performance
for larger inputs was not reported. Since the improvement
over the original TDD algorithm was insignificant,1 in our
comparative experiments we use TDD instead of ST-merge.

Interesting original ideas were proposed by the authors
of the Trellis algorithm in [8] where they developed a new
version of the algorithm – Trellis with String Buffer (Trel-
lis+SB). During the merge, when the random access to the
entire input is requred, some parts of the input string are
kept in the main memory. Trellis+SB replaces, whenever
possible, the substring positions labeling tree edges by posi-
tions in one small representative partition. This small rep-
resentative part of the input is kept in memory during each
merge and increases the buffer hit rate. Another technique
used by Trellis+SB is the buffering of some initial charac-
ters for each leaf node. The combination of these techniques
allowed in practice to reduce the number of accesses to the
on-disk input string by 95%. Note that the remaining 5%,
for example, for an input of 10GB correspond to 500 million
of random disk I/Os. The authors report that they were able
to build the suffix tree for 3GB of the Human genome, using
512MB of main memory, in 11 hours on an Apple Power

1The implementation of ST-Merge is not available [8].

Mac G5 with a 2.7GHz processor and 4GB of total RAM.
The performance for larger inputs was not reported.

Similar results in decreasing the number of random disk
I/Os were obtained for the DiGeST algorithm [1], which
merges suffix arrays built for input partitions, using a multi-
way merge sort and organizing the output buffer in form of a
suffix tree. In order to reduce the access to the input string
in the merge phase, for each position in the suffix arrays of
partitions a 32–character prefix was attached. This prefix
served the comparison of suffixes of different partitions in
the merge phase of the algorithm. The references to the
input string were reduced by 98% for the DNA data used
in the experiments in [1]. Even 2% of remaining random
accesses significantly degraded the perfomance of DiGeST
when the input string was kept on disk.

The main contribution of this paper is the first practical
algorithm for constructing suffix trees for inputs larger than
the size of main memory. We present B2ST , an efficient
external-memory suffix tree construction algorithm for very
large inputs.2 B2ST minimizes random access to the input
string and accesses the disk-based data structures sequen-
tially. The algorithm scales to much larger inputs than the
previous algorithms. It is able to build a disk-based suffix
tree for virtually unlimited size of input strings, thus filling
the ever growing gap between the increase of main memory
in modern computers and the much faster increase in the
size of genomic databases.

2. OUR ALGORITHM
Problem definition.
We consider a string X to be a sequence of N symbols.

The first N − 1 symbols are over a finite alphabet Σ, xi ∈ Σ
(0 ≤ i < N −1). The last symbol xN−1 is unique and not in
Σ (a so-called sentinel). By Si = X[i, N] we denote a suffix
of X beginning at position i, 0 ≤ i < N . Note that we can
uniquely identify each suffix by its starting position.

Prefix Pi is a substring [0, i] of X. The longest common
prefix LCPij of two suffixes Si and Sj is a substring X[i, i+k]
such that X[i, i + k] = X[j, j + k], and X[i, i + k + 1] 6=
X[j, j + k + 1].

If we sort all the suffixes in lexicographical order, and
record this order into an array of integers, then we obtain
the suffix array SA of X. SA holds all integers i in the
range [0, N], where i represents Si. The suffix array can be
augmented with the information about the longest common
prefixes for each pair of suffixes represented as consecutive
numbers in SA.

A suffix tree [6] is a digital tree of symbols for the suf-
fixes of X, where edges are labeled with the start and end
positions in X of the substrings they represent. Note also
that each internal node in the suffix tree represents an end
of the longest common prefix for some pair of suffixes. The
tree’s total space is linear in N in the case that each edge
label can be stored in a constant space. Fortunately, this is
the case for an implicit representation of substrings by their
positions.

In this article, we discuss the problem of constructing suf-
fix tree ST for string X of size N . Our challenge is that
the main memory size, M , is smaller than the space needed
to hold the entire input string; the input-to-memory ratio

2B2ST stands for Big string, Big Suffix Tree

r = N/M is at least 2. Therefore, neither X nor ST can be
entirely loaded into the main memory and only some parts
of them can be held in main memory buffers. The goal is to
build ST minimizing random disk I/Os.

Our solution.
Our solution for the problem described above is based on

the following ideas.
The suffix tree of X can be constructed given its suffix

array SA augmented with an LCP information. As was
proved in [2], the conversion of the suffix array into the suffix
tree can be performed in a linear time. In practice, this
process exhibits a good locality of references and therefore
a good behavior in external memory settings. Both SA and
ST can be kept on disk, and only their sequential parts can
be loaded and manipulated in main memory.

Consequently, the first step in our algorithm for the suf-
fix tree construction is obtaining a suffix array for string X,
augmented with the LCP information. For this, we want
to lexicographically sort all suffixes of X. Suffix sorting dif-
fers from conventional string sorting in that the elements to
be sorted are N overlapping strings, and the length of each
such string is O(N). This implies that a comparison-based
sorting algorithm, which requires O(N log N) comparisons,
may take O(N2 log N) time. Moreover, if we treat suffixes
as if they were regular strings we have an even bigger prob-
lem: when comparing a pair of suffixes we need to scan the
corresponding sequences of symbols in X starting at two
positions along the string X. These positions are mostly
non-consecutive. When X is on disk, this translates into a
prohibitive number of random disk I/Os.

The second idea we use in the design of the new algorithm
is the general paradigm of the external memory two-phase
multi-way merge-sort (2PMMS) [3]. We partition X into
substrings (partitions) and lexicographically sort the suffixes
in each partition. We can do this in main memory by using
any of the best algorithms for in-memory suffix sorting and
writing the resulting suffix arrays to disk.

A problem arises when we want to merge these suffix ar-
rays. In the simple case of merging sorted lists of keys,
the relative order of elements from any two different lists is
determined by comparing these elements. However, in our
case, all we have are the starting positions of the suffixes
from different partitions, since this is all the information we
can store in suffix arrays. This does not help in determin-
ing the relative lexicographical order of suffixes, since our
sorting keys are the substrings of X (and not their starting
positions).

A näıve approach would compare two suffixes from differ-
ent partitions by randomly accessing X, which is on disk.
This would lead to O(N) random disk I/Os. This takes a
prohibitive amount of time even for small N . Be reminded
that the size N of our input string is several times larger
than the available main memory.

To avoid the access to the input string in the merge step,
we do not compare the actual input string characters, but
rather deduce the necessary information from the relative
order and the LCP of any two suffixes stored in specific
structures which we call pairwise order arrays.

B2ST proceeds in three steps: input partitioning, sorting
of suffixes for each pair of partitions and merging all suffixes
into a disk-resident suffix tree.

Algorithm pairwiseSorting

input: k partitions of string X

1. for (u=0; u<k-1; i++)

2. for (v=1; v<k; v++)

3. concatenate X
u
X
v

and load into RAM

4. build suffix array with LCP SA
uv

5. during sequential scan of SA
uv

6. if v==k-1 //last chunk

7. output to disk SA
v

8. output to disk SA
u

9. output to disk R
uv

//order array

Figure 1: Algorithm for pairwise sorting of suffixes
in all partition pairs.

Step 1: Input Partitioning.
Our algorithm first partitions the input string X of size

N into k partitions, such that k = 2r (recall that r = N/M
is the input to memory ratio). Note that the sequenced
genomes are already partitioned into natural partitions – the
chromosomes. In general, if one of the natural partitions is
too large, it is partitioned into several artificial chunks, such
that each chunk has length at most p. It is enough to ap-
pend to the end of each such chunk, except the last one, a
small “tail”, namely the prefix of the next chunk. The tail
of the chunk must never occur as a substring of this chunk.
It serves as a sentinel for the suffixes of the chunk, and its
positions are not included into the suffix array of the corre-
sponding partition. Note that we require the combined size
of any pair of partitions 2p to be less than M .

Step 2: Suffix sorting in partition pairs.
In this step we generate suffix arrays for each pair of par-

titions. The pseudocode for this step is shown in Figure
1. We concatenate every possible pair u, v of partitions
(0 ≤ u < k−1, u+1 ≤ v < k, u < v) into string XuXv. We
load this input into the main memory and build the suffix
array SAuv with attached LCP information for each suffix.
From each SAuv, we extract two structures: (1) the suffix
array SAu for partition Xu and (2) an “order array” Ruv

of size |Xu| + |Xv|. The order array Ruv contains the LCP
entries of SAuv plus the partition ID information, which can
be stored in 1 bit. Specifically, we use 0 for u and 1 for v
(u < v).

At the end of this step we have on disk k suffix arrays for
k partitions (of total size N), plus k(k − 1)/2 order arrays
for each possible pair of partitions (of total size kN). This is
all the information we need to efficiently perform the merge.
As a result of this merge we produce the suffix tree for the
entire input string X. We are doing this without loading
the entire input string into main memory. In fact, we never
access X anymore.

Step 3: Merging.
In order to merge the suffix arrays of different partitions,

we use the information from the order arrays. Notably, all
these arrays are accessed sequentially. As in the classical
2PMMS, we have k input buffers for each of the k disk-
based suffix arrays created in Step 2. We denote the buffer
for a suffix array SAu by SA BUFu. In addition, we use
k(k − 1)/2 input buffers for order arrays. We denote the
buffer for an order array Ruv by R BUFuv. Finally, we have

Algorithm compareSuffix (Si from partition u,

Sj from partition v)

1. if (u = = v)

2. return -1 //Si<lex Sj, since they are sorted

//in increasing order inside each partition

3. if (u < v)

4. if (partitionBit in R_bufuv[current pointer] = = 0)

5. return -1 //Si<lex Sj
6. else

7. return 1 //Si>lex Sj
8. if (u > v)

9. if (partitionBit in R_bufvu[current pointer] = = 0)

10. return 1 //Sj<lex Si
11. else

12. return -1 //Sj>lex Si

Figure 2: Algorithm for suffix comparison which
uses the pairwise suffix information from the order
arrays created during pairwise suffix sorting.

an output buffer, ST BUF , where we collect the nodes of
the merged suffix tree before emptying it to disk. The total
size of all the buffers matches the size of the available main
memory.

In essence, the merge corresponds to the merge phase of
the multi-way merge sort. The only difference is that in
order to compare suffixes from different partitions we use
the order information recorded in order arrays, as shown in
pseudocode for suffix comparison in Figure 2.

Note, that the disk-resident suffix arrays and the order ar-
rays are read sequentially, which would not be the case if we
were consulting the input string X to resolve a relative order
for arbitrary suffix start positions of different partitions.

In the output buffer, ST BUF , we incrementally build
the suffix tree for lexicographically sorted suffixes.

Knowing the LCP of the current suffix with the suffix
previously inserted into the tree, we simulate an Euler tour
on the tree under construction [2], such adding one internal
node and one leaf per each suffix.

Before flushing the output buffer to disk, as done in [1],
we add the 32-character prefix of the suffix last inserted into
the tree to a collection of dividers. Each divider contains
the prefix of the lexicographically largest suffix in the corre-
sponding suffix tree along with a pointer to the file where the
tree is stored. Thus, at the end of the computation we have
on disk a forest of suffix trees, each of which can quickly be
located from a corresponding divider, and then loaded and
queried in main memory. Notably, all these small trees are
of equal length, which solves the problem of data skew for
prefix-based partitioning of the on-disk suffix tree, as in [5,
9].

Finally, we note that the collection of dividers is small
and can be kept in main memory during the query execu-
tion. For example, in order to locate a pattern in X, we
first scan the collection of dividers to find the proper tree,
then we load this tree into main memory and search inside it.

Analysis.
Since the suffix array construction and the LCP computa-

tion for each pair of partitions can be done in time linear in
its length 2N/k, and we have k(k − 1)/2 different pair com-
binations, the running time of the sorting step is O(kN),
where k = 2N/M . In other words, the time is proportional
to the total input size and the input-to-memory ratio, i.e.,

3B2ST

11Trellis+SB

125TDD

Time, hoursProgram

3B2ST

11Trellis+SB

125TDD

Time, hoursProgram

Figure 3: Running times of different suffix tree con-
struction algorithms for approximately 3GB of DNA
sequence (human genome) which is larger than the
total allocated main memory.

how many times our input exceeds the available main mem-
ory. In the merge step, the suffix tree of size O(N) is con-
structed in time linear in N . This requires, however, the
complete scan of the intermediate order arrays of total size
O(kN). Thus, B2ST runs in asymptotic time O(kN), us-
ing the constant amount of the available main memory M
and O(kN) temporary disk space. The high efficiency of the
algorithm is due to the sequential access of the disk data.

3. EXPERIMENTAL EVALUATION
We implemented B2ST in C and compiled with a GNU

gcc compiler, version 4.1.2. All experiments were performed
on a machine with an Intel Core Duo 2.66 Ghz CPU, 2GB
RAM and 4MB L2 cache under Ubuntu 7.04, 32-bit Linux.

Our objective was to evaluate the main idea of B2ST ,
assuming the required suffix arrays for each pair of partitions
are given. For this purpose we used the modification of
DiGeST [1] which outputs a suffix array with LCP values
instead of suffix trees. Thus, DiGeST efficiently builds suffix
arrays for 4GB of DNA using a main memory string buffer
of 1GB assuming the DNA string is first compressed using
2 bits per character.

We first evaluated the performance of our algorithm in
comparison with TDD [12] and Trellis+SB [13] implemen-
tations. The results are shown in Figure 3.

For B2ST we divided the 3GB into partitions of 1GB each
and built the suffix array for partition pairs of a total size
of 2GB. We used for this 600 MB of main memory.

The sorting of suffixes in the 3 pairs of 3 partitions took
118 minutes, while the merge took only 13 minutes. This
confirms that performing sequential scans as we do in B2ST
pays off compared to just focusing on reducing the number
of random disk I/O’s to the input string, as the other algo-
rithms do.

Next we evaluated the scalability of our algorithm. Us-
ing only 1GB of main memory to hold input string we con-
structed suffix trees for approximately 6, 8, 10 and 12GB
of genomic data. These datasets were generated from com-
binations of sequences of eucaryotic chromosomes (human,
chimpanzee, zebra fish, cow, mouse, and chicken) obtained
from [11].

The performance results are shown in Figure 4. The size of
each partition is 2GB. For our largest input, 12GB, we had
6 partitions and 15 partition pairs. The time taken to build
the suffix arrays of these 15 pairs was 25 hours and produced
an intermediate on-disk output of size 234GB. Despite this,
the merge phase completed in only 59 minutes, scanning all
this on-disk data in sequential manner and produced 2514
suffix tree files of total 215GB.

This example shows that we need a large temporary disk
space for scaling up the B2ST algorithm. Specifically, we
need D = k2p = kN disk space to store the order arrays
for all partition pairs. Since the number of partitions is

152159146215612

114242110010510

76434730648

46827441336

Total

time,

min

Merge,

min

Pairwise

sorting,

min

Number of

partition

pairs

Number

of

partitions

Input

size,

GB

152159146215612

114242110010510

76434730648

46827441336

Total

time,

min

Merge,

min

Pairwise

sorting,

min

Number of

partition

pairs

Number

of

partitions

Input

size,

GB

Figure 4: Running time (min) of B2ST for different
sets (approximately 6, 8, 10 and 12GB) of genomic
DNA using only 2GB of main memory.

k = N/M , from D = N2/M we can determine the size
of the largest input that we can process with M bytes of
internal memory and D bytes of disk space. If we substitute
the common values for modern computers, D = 1012 (1TB),
and M = 4×109 (4GB), then we can build suffix trees using
such a machine for up to 60GB of input. Note, however, that
the construction of suffix trees even for 10GB of input was
never achieved and reported before.

Hence, by using our B2ST algorithm, indexing a large
amount of DNA data with suffix trees becomes a feasible
routine task.

4. REFERENCES
[1] M. Barsky, U. Stege, A. Thomo, and C. Upton.

A new method for indexing genomes using on-disk
suffix trees. Proceedings of CIKM 2008: 649–658, 2008.

[2] M. Farach-Colton, P. Ferragina, and S.

Muthukrishnan. On the sorting-complexity of suffix
tree construction. Journal of the ACM, 47(6):
987–1011, 2000.

[3] H. Garcia-Molina, J. D. Ullman, J. D. Widom.

Database System Implementation. Prentice-Hall Inc.,
1999.

[4] D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[5] E. Hunt, M.P. Atkinson, R.W. Irving. A
database index to large biological sequences. The
VLDB Jornal, 7(3): 139–148, 2001.

[6] E. M. McCreight. A Space-economical Suffix Tree
Construction Algorithm. Journal of the ACM, 23(2):
262–272, 1976.

[7] B. Phoophakdee and M. J. Zaki. Genome-scale
Disk-based Suffix Tree Indexing. ACM SIGMOD
International Conference on Management of Data,
2007.

[8] B. Phoophakdee and M. J. Zaki. Trellis+: An
Effective Approach for Indexing Massive Sequence.
Pacific Symposium on Biocomputing, 2008.

[9] S. Tata, R.A. Hankins, J.M. Patel. Practical suffix
tree construction. Proceedings of 30th VLDB
conference, 36–47, 2004

[10] Y. Tian, S. Tata, R. Hankins, J. Patel. Practical
methods for constructing suffix trees. The VLDB
Journal, 14(3) : 281–299, 2005.

[11] USCS Genome Browser:
hgdownload.cse.ucsc.edu/downloads.html

[12] Source code for TDD:
www.eecs.umich.edutdddownload.html

[13] Source code for Trellis+SB:
www.cs.rpi.edu/∼zaki/software/trellis

