
Efficient Computation of Importance-Based Communities
in Web-Scale Networks Using a Single Machine

Shu Chen, Ran Wei, Diana Popova, Alex Thomo
University of Victoria, British Columbia, Canada

{shuc12,ranwei,dpopova,thomo}@uvic.ca

ABSTRACT
Finding decompositions of a graph into a family of commu-
nities is crucial to understanding its underlying structure.
Algorithms for finding communities in networks often rely
only on structural information and search for cohesive sub-
sets of nodes. In practice however, we would like to find
communities that are not only cohesive, but also influen-
tial or important. In order to capture such communities,
Li, Qin, Yu, and Mao introduced a novel community model
called “k-influential community” based on the concept of k-
core, with numerical values representing ”influence”assigned
to the nodes. They formulate the problem of finding the top-
r most important communities as finding r connected k-core
subgraphs ordered by the lower-bound of their importance.
In this paper, our goal is to scale-up the computation of top-
r, k-core communities to web-scale graphs of tens of billions
of edges. We feature several fast new algorithms for this
problem. With our implementations, we show that we can
efficiently handle massive networks using a single consumer-
level machine within a reasonable amount of time.

1. INTRODUCTION
One of the most important tasks in analyzing graphs is

finding communities of nodes that have close ties with each
other [11, 14, 18, 32]. Communities are usually conceived as
subgraphs with a high density of links within the subgraph
and a comparatively lower density of links with the rest of
the graph. Discovering communities is of great importance
in sociology, biology, computer science, and other disciplines
where systems are often represented as graphs [12].

While most of the works on community detection focus
on graph structure only, in practice, we would often like to
find the communities that are not only well-connected in-
ternally, but also important or influential. For example, we
would like to discover well-connected communities of pro-
lific celebrities, highly-cited researchers, outspoken individ-
uals, authoritative financial analysts, etc. To capture such
communities, Li, Qin, Yu, and Mao introduced in [23] a novel
community model called “k-influential community” based on
the concept of k-core, with values of “influence” or “impor-
tance” assigned to the nodes. They formulate the problem
of finding the top-r most important communities as finding
r connected k-core subgraphs ordered by the lower-bound of
their nodes’ importance. This model embeds the node im-
portance/influence into the very process of community de-
tection. In this paper, we focus on this community model.
Our goal is to scale the computation of influential commu-
nities to massive graphs with billions of edges.

Finding communities in a network is typically hard [12].
Straightforward search for the top-r, k-core communities in
a large network is impractical because there could be a large
number of communities that satisfy the core constraint, and
for each community, we need to check its importance. De-
spite these difficulties, several algorithms for top-r, k-core
community detection have been developed in [23] with vary-
ing levels of performance and space requirements.

Algorithms in [23]. There are two main algorithms pre-
sented in [23]: direct and index-based. The direct algorithm
computes the communities based on the core decomposition
of the graph for a given k. It progressively removes nodes of
least importance and then runs a maximally connected com-
ponent (MCC) algorithm to discover the next community.
The direct algorithm can be used for graphs of moderate
size; when the graph is large, the algorithm does not scale.
This happens because of the large number of MCC runs.

The index-based algorithm first builds an index. The in-
dex can then be used to quickly extract top-r, k-core commu-
nities for any r and k. The proposed procedures for building
the index are quite efficient; however, the index is a main
memory structure and needs space comparable to the size
of the original graph. As a result, the index-based solution
does not scale for very large graphs. For example, we were
unable to construct the index for Clueweb, a dataset of 74
billion edges, using 64GB of memory. To the best of our
knowledge, scaling the computation of influential communi-
ties to massive graphs of such a scale is an open problem.

Algorithms in this paper. Our goal is to significantly
speed-up the direct computation of communities and scale-
up to massive graphs with tens of billions of edges. Further-
more, we would like to achieve this using only a consumer-
grade machine (in the trend of [19, 22]). In order to make the
graph footprint as small as possible, we used Webgraph, a
highly efficient, and actively maintained graph compression
framework [4].

We propose efficient algorithms that require space in the
order of the compressed version of the graph. This is an
order of magnitude lower than the memory required by the
index-based solution of [23], which needs space in the order
of the uncompressed version of the graph.

Our algorithms can be classified into “forward” and “back-
ward.” The forward algorithms recursively peel off the k-
core subgraph of the graph starting from the least important
nodes. Along the way, we maintain proper bookkeeping in-
formation so that MCC runs are minimized or eliminated. In
contrast, the backward algorithms process the graph start-
ing from the most important nodes first. While the forward

algorithms compute communities from the least to the most
important, the backward algorithms compute them in the
reverse order, from the most important to the least. More
specifically, our contributions are as follows.

1. We present two fast, forward algorithms for computing
top-r, k-core communities. We minimize the number
of MCC computations and achieve orders of magnitude
speed-up compared to the direct algorithm of [23].

2. We present an even faster forward algorithm for com-
puting top-r, k-core disjoint communities, which com-
pletely eliminates MCC computations.

3. We present backward algorithms for fast computing of
the most important communities. When the graph is
big and r relatively small, these algorithms perform
best and produce the result by only accessing a small
portion of the graph.

4. We present extensive experiments on large and very
large graphs. Our biggest graph is Clueweb with about
1 billion nodes and 74 billion edges. Our results show
that we are able to compute communities for every
combination of k and r in a large range of values using
the forward algorithms. We can do this faster for a
good number of k and r combinations using the back-
ward algorithms.

2. PRELIMINARIES
We represent networks using undirected graphs. We de-

note an undirected graph by G = (V,E), where V is the set
of vertices, and E is the set of edges. We set n and m to be
|V | and |E|, respectively. Given a vertex v, we denote the
set of its neighbors, {u : (u, v) ∈ E}, by NG(v).

We focus on “cohesive” subgraphs based on the concept
of k-core. We say that a subgraph H of G is k-core if each
vertex in H has degree at least k in H. The maximal k-core
of G is the largest such subgraph. We denote the maximal
k-core of G by Ck(G). In general, Ck(G) is not necessarily
connected, i.e. it can contain several maximally connected
components (MCC’s). For 1 ≤ i < j, if Ci(G) 6= ∅, then
Ci(G) ⊃ Cj(G).

2.1 Importance-based Communities
Consider a graph G = (V,E); we follow the community

model of [23], which is based on the notion of k-core co-
hesive subgraphs. Furthermore, an importance weight ar-
ray w of size n is given, such that w[v] is the weight of
v ∈ V . These weights can represent centrality scores, h-
index, wealth, social status, age, etc. In practice, it is easy
to derive such weights from attributes attached to nodes in
real networks or compute them using auxiliary information
(e.g. p- or h-index). Also, a strict total order is assumed
on the weights of array w; this can be easily achieved by
breaking ties based on the lexicographical order of vertex
ids. Given a subgraph H = (VH , EH) of G, the weight of
H is defined to be the lower-bound of its vertex weights, i.e.
W (H) = min{w[v] : v ∈ VH}. The idea of the influential
community model of [23] is to extract cohesive subgraphs of
high importance weight.

More precisely, given k and r, the influential community
problem is to discover the top-r (w.r.t. weight) maximally
connected, k-core subgraphs of Ck(G).

Papadimitriou

Ullman

Johnson Garey

Aho

Garcia-Molina

Ullman

Widom

Bernstein Stonebraker

Gray

Agrawal

Figure 1: Arnet: [left] top-1, k = 3, [right] top-1, k = 6

As a real example, using the authorship network from Ar-
netMiner (http://arnetminer.org) and weighing authors by
their p-index ([?]), we obtain for k = 3 and k = 6 the top-1
communities shown in Fig. 1. The influence of the people in
those communities is undisputed, with the first community
having a higher p-index lower-bound than the second. In
general, k can serve as tradeoff between cohesiveness and im-
portance. The higher the k, the higher the cohesiveness, but
the lower the importance of computed communities can be.1

Such communities can be discovered by“peeling off”Ck(G)
as follows. Let us set Ck,1 = Ck(G), and let vk,1 be the min-
imum weight vertex in Ck,1. We define the 1st influential
community, Hk,1, as the maximally connected component
(MCC) of Ck,1 containing vk,1. Then, we peel off vk,1 by re-
cursively deleting it and its neighbors whose degree in Ck,1

falls below k during deletions. Let Ck,2 be what remains
of Ck,1 after (recursively) peeling off vk,1. Clearly, Ck,2 is
k-core. We repeat the same process now on Ck,2 and obtain
the 2nd influential community Hk,2.

In general, let Ck,i be what remains of Ck,i−1, for i ≥ 2,
after peeling off the minimum weight vertex in Ck,i−1. Let
vk,i be the minimum weight vertex in Ck,i. We define the ith

influential community, Hk,i, as the MCC of Ck,i containing
vk,i. We continue like this until Ck,i becomes empty for some
i. For each i ≥ 2, such that Ck,i 6= ∅, we have W (Hk,i) >
W (Hk,i−1). We output the last (top) r communities.

To illustrate the above, see Fig. 2. For simplicity, the
weights of vertices are set to be their ids. We see Ck,i’s in
black, for k = 2 and i ∈ [1, 8], for the graph in Fig. 2a.
The grayed out vertices and edges are deleted during peel
offs (recursive deletes). For example, when we delete vertex
5 in C2,5 (Fig. 2e), vertices 6, 12, and 13 are recursively
deleted as well (grayed-out in Fig. 2f). Hk,i is the MCC of
Ck,i containing the vertex of the smallest weight vk,i. For
example, for C2,7 (Fig. 2g), v2,7 = 8 and H2,7 = {8, 9, 10}.

Subgraphs Hk,i, being MCC’s of Ck,i, are all k-core. We
call them connected-cohesive-important (CCI) communities.
It can be verified that either Hk,i ⊃ Hk,j , for 1 ≤ i < j, or
Hk,i ∩Hk,j = ∅. The first case happens when vk,i is in the
same MCC in Ck,i as vk,j , whereas the second happens when
they are not. There are possibly several chains of such ⊃
containments. For Fig. 2, we have two such chains, H2,1 ⊃
H2,2 ⊃ H2,3 ⊃ H2,4 ⊃ H2,6 ⊃ H2,8, and H2,1 ⊃ H2,2 ⊃
H2,5 ⊃ H2,7. The last CCI community in each chain does
not contain any other CCI community. We call them non-
containing CCI communities. They are interesting because
they represent the nuclei of bigger communities.

We define two top-r CCI community problems. Specifi-
cally, given a graph G, and two positive integers k and r,
the first problem (P1) is to compute the top-r CCI commu-
nities, and the second problem (P2) is to compute the top-r
non-containing CCI communities.

1See [23] for more case studies showing the benefits of the
proposed model as well as its advantages over other models.

(a) H2,1 = {1, . . . , 11, 14, 17} (b) H2,2 = {2, . . . , 11, 14, 17} (c) H2,3 = {3, 4, 7, 11, 14, 17} (d) H2,4 = {4, 7, 11, 14, 17}

(e) H2,5 = {5, 6, 8, 9, 10, 12, 13} (f) H2,6 = {7, 11, 14, 17} (g) H2,7 = {8, 9, 10} (h) H2,8 = {11, 14, 17}
Figure 2: Ck,i’s, for k = 2 and i ∈ [1, 8], for the graph in (a) are in black. The grayed out vertices and edges are deleted.
Weights are the vertex id’s. Hk,i’s are the MCC’s containing the vertex of the smallest weight.

The peel-off procedure we described earlier is in fact the
direct algorithm proposed in [23].2 We call this algorithm
C-original, and it solves problem P1. We discuss solutions
for P2 later in the paper. The bottleneck of C-original is the
very large number of MCC computations it executes starting
from each minimum-weight vk,i. Along the way, we need to
keep a cache of the last r CCI communities thus discovered.
This is because the communities are generated in reverse or-
der of their importance. In the next section, we present new
algorithms for P1 and P2 that drastically reduce the num-
ber of MCC computations or completely eliminate them.

3. FORWARD ALGORITHMS FOR P1
Let us first analyze algorithm C-original described in the

previous section. Since the complexity of MCC is O(m) and
we compute it for each min-weight vertex vk,i, the complex-
ity of C-original is O(m · n), which is impractical for big
graphs. Regarding space complexity, observe that we need
to remember each time the last r communities computed so
far. Since we only store the vertices of these communities,
the space complexity is O(m + n · r). For small r (say not
more than 30), we can say that the second term n · r is ab-
sorbed by the first, m. However, for larger r’s, n · r becomes
eventually bigger than m. Therefore, the algorithm has also
a memory bottleneck. In the following we describe our pro-
posed algorithms for P1. They outperform C-original by
orders of magnitude.

Our First Approach. What takes most of the time in
C-original is computing MCC’s for each Ck,i. The early
Ck,i are especially expensive as they are quite big in size.
Furthermore, many Ck,i are just slightly smaller than the
previous one, Ck,i−1.

We observed in practice that for most of the early iter-
ations, the peel-off process does not remove more than few
vertices each time. We can observe this fact even in the small
example we presented in Fig. 2 (see the grayed out vertices
in (2a)-(2e)). Therefore, many of the MCC computations
are performed on almost identical graphs.

Peel-offs are performed by a recursive delete procedure,
RDelete, which takes as parameters a k-core subgraph C
and a vertex v. It deletes v from C, then recursively deletes
all v’s neighbors whose degree becomes less than k, and con-
tinues so until there are no more vertices with degree less
than k. In the end, what remains of C is either a k-core

2Algorithm 2 in [23]

subgraph, or an empty graph. RDelete is inexpensive to
compute, especially for the early iterations. The total time
spend on all RDelete calls together is O(m), i.e. not more
than just traversing the graph. So, the bottleneck is in fact
in the MCC computations.

We pose the following question: How can we reduce MCC
computations? Towards this goal, we observe that we only
need to run MCC for the last r iterations because it is only
those iterations that produce the top-r results.

The problem is though that we do not know beforehand
how many iterations there will be in total. However, this
can be found by running twice the logic of vertex removals.
The new algorithm, C1, is given in Alg. 1. The first run
of vertex removals (lines 1-5) does not call MCC at all. It
selects the min-weight vertex vk,i (variable v) from the cur-
rent Ck,i (variable C), then peels off vk,i by calling RDelete,
and records the iteration by incrementing variable i. The
purpose of this part is to find out how many iterations are
needed. The final value of i will be the total number of iter-
ations. The second run of vertex removals (lines 6-13) starts
anew and knowing i, only calls MCC in the last r iterations.
C is reinitialized before the second run. Now, we use j in-
stead of i, and only call MCC when j > i − r. In total, we
run MCC for only r times, which happens during the last r
iterations. Based on the above discussion, we can verify the
following conclusion.

Theorem 1. Algorithm C1 correctly computes all the
top-r CCI communities of a given graph G.

Since we run MCC only r times, we have that

Theorem 2. The time complexity of C1 is O(m · r).

This is much smaller than O(m·n) for practical values of r.
Also, O(m ·r) is only a lose upper bound for C1 because the
last r iterations operate on very small graphs obtained after
deleting most of the vertices in the first i − r iterations.
Therefore the MCC computations of the last r iterations
cost significantly less than O(m) in practice.

In our experiments, we observe C1 to be orders of magni-
tude faster than C-original.

Regarding space complexity, observe that we do not need
anymore to remember the last r communities computed so
far. This is because we only compute the very last r commu-
nities, which not only are the smallest r communities, but
can also be printed (or saved) out right away. Therefore we
state the following theorem.

Theorem 3. The space complexity of C1 is O(m).

In practical terms, we only need space to store a compressed
version of the graph. Modern compression frameworks re-
duce the footprint of real graphs near an order of magnitude.

Algorithm 1 Top-r CCI communities (C1)

Input: G, w, k, r
Output: Hk,p−r+1, . . . , Hk,p

1: C ← Ck(G), i← 1
2: while C 6= ∅ do
3: Let v be the minimum-weight vertex in C
4: RDelete(C,v)
5: i← i + 1

6: C ← Ck(G), j ← 1
7: while C 6= ∅ do
8: Let v be the minimum-weight vertex in C
9: if j > i− r then

10: H ← MCC(C,v)
11: Output H

12: RDelete(C,v)
13: j ← j + 1

Next, we present a better algorithm which reduces the
time by a constant factor of (about) 2.

Our Second Approach. The next question we pose is:
How to avoid running the second while loop and cut the
running time in (about) half?

Towards this goal, we introduce a hash-based structure,
which we call iteration-delete-history and denote by I. This
is a hash-table indexed by i, the iteration number. For each
i, we store in I(i) a list of deleted vertices in iteration i.

For an illustration, consider Fig. 2. For this example,
we have 8 iterations, and I(1) = {1}, I(2) = {2}, I(3) =
{3}, I(4) = {4}, I(5) = {5, 6, 12, 13}, I(6) = {7}, I(7) =
{8, 9, 10}, I(8) = {11, 14, 17}.

The algorithm is given in Alg. 2. Structure I is populated
during the run of the while loop. More specifically, it is
populated in a modified RDelete procedure. The modified
RDelete, which we call RDelete2, takes two extra parame-
ters, I and i, and has one extra operation, the insertion of
v to I(i). Since the procedure is recursive, all the deleted
vertices in iteration i will be inserted into I(i). We imple-
mented I as a flat array of dimension n accompanied by
another array storing the positions of bucket boundaries.
Since the buckets of I are filled out in order of increasing i,
each operation on I takes constant time.

We do not execute any MCC computation in the while
loop of Alg. 2. Once the while loop completes, we start run-
ning the necessary r MCC computations in the subsequent
for loop. However, since the vertices are deleted at this
point, we need each time to make some vertices alive again.
The for loop goes downwards starting from the max itera-
tion number, i, and ending in i−r+1. First, we make“alive”
the vertices deleted in the last iteration of the while loop,
then the vertices deleted in the second last iteration, and so
on. We record the vertices that become alive in an array
called alive. Each time we make a set of vertices alive, we
run an MCC computation. The MCC computation works on
the original graph, G, consulting array alive as it performs
a DFS. Only the alive vertices are considered for computing
the maximally connected component. It can be verified that
algorithm C2 produces the same result as C1, just in reverse
order, i.e. Hk,p, . . . , Hk,p−r+1. Therefore, we can state the

following theorem.

Theorem 4. Algorithm C2 correctly computes all the
top-r CCI communities of a given graph G.

The asymptotic time complexity of C2 is the same as that
of C1; however, in terms of constant factors, C2 is about
twice faster than C1. For the space complexity, observe that
structure I takes O(n) space, which is absorbed by O(m)
needed to hold the graph (typically true for a compressed
graph as well). Therefore, we state the following theorem.

Theorem 5. The space complexity of C2 is O(m).

Algorithm 2 Top-r CCI communities (C2)

Input: G, w, k, r
Output: Hk,p, . . . , Hk,p−r+1

1: C ← Ck(G), i← 1, I ← ∅
2: while C 6= ∅ do
3: Let v be the minimum-weight vertex in C
4: I(i)← ∅
5: RDelete2(C,v,I,i)
6: i← i + 1

7: alive ← 0
8: for j = i downto i− r + 1 do
9: for all v ∈ I(j) do

10: alive[v]← 1

11: v ← I(i).first()
12: H ← MCC(G, v, alive)
13: Output H

4. FORWARD ALGORITHMS FOR P2
In [23], the computation of non-containing (NC) commu-

nities is done by modifying C-original to check each time
whether upon calling RDelete in an iteration i all the ver-
tices of Hk,i−1 (of the previous iteration) are deleted. In such
a case, it can be concluded that Hk,i−1 is a non-containing
community. We call this algorithm NC-original; it still calls
a MCC procedure to calculate Hk,i−1. As such, the per-
formance of NC-original is similar to C-original. For big
graphs, both of them are not practical.

Here we propose another algorithm that completely elim-
inates the need to run MCC computations. For this, we
observe that all the information we need for non-containing
communities is in the iteration-delete-structure, I, that we
maintain. Towards this goal, we give the following definition
and then a lemma.

Definition 1. Given a vertex v, the current degree is the
number of alive neighbors of v.

We record current degrees in an array d. While a vertex
v is alive, d[v] will contain the current degree of v. When
v is deleted, d[v] is not updated anymore, i.e. for deleted
vertices, d will remember their degree at the time (iteration)
of their deletion.

Now, if in some iteration i, we have that for each v ∈ I(i),
d[v] = 0, then all the vertices neighboring some vertex in I(i)
are gone (already deleted), i.e. the set of vertices in I(i) was
the last standing community in a community containment
chain. Based on this reasoning we have the following lemma.

Lemma 1.

1. For each non-containing Hk,i, Hk,i = I(i).

2. Let i ≥ 1. If for each v ∈ I(i), d[v] = 0, then I(i) is a
non-containing CCI.

Proof. (1) can be verified from the definitions. For (2),
suppose I(i) is not a non-containing CCI, i.e. we have that
I(i) ⊂ Hk,i, and this is a strict containment. Since Hk,i is a
connected component, there exist at least one edge between
some v ∈ I(i) and some u ∈ Hk,i \ I(i). We have that the
weight of any vertex in Hk,i \ I(i) is greater than the weight
of any vertex in I(i). Therefore, u is not yet deleted in
iteration i. Hence d[v] ≥ 1, which is a contradiction.

Our algorithm, NC1, is given in Alg. 3. We also modify
RDelete2 to properly update array d during deletions. We
call the modified procedure, RDelete3.

NC1 completely eliminates MCC computations. It starts
by initializing C to Ck(G), and the current vertex degrees
to their degrees in C. In the while loop, after populating
I(i) via RDelete3, we check to see whether all the vertices in
I(i) have a degree of zero (lines 10-12). If true, then I(i) is
a non-containing community. Based on the above reasoning
and Lemma 1, we state the following theorem.

Theorem 6. Algorithm NC1 correctly computes all the
top-r non-containing CCI communities of a given graph G.

NC1 only iterates once over the graph and the only struc-
ture it uses is I. Therefore, we have the following theorem.

Theorem 7. The time and space complexity of algorithm
NC1 is O(m).

Algorithm 3 Top-r non-containing communities (NC1)

Input: G, w, k, r
Output: Top-r non-containing Hk,jmax−r+1 , . . . , Hk,jmax

1: C ← Ck(G)
2: for all vertex v of C do
3: d[v] = dC(v)

4: i← 1, I ← ∅, j ← 1
5: while C 6= ∅ do
6: Let v be the minimum-weight vertex in C
7: I(i)← ∅
8: RDelete3(C, v, I, i)
9: isNC ← true

10: for all v ∈ I(i) do
11: if d[v] > 0 then
12: isNC ← false

13: if isNC = true then
14: H ← I(i)
15: Output H
16: j ← j + 1
17: if j > r then
18: break
19: i← i + 1

5. BACKWARD ALGORITHMS
So far the algorithms we presented were forward; they

were peeling off the graph from the lowest weight vertices to
the highest. Such an approach is reasonable when r (in top-
r) is big. However, imagine what happens when r is mod-
erate, say we want to see the top-50 communities quickly.
With the forward approach, we would need to start working

our way up from the smallest weight vertices, and only at the
end of the computation be able to see the top communities.

The approach we propose in this section is backward. It
starts with a state where all the vertices are initially con-
sidered “deleted”. Then, in each iteration, we “resurrect” a
deleted vertex v of the highest-weight (among the deleted
vertices) and see whether v and the other resurrected ver-
tices before v are able to form a k-core. The benefit of this
idea is that we can produce top-r communities for mod-
erate r quickly without need to ever process the majority
of low weight vertices. For moderate values of r the time
needed is better than for the forward approaches as only a
small part of the graph is accessed. This is especially pro-
nounced for big graphs. As r grows, the time taken by the
two approaches starts converging. Eventually, for some r,
the backward approach will take more time than the for-
ward one.

We give the algorithm for the backward computation of
CCI communities (C3) in Alg. 4. We start by making all
the vertices “deleted”. Then we resurrect vertices in order of
their importance starting from the most important vertex.
Each time, we update the core values of vertices made alive
so far. For this we call the updateCores procedure, which
detects whether the core numbers of the alive vertices have
the potential to be updated, and if so, it updates them.
Often there is no need to update cores because the vertex
just resurrected does not have sufficient connections with the
vertices already resurrected. If the vertex just resurrected,
say v, happens to have a core value that is greater or equal
to k, then we conclude that v is one of the vk,i vertices, and
as such, we compute MCC starting from v and using only
the alive vertices having a core number larger or equal to v.

Algorithm 4 Top-r CCI communities (C3)

Input: G, w, k, r
Output: Hk,p, . . . , Hk,p−r+1

1: for all v ∈ V do
2: alive[v]← false
3: cores[v]← 0

4: i← 1
5: for j = n downto 1 do
6: Let v be the maximum-weight deleted vertex in V
7: alive[v]← true
8: updateCores()
9: if cores[v] ≥ k then

10: H ← MCC (G, v, cores)
11: Output H
12: i← i + 1
13: if i > r then
14: break

To show the soundness and completeness of Algorithm 4,
we first present the following lemmas.

Lemma 2. Let v be the maximum-weight deleted vertex
in V that is resurrected in a given iteration. Let i be the
greatest index, such that v ∈ Ck,i. Suppose that v belongs to
a k-core of alive vertices. Then, v is the minimum weight
vertex in Ck,i, i.e. v = vk,i.

Proof. Suppose vertex vk,i is alive and w[vk,i] < w[v]. If we
recursively-delete vk,i from Ck,i, we will be left with Ck,i+1.
Vertex v does not belong in Ck,i+1 because of the premises.
Therefore, v has to be deleted when we recursively delete

vk,i. This is a contradiction, because v belongs to a k-core of
alive vertices, all of which have weight greater than vk,i.

Now, we can show that we do not miss any vk,i in the
backward direction. We give the following lemma, whose
proof follows directly from the definitions and so we omit it.

Lemma 3. Let i ∈ [1, p]. There exists a vertex v, such
that v = vk,i, and v is in a k-core, which includes v and all
the other vertices u with w[u] > w[v].

Based on lemmas 2 and 3 and the fact that we only pro-
duce the top-r results, we can state the following theorem.

Theorem 8. Algorithm 4 correctly computes all and only
the top-r CCI communities.

The time complexity of C3 is quadratic from a worst
case perspective. This is because we call updateCores for
each resurrection. However, we have degree conditions in
updateCores to only look for updates if the resurrected ver-
tex is well connected to the other resurrected vertices, thus
reducing the number of updates significantly. In practice, C3
can be much faster than C2 for moderate r and big graphs.

NC communities. For non-containing communities, we
can also construct a backward approach. To this end, recall
the forward approach of [23] for non-containing communi-
ties. In order to determine whether Hk,i−1 is non-containing,
they check if all the vertices of Hk,i−1 are deleted in the next
iteration i. For the backward approach, we will use the same
idea, but in a different way. In a nutshell, when we resur-
rect a vertex v, and it happens to be a min-weight vertex,
we compute the corresponding community, say H; then we
check to see whether any element of H participates in any
community discovered earlier. If not, H is non-containing.

Algorithm 5 Top-r non-containing communities (NC2)

Input: G, w, k, r
Output: Top-r non-containing Hk,jmax−r+1 , . . . , Hk,jmax

1: for all v ∈ V do
2: alive[v]← false
3: inPC [v]← false
4: cores[v]← 0

5: i← 1
6: for j = n downto 1 do
7: Let v be the maximum-weight deleted vertex in V
8: alive[v]← true
9: updateCores()

10: if cores[v] ≥ k then
11: isNC ← true
12: H ← MCC (G, v, cores, isNC)
13: if isNC = true then
14: Output H
15: i← i + 1
16: if i > r then
17: break

Our backward algorithm, NC2, is given in Alg. 5. In order
to achieve maximum efficiency (which is crucial, especially
for big graphs), we opt for a boolean array, inPC (in-a-
Previously-discovered-Community), which records the ver-
tices that participate in some community discovered ear-
lier. Using a boolean array makes the complexity of check-
ing whether a vertex participates in a previously discovered
community constant. We handle the population of inPC
and the membership check of vertices in it in a modified
MCC procedure (see Alg. 6).

Algorithm 6 MCC with alive and inPC arrays

1: procedure MCC(G, v, alive, inPC , isNC)
2: cc ← ∅
3: MCC-DFS(G, v, alive, cc, inPC , isNC)
4: return cc
5: procedure MCC-DFS(G, v, alive, cc, inPC , isNC)
6: cc.add(v)
7: if inPC [v] = true then
8: isNC ← false
9: else

10: inPC [v]← true

11: for all u ∈ NG(v) do
12: if cores[u] ≥ k & u 6∈ cc then
13: MCC-DFS(G, u, alive, cc, inPC , isNC)

5.0.1 Core Update upon Vertex Resurrection
The updateCores procedure needed by algorithms 4 and 5

comes with its own set of challenges. We have two options:
either use an incremental core update algorithm, such as
the one proposed in [24] or recompute the cores using the
Batagelj and Zaversnik (BZ) algorithm [3]. We implemented
both and compared them. The incremental core update of
[24] considers the addition of each edge separately. Hence,
the addition of a vertex triggers a sequence of core updates,
one for each edge coming from the added vertex. In our case,
we have many vertex resurrections, and it turned out that
re-computing the cores using the BZ algorithm was faster
(see Section 6).

Modified BZ Algorithm. In order to use the BZ algo-
rithm, we need to properly adapt it so that it remains fast
in spite of changing graph parameters (which is the case as
we incrementally resurrect vertices). In the following, we
give some details about the BZ algorithm and then describe
our adaptations.

At a high level, BZ computes the core decomposition by
recursively deleting the vertex with the lowest degree. The
deletions are not physically done on the graph; an array is
used to capture (logical) deletions. The notion of “deleted
vertices” in effect of core computations is different from that
considered at the start of the backward algorithms, and as
such, it is recorded and handled differently.

To achieve high performance, everything needs to be im-
plemented as flat arrays so that each logical deletion costs
(precisely) constant time. As shown in [19], using hash-
based structures makes the algorithm take orders of magni-
tude longer to complete.

Vertices are assumed to be numbered sequentially starting
from 0. There are several arrays needed for the modified BZ
algorithm (ModBZ, Alg. 7). They are as follows.

Array degrees records the degree of each vertex consid-
ering only alive vertices. This array is global and with a
dimension of n, where n is the number of all vertices, alive
or not. Array cores records at any given time for any alive
vertex v the degree of v considering only the alive, and not-
yet-deleted by BZ, vertices. In the end, cores will contain the
core numbers of each vertex considering only alive vertices.
We make this array global and with a dimension of n. Array
vert contains the alive vertices in ascending order of their
degrees. We make this array local and with a dimension of
n alive, where n alive is the number of alive vertices. Array
pos contains the indices of the vertices in vert , i.e. pos[v] is

the position of v in vert . We make this array local and with
a dimension of n alive. Array bin stores the index bound-
aries of the vertex blocks having the same degree in vert . We
make it local and with a dimension of m alive, which is the
greatest degree in the graph induced by the alive vertices.

In addition to the above arrays, we will need two new
arrays for ModBZ , al and al idx . We make them global
with a dimension of n. Array al stores the alive vertices.
When a vertex v is resurrected, we store v in al [n alive] and
increment n alive. Array al idx contains the indices of the
vertices in al , i.e. al idx [v] is the position of v in al .

In line 2 of Alg. 7, arrays vert , pos, and bin are initial-
ized. The main algorithm is in lines 3–16. The top for-loop
runs for each vertex, 0 to n alive, scanning array vert . We
obtain a vertex id from vert , translate it to an id, v, in the
normal [0, n] range, and check whether it is alive. We only
continue the computation if v is alive. Since vert contains
the alive vertices in ascending order of their degrees, and v
is the not-yet deleted vertex of the lowest degree, the core-
ness of v is its current degree considering only the alive, and
not-yet-deleted by ModBZ, vertices, i.e. cores[v]. Now v
is logically deleted. For this, we process each neighbor u
of v with cores[u] > cores[v] (see line 8). Vertex u needs
to have its current degree, cores[u], decremented (see line
16). However before that, u needs to be moved to the block
on the left in vert since its degree will be one less. This is
achieved in constant time (see lines 9-15). These operations
are made possible by the existence of array al idx , which
translates vertex ids to the [0, n alive] range needed by the
local arrays. Specifically, u is swapped with the first vertex,
w, in the same block in vert . Also, the positions of u and
w are swapped in pos. Then, the block index in bin is up-
dated incrementing it by one (line 16), thus losing the first
element of the block, u, which becomes the last element of
the previous block.

Algorithm 7 Modified BZ algorithm (ModBZ)

1: procedure ModBZ(G)
2: initialize(vert , pos, bin, cores, G)
3: for all i← 0 to n alive do
4: v ← al [vert [i]]
5: if v not alive then
6: continue
7: for all alive u ∈ NG(v) do
8: if cores[u] > cores[v] then
9: du← cores[u], pu← pos[al idx [u]]

10: pw ← bin[du], w ← al [vert [pw]]
11: if u 6= w then
12: pos[al idx [u]]← pw
13: vert [pu]← al idx [w]
14: pos[al idx [w]]← pu
15: vert [pw]← al idx [u]

16: bin[du]++, cores[u]−−

6. EXPERIMENTAL RESULTS
We performed our analysis by extensive experiments on

several real-world graphs. The experiments were divided
into two parts: first, we evaluated the performance of differ-
ent algorithms and eliminated from consideration those that
were slower than the others by a large degree; and second,
we conducted a broad testing of the remaining algorithms,
with the goal of finding the best solutions for extracting the

Dataset n m dmax kmax

AstroPhysics 133.2 K 396 K 504 56
LiveJournal 4.8 M 43 M 20,333 372
UK2002 18.4 M 262 M 194,955 943
Arabic2005 22.7 M 554 M 575,628 3,247
UK2005 39.4 M 783 M 1,776,858 588
Webbase2010 115.6 M 855 M 816,127 1,506
Twitter2010 41.7 M 2,405 M 2,997,487 2,488
Clueweb 978.4 M 74,744 M 75,611,696 4,244

Table 1: Datasets ordered by m. The two last columns give
the maximum degree and maximum core number.

most important communities.
We implemented all the algorithms in Java and used Web-

graph [4] as a graph compression framework. We chose We-
bgraph because of excellent compression ratios it achieves
and also because it is actively maintained and continuously
improved (http://webgraph.di.unimi.it). Webgraph only de-
compresses on the fly the part of the graph needed to ac-
cess. The decompression is very fast; we did not observe any
noticeable delay compared to an uncompressed hash map
graph representation (when the latter could fit in memory).
Datasets. The graphs we used were obtained from
http://law.di.unimi.it/datasets.php. They vary from medium
to massive sizes (see Table 1). Each directed graph was con-
verted to an undirected one by adding for each edge (u, v), its
inverse (v, u), if it did not exist; also, self-loops (e.g. (v, v))
were eliminated. The edge numbers in Table 1 refer to this
version of the graphs. We assigned random weights to the
vertices of each graph. For all the datasets, but Clueweb, a
timeout of one hour was set for each algorithm to run. For
Clueweb, the timeout was set to 24 hours (albeit we did not
need more than a few hours for most of the algorithm runs).

Equipment. The results for the first seven datasets in Ta-
ble 1 (from AstroPhysics to Twitter2010) were obtained on
a consumer-grade laptop: processor 3.4GHz Intel Core i7
(4-core), 16GB RAM, running OS X Yosemite.

Clueweb could not be tested on our laptop because the
compressed graph uses about 20GB of space and would not
fit into memory.Clueweb was tested on a machine with 2.10GHz
Intel(R) Xeon(R) E5-2620 v2 (6-core) CPU and 64GB RAM,
running Ubuntu Server 14.04.3 LTS. Note that the processor
speed is lower than that of our laptop, but the memory is
larger. Despite its big memory, the machine had a price of
about $3K, qualifying it as consumer-grade.

Testing Original Algorithms. First, we start by compar-
ing the direct algorithms of [23], C-original (CO) and NC-
original (NCO), with our counterparts, C1, C2, and NC1,
respectively. We were only able to obtain results for CO and
NCO using the first two (moderate) datasets, AstroPhysics
and LiveJournal. Fig. 3 shows the results of the comparison:
(a), (b) are for AstroPhysics, and (c), (d) are for LiveJour-
nal. C1 and C2 outperform CO, and NC1 outperforms NCO,
in both cases by orders of magnitude. For LiveJournal, CO
and NCO were only able to produce results for k = 128 and
k = 256 (for these values, Ck was small enough for them
to handle). Thus, we eliminate CO and NCO from further
testing; they could not produce results on large-scale graphs
within a reasonable amount of time.

Testing Core Updates. The updateCores procedure used
in the backward algorithms (Section 5) was implemented us-
ing two different approaches: the incremental core update

(a) AstroPh. Cont. (b) AstroPh. NC (c) LiveJ. Cont. (d) LiveJ. NC (e) UK2002 Cont. (f) UK2002 NC

Figure 3: Original and proposed algorithms on AstroPh. and LiveJ. when varying k (r = 40), 3a-3d. BZ versus CU 3e-3f.

Name Description Problem
C1 Alg. 1 1
C2 Alg. 2 1

C3 BZ Alg. 4, Alg. 7 1
NC1 Alg. 3 2

NC2 BZ Alg. 5, Alg. 7 2

Table 2: Proposed Algorithms

(CU) algorithm proposed by Li, Yu, and Mao in [24], and the
modified BZ algorithm, ModBZ (Alg. 7). The first approach
was implemented in C3 CU and NC2 CU, and the second
in C3 BZ and NC2 BZ. These algorithms were tested exten-
sively on several smaller and medium size graphs. Here, we
are presenting the results on UK 2002, which was the largest
dataset that we could have the computation completed (at
least for several k values) for C3 CU and NC2 CU. Fig. 3
(e) and (f) show that C3 CU and NC2 CU were slower than
C3 BZ and NC2 BZ, respectively. After this analysis, we
eliminated C3 CU and NC2 CU from further consideration;
they could not be feasibly used for community extraction on
large-scale graphs in a reasonable amount of time.

Main Testing. The bulk of testing was done for the algo-
rithms in Table 2. We start by presenting test results and
analysis on LiveJournal, UK 2002, Arabic 2005, UK 2005,
Webbase 2010, and Twitter 2010. We omit results on As-
troPhysics as this dataset is relatively small. The results on
the largest dataset, Clueweb, are presented separately.

Problem 1: Computing containing communities.
Figures 4 and 5 show results for computing containing com-
munities when k and r are varied, respectively.

Analysis of results. (1) The charts clearly show that C2
outperforms C1 for all k and r, on all tested datasets. This
is expected because C2 makes only one pass over the graph
as opposed to two that C1 does (see Alg. 1 and 2).
(2) The run times of C1 and C2 decrease in general as the
k-core subgraph, Ck, becomes smaller with the increase of
k (Fig. 4).
(3) The runtime of C1 and C2 depends also on the graph
structure. For an example, let us consider Fig. 4b (UK 2002).
The run times for both C1 and C2 go down for k = 256, but
then suddenly go up for k = 512. The Ck sizes for k = 256
and k = 512 are 18,179 and 2,951 nodes, respectively. So,
to retrieve the same number of communities from a much
smaller graph takes longer! To find out why, we conducted
a further analysis to explain this surprising result. We con-
ducted multiple tests with different values of k, up to and
including kmax, which is 943 for UK 2002. We analyzed the
nodes that the CCIs were constructed from. The tests show
that (a) all CCIs for k = 256 are retrieved from the same
big (k = 943) clique by eliminating just one, least important,
node after another. This takes very little time, and the run-

time for k = 256 becomes quite low as we can observe in the
figure; (b) for k = 512, there were not enough important
nodes in a similar clique, so some CCIs were retrieved from
a different cluster with high cohesiveness and relatively high
importance. This “switch” to a different area of the graph
takes more time than staying steady (due to loss of locality)
and the run time of algorithms became somewhat larger. It
must be noted however that the effect described above is
reflected only on the charts for the smaller graphs, with run
times of 1 to 2 seconds. For bigger graphs, the fluctuations
in importance (weights) distribution and their interplay with
the graph structure does not influence the running time no-
ticeably. This happens because the overhead of switching to
a different part of Ck is absorbed by the time needed for the
rest of the computation.

Let us now focus on the performance of the C3 BZ algo-
rithm. We make the following observations: (1) For small r’s
and k’s, C3 BZ is a good choice; this is because we only need
to perform few core re-computations (small r) and most of
these re-computations are not wasted, i.e. we are able to
find new members of k-core quite often when we resurrect
vertices (small k). (2) The bigger the graph, the better the
chance that using C3 BZ will give better performance for
small to moderate r’s and k’s; this will be significantly more
pronounced for Clueweb (presented later in this section).

Finally, let us consider the performance of C1, C2, and
C3 BZ as r varies in Fig. 5. We see that the runtime of C1
and C2 is pretty much constant. This happens because most
of their time is spent on peeling off the graph until no vertex
remains; this is the same regardless of r. The value of r
determines the number of MCC runs in C1 and C2; but these
MCC runs become negligible in C1 and C2 as they are only
performed in the end, after most of the vertices of the graph
have been deleted. C3 BZ is sensitive to r. As expected, the
greater the value of r, the longer C3 BZ takes to complete.

Problem 2: Computing non-containing communi-
ties. Figure 6 shows results for non-containing communi-
ties; (a)-(c) show the performance of NC1 for varying k on
different datasets, and (d)-(f) show the performance of NC1
for varying r on the same datasets. We see that the runtime
of NC1 quickly goes down as k increases, (a)-(c). Also, NC1
continues to not be sensitive to r, (d)-(f). The performance
of NC2 BZ (backward approach) was not competitive for
these six datasets (not shown in the interest of figure clar-
ity). Nevertheless, for very large graphs, such as Clueweb,
as we show later, NC2 BZ is more useful.

Experiments on Clueweb. A special case for testing the
proposed algorithms was using the Clueweb dataset. The
results are presented in Fig. 7 through Fig. 9.

Fig. 7 and Fig. 8 show in detail the performance of the
algorithms when varying k. It is clear that the backward
approaches implemented in C3 BZ and NC2 BZ are to be

(a) LiveJournal (b) UK2002 (c) Arabic2005 (d) UK2005 (e) Webbase2010 (f) Twitter2010

Figure 4: Containing Communities: Performance when varying k (r = 40).

(a) LiveJournal (b) UK2002 (c) Arabic2005 (d) UK2005 (e) Webbase2010 (f) Twitter2010

Figure 5: Containing Communities: Performance when varying r (k = 32).

(a) r = 40 (b) r = 40 (c) r = 40 (d) k = 32 (e) k = 32 (f) k = 32

Figure 6: Non-Containing Communities: Performance when varying k and r.

(a) r = 10 (b) r = 20 (c) r = 40 (d) r = 80 (e) r = 160 (f) r = 320

Figure 7: Clueweb: Containing Communities. Performance when varying k.

(a) r = 10 (b) r = 20 (c) r = 40 (d) r = 80 (e) r = 160 (f) r = 320

Figure 8: Clueweb: Non-Containing Communities. Performance when varying k.

(a) k = 2 (b) k = 32 (c) k = 512 (d) k = 2 (e) k = 32 (f) k = 512

Figure 9: Clueweb: Performance when varying r. (a), (b), and (c) - Cont. Communities; (d), (e), and (f) - NC Communities.

used for extracting the top communities for several combina-
tions of k and r (e.g. k = 2, . . . , 256 and r = 10 for C3 BZ,
or k = 2, . . . , 32 and r = 10 for NC2 BZ among others).
In several such cases, C3 BZ and NC2 BZ proved to have
orders of magnitude better performance than the forward
algorithms. Clueweb testing confirmed the trend noticeable
before: the bigger the graph, the more beneficial it is to use

C3 BZ and NC2 BZ. With k and r increasing, these algo-
rithms keep the better performance on large graphs longer
than on the smaller graphs.

On the other hand, if the application is to extract many
communities, the forward algorithms are recommended.

In a nutshell, the results show that we are able to com-
pute containing and non-containing communities for every

combination of k and r on Clueweb using the forward al-
gorithms. We can do that faster for a good number of k
and r combinations using the backward algorithms. Being
able to scale to Clueweb is a significant contribution because
this dataset is an order of magnitude bigger than the sec-
ond large dataset we consider, Twitter 2010, as well as the
datasets considered in [23].

7. RELATED WORK
Effectively extracting a set of cohesive subgraphs as com-

munities is an important task in analyzing graphs (cf. [11,
32, 18]). Over the years, community computation has been
extensively researched from a theoretical and practical point
of view (cf. [20, 14, 36]).

The classic dense subgraph structure is a clique. A large
number of works have dealt with extracting cliques accord-
ing to different requirements; to name a few: [8, 9, 20].
However, the strict clique definition may be too strong for
various applications. Several relaxed definitions have been
proposed, such as: s-clique [25], s-club [2], k-plex [29], k-core
[28], and others. In contrast to most of the other notions,
k-core can be computed and maintained in polynomial time
and there exists algorithms that scale to large graphs (cf. [7,
19, 35] and [24, 27])

k-core decomposition has been extensively used for detect-
ing communities. For example, k-core decomposition is used
by Zhou et. al. [38], Chang et. al. [6], and Akiba et. al.
[1] as a foundation for extracting refined communities, such
as maximal k-edge connected subgraphs. The k-core-based
influential community framework we focus on in this paper
is introduced by Li et. al. [23]. Sozio et al. [32] and Cui
et. al. [11] compute maximal k-core communities containing
given query nodes. A refinement of k-core is k-truss ([34]):
the subgraph of k-core in which every edge is supported by
at least k−2 triangles. Community models based on k-truss
are proposed by Huang et al. [17] and [18].

8. CONCLUSIONS
We presented fast forward and backward algorithms for

computing top-r, k-core containing and non-containing com-
munities. While the forward algorithms compute communi-
ties from the least to the most important, the backward
algorithms compute them in the reverse order, from the
most important to the least. Our algorithms scale to very
large graphs. The largest graph we tested was Clueweb with
about 1 billion nodes and 74 billion edges. We were able to
compute top-r, k-core communities for every combination
of k and r in a wide range of values using the forward al-
gorithms. We could compute top communities faster for a
good number of k and r combinations using the backward
algorithms. Despite the massive size of the graphs consid-
ered, our computations were of small footprint; we produced
all the results using relatively inexpensive machines.

As future work, we would like to explore the usefuleness of
top-r, k-core communities in trust prediction [21], in clear-
ing a contamination from a network [26, 31], in identify-
ing community formation in biological networks [15], and
in devising network-based collaborative filtering algorithms
[10, 37]. Also, of interest is extending the notion of top-
r, k-core communities to probabilistic graphs [5, 16] and to
edge-labeled graphs [13, 30]. Finally, given the enormous
size of network graphs today, distributed algorithms in the
spirit of [33, 30] need to be devised for discovering top-r,

k-core communities.

9. REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time

enumeration of maximal k-edge-connected subgraphs
in large networks by random contraction. In CIKM,
2013.

[2] R. D. Alba. A graph-theoretic definition of a
sociometric clique. Journal of Mathematical Sociology,
3(1):113–126, 1973.

[3] V. Batagelj and M. Zaversnik. An o (m) algorithm for
cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

[4] P. Boldi and S. Vigna. The webgraph framework i:
compression techniques. In WWW, 2004.

[5] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1316–1325. ACM, 2014.

[6] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and
W. Liang. Efficiently computing k-edge connected
components via graph decomposition. In SIGMOD,
2013.

[7] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient
core decomposition in massive networks. In ICDE,
2011.

[8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu.
Finding maximal cliques in massive networks. TODS,
36(4):21, 2011.

[9] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms
for maximal clique enumeration with limited memory.
In KDD, 2012.

[10] M. Chowdhury, A. Thomo, and W. W. Wadge.
Trust-based infinitesimals for enhanced collaborative
filtering. In COMAD, 2009.

[11] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local
search of communities in large graphs. In SIGMOD,
2014.

[12] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[13] G. Grahne and A. Thomo. Algebraic rewritings for
optimizing regular path queries. Theoretical Computer
Science, 296(3):453–471, 2003.

[14] E. Gregori, L. Lenzini, and C. Orsini. k-dense
communities in the internet as-level topology graph.
Computer Networks, 57(1):213–227, 2013.

[15] T. Gutiérrez-Bunster, U. Stege, A. Thomo, and
J. Taylor. How do biological networks differ from
social networks?(an experimental study). In Advances
in Social Networks Analysis and Mining (ASONAM),
2014 IEEE/ACM International Conference on, pages
744–751. IEEE, 2014.

[16] N. Hassanlou, M. Shoaran, and A. Thomo.
Probabilistic graph summarization. In International
Conference on Web-Age Information Management,
pages 545–556. Springer, 2013.

[17] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic
graphs. In SIGMOD, 2014.

[18] X. Huang, L. V. Lakshmanan, J. X. Yu, and

H. Cheng. Approximate closest community search in
networks. PVLDB, 9(4), 2015.

[19] W. Khaouid, M. Barsky, V. Srinivasan, and
A. Thomo. K-core decomposition of large networks on
a single pc. PVLDB, 9(1):13–23, 2015.

[20] I. Koch. Enumerating all connected maximal common
subgraphs in two graphs. Theoretical Computer
Science, 250(1):1–30, 2001.

[21] N. Korovaiko and A. Thomo. Trust prediction from
user-item ratings. Social Network Analysis and
Mining, 3(3):749–759, 2013.

[22] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In 10th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012.

[23] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential
community search in large networks. PVLDB,
8(5):509–520, 2015.

[24] R.-H. Li, J. X. Yu, and R. Mao. Efficient core
maintenance in large dynamic graphs. TKDE,
26(10):2453–2465, 2014.

[25] R. D. Luce. Connectivity and generalized cliques in
sociometric group structure. Psychometrika,
15(2):169–190, 1950.

[26] K. Rajagopalan, V. Srinivasan, and A. Thomo. A
model for learning the news in social networks. Annals
of Mathematics and Artificial Intelligence,
73(1-2):125–138, 2015.

[27] A. E. Saŕıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu,
and Ü. V. Çatalyürek. Streaming algorithms for k-core
decomposition. PVLDB, 6(6):433–444, 2013.

[28] S. B. Seidman. Network structure and minimum
degree. Social networks, 5(3):269–287, 1983.

[29] S. B. Seidman and B. L. Foster. A graph-theoretic
generalization of the clique concept. Journal of
Mathematical sociology, 6(1):139–154, 1978.

[30] M. Shoaran and A. Thomo. Fault-tolerant
computation of distributed regular path queries.
Theoretical Computer Science, 410(1):62–77, 2009.

[31] M. Simpson, V. Srinivasan, and A. Thomo. Clearing
contamination in large networks. IEEE Transactions
on Knowledge and Data Engineering, 28(6):1435–1448,
2016.

[32] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In KDD, 2010.

[33] D. C. Stefanescu, A. Thomo, and L. Thomo.
Distributed evaluation of generalized path queries. In
Proceedings of the 2005 ACM symposium on Applied
computing, pages 610–616. ACM, 2005.

[34] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[35] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O
efficient core graph decomposition at web scale.
CoRR, abs/1511.00367, 2015.

[36] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. Knowl.
and Inf. Syst., 42(1):181–213, 2015.

[37] N. Yazdanfar and A. Thomo. Link recommender:
Collaborative-filtering for recommending urls to
twitter users. Procedia Computer Science, 19:412–419,

2013.

[38] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and
J. Li. Finding maximal k-edge-connected subgraphs
from a large graph. In EDBT, 2012.

