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ABSTRACT
Portable smart devices have become prevalent and are used
for ubiquitous access to the Internet in our daily life. Tak-
ing advantage of this trend, brick-and-mortar retailers have
been increasingly deploying free Wi-Fi hotspots to provide
easy Internet access for their customers. This opens the op-
portunity for retailers to collect customer information and
perform data mining to improve the quality of their service.
In this paper, we propose a novel value-added service to Wi-
Fi data mining, Rec2PI, which can infer users’ preference
profiles based on recommendations pushed by third-party
apps. Such profiles can be used to improve users’ online
experience and enable a brick-and-mortar retailer to par-
ticipate in the global advertising business. Since the goal
and technical difficulties of Rec2PI significantly differ from
those of traditional recommender systems, we present a gen-
eral framework of Rec2PI to illustrate its process. To tackle
the technical challenges in profile inference, we propose novel
algorithms built using copulas, a statistical tool suitable for
capturing complex dependence structure beyond the scope
of linear dependence. In the context of rating-based recom-
mendations, we evaluate the proposed algorithms using an
open dataset and a real-world recommender system. The
evaluation results show that Rec2PI creates consistent and
accurate inference results.

Keywords
Reverse Engineering of Recommendations; Wi-Fi Data Min-
ing; Profile Inference; Copula Modelling

1. INTRODUCTION
In the current era of mobile technology, smart devices

(e.g., smartphones, tablets, and smart wearables) have be-
come more prevalent than ever before. Smart devices have
provided people with ubiquitous access to the Internet, lead-
ing to an ever-growing ecosystem of Mobile Internet. Recent
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mobile marketing statistics shows that mobile users have
outnumbered the desktop users worldwide and over 80% of
mobile users access the Internet via smartphones. Fol-
lowing the trend of Mobile Internet, retailers with physical
stores (the so-called brick-and-mortar retailers) are building
their own wireless access points for smart devices to im-
prove the user experience. Currently, free Wi-Fi services
are offered in many places, including cafes, airports, hotels,
restaurants, cinemas, and shopping malls.

Considering that retailers were reluctant to invest in Wi-
Fi not so long ago, it is surprising to see that retailers are
now embracing the in-store Wi-Fi. This opens up the op-
portunity that, in addition to improving customer satisfac-
tion, the retailers could actually obtain a “goldmine” of cus-
tomer data. With the free Wi-Fi services provided, retailers
can collect useful information about their customers such
as their geographic data and dwell times at different loca-
tions. The data, which the customers opt to share, offers
retailers a better understanding of customers’ behavior and
demographics and helps them make informed marketing de-
cisions.

Currently, analytics based on Wi-Fi data has become the
focus of many Wi-Fi provider companies, such as AirTight
Wi-Fi1 and Purple Wi-Fi2. They help retailers not only
deploy Wi-Fi, but also launch analytics engines for in-store
business intelligence and customer engagement. This rapidly
evolving market has also attracted the attention of the gov-
ernment agencies. Recently, New York is transforming old
phone booths into city-wide free Wi-Fi hotspots, that can
collect pertinent information for the purpose of targeted ad-
vertising.

Compared to major Ecommerce companies such as Ama-
zon and eBay that have a great amount of data to learn user
behavior, a brick-and-mortar retailer generally can only col-
lect a limited amount of data. The problem of providing
competitive value-added services based on Wi-Fi collected
data remains open and has not been well studied in the lit-
erature. Most existing industry solutions mine the collected
data for basic customer demographics, presence analytics,
Wi-Fi usage, and loyalty and engagement. A natural ques-
tion is: can we gain more knowledge on the customer pref-
erence profile for products of interest using a very limited
amount of data collected by the Wi-Fi service provider?

In fact, abundant information is hidden in the small amount

1http://www.mojonetworks.com/, Accessed Jan. 2016
2http://purple.ai/enterprise/, Accessed Jan. 2016



Figure 1: The general framework of Rec2PI model (red dashed box) and the work flow.

of Wi-Fi data. The mobile apps offer the customers a wide
range of services such as social networking, shopping, and
entertainment. After connecting to the in-store Wi-Fi, apps
with integrated recommender systems normally push recom-
mendations to the user based on the user’s past behavior or
preference (e.g., purchase history, ratings) and current en-
vironment. For example, a customer who is visiting a book
store may receive recommended books that the customer
might purchase. By exploring the hidden knowledge behind
the recommendations, the Wi-Fi provider can practically
learn more information regarding this customer.

Recommendation data can be obtained by tracking the
user’s browsing behavior. In the service agreement (or the
privacy policy) of free Wi-Fi services, such as RetailNext,
CityBridge and Target, the providers are allowed to collect
users’ browsing behavior (e.g., URLs, pages visited, etc.) if
the users choose to use the free service. In this work, we as-
sume that the recommendations pushed by the mobile-apps
are (partially) available to the free Wi-Fi service provider,
who aims to infer the customer’s preference profile based on
the collected recommendations. While service agreements
of real-world free Wi-Fi providers allow them to collect the
above information, the debate on privacy and ethical con-
cerns is out of the scope of the paper. We believe that being
able to infer the preference profile of a customer is benefi-
cial for: (a) the customer because he will be offered a better
range of products, enabling him to obtain the best product
cheaper, and (b) the brick-and-mortar retailer by enabling it
to participate in the global advertising business and increase
its revenues.

In this paper, we introduce and study a novel value-added
service, Recommendation to Profile Inference (Rec2PI), for
Wi-Fi data mining. Rec2PI utilizes a new source of data,
i.e., recommendations pushed to a user in a certain domain
(e.g., books or movies), to infer the user’s preference pro-
file in that domain. Figure 1 depicts a general framework,
where the red dashed box contains the input, the inference
model, and the output of Rec2PI. When a target user logs
into the in-store Wi-Fi for Internet access, third-party mo-
bile apps may push recommendations to the user. After
collecting the pushed recommendations, Rec2PI infers the
user’s preference. Once the inferred preference profile is
obtained, the Wi-Fi provider can further estimate the cus-
tomer’s behavior, which is valuable for retailers to deliver
more personalized services.

Rec2PI is significantly different from any existing work
of recommender systems (RS). Traditional RS has universal
access to a user’s ground truth (e.g., past purchase behavior
and item ratings). On the contrary, Rec2PI may not pos-
sess this information. As such, Rec2PI can be viewed as a
reverse of the learning procedure in RS. The main challenge
behind Rec2PI is: without knowing the algorithm(s) and the

dataset behind the third-party RS, how can we effectively
infer the user’s preference profile?

This paper answers the above challenge. To make the
reverse learning possible, we make use of open datasets in
the same domain as the recommendations. For example,
Epinions is well-known for customer reviews about products.
IMDB and MovieLens are popular sources for movie average
ratings, meta information, and individual ratings. With the
knowledge from the open datasets, we can learn the most
likely user factors that would result in the recommendations.
With this intuition, we make the following contributions in
the paper:

• We initiate the study of a novel value-added service
arising in Wi-Fi data mining: Without knowing the
algorithms and the dataset used by a third-party RS,
how can we infer users’ behavior based on the recom-
mendations from the third-party RS? To the best of
our knowledge, we are the first to investigate this re-
versed learning problem.

• We propose a general framework, Rec2PI, that builds
probabilistic inference models based on open datasets.
In addition, we adopt a novel approach that incor-
porates copulas, a powerful statistical tool for depen-
dence modeling, into the inference procedure.

• We perform extensive experimental evaluation on real-
world datasets. We show that the performance of pop-
ular approaches in RS, such as latent factor models
(LFMs), is not stable when solving the reversed learn-
ing problem, i.e., the results exhibit high variance. In
contrast, our copula-based solution is not only accu-
rate but also much more stable.

2. ASSUMPTIONS AND PRELIMINARIES

2.1 Assumptions
To introduce Rec2PI, we begin with a high-level model

shown within the red dashed box in Figure 1. It consists of
the recommendations from third-party RS (the input), the
inference model, and inferred user preference profile (the
output). Based on the inferred user profile, Rec2PI further
estimates the user behavior. Our goal is to make the inferred
user behavior as close as possible to the original.

Following the notations defined in Table 1, we make the
following assumptions.

• Let F : rt → R̂t denote the recommendation model of
the third-party app’s RS. We will assume that F , as
well as the dataset it uses, are hidden from the Wi-Fi
provider.



Table 1: Notations of General Rec2PI
Notation Explanation Accessible to Wi-Fi Provider?

t a target user t Yes
rt t’s original behavior No
r′t t’s inferred behavior Yes
F recommendation model of the third-party RS No
Λt t’s inferred preference profile Yes

R̂t recommendations by third-party RS to t Yes
R the open dataset Yes
U the user set of the open dataset Yes
I the item set of the open dataset Yes
Mr the highest rate value Yes

• The Wi-Fi provider has the access to an open dataset
(called open dataset hereafter), which belongs to the
same category as the dataset that the third-party RS
uses (called hidden dataset hereafter). For example,
both are movie datasets or both are book datasets.
Nevertheless, there is no guarantee that the two datasets
are identical.

• Rec2PI does not rely on any hypothesis regarding the
recommendation algorithm used by F .

In Rec2PI, we first need to determine a method to repre-
sent users’ preference profile, Λt. There are different ways
to represent preference profiles, including the vector repre-
sentation [5], ontology representation [15], and multidimen-
sional representation [12]. Among these, the latent factor
model (LFM) [11], a well-known variant of the vector repre-
sentation, has been the most popular one. We adopt LFM
in the paper for users’ preference profile. We stress that
LFM is only used in Rec2PI. The third-party RS does not
necessarily use LFM inside F .

2.2 Background of Latent Factor Models
Latent factor models (LFMs) assume that a user’s behav-

ior (e.g., purchases and ratings) is influenced by a set of
latent factors. The term “latent” implies that these factors
do not necessarily correspond to physical meanings. LFMs
serve as one of the most popular collaborative filtering (CF)
techniques in rating-based item recommendation [11].

Definition 1 (User Behavior). The behavior of a user
u is captured by a vector of rating, denoted by ru as follows:

ru = [ru,i1 , ru,i2 , . . . , ru,in ]T , (1)

where ij(j = 1, . . . , n) denote the items that user u has rated
and ru,ij denotes the rating that the user gave on item ij.

Definition 2 (User Preference Profile). The (la-
tent) preference profile of user u, denoted as Λu, is a D-
dimensional vector,

Λu = [u(1), u(2), . . . , u(D)]T , (2)

where each u(d), d = 1, . . . , D, is called a latent factor of user
u, and D is the total number of latent factors.

Definition 3 (Item Latent Profile). The (latent) pro-
file of item i, denoted as Γi, is also a D-dimensional vector,

Γi = [i(1), i(2), . . . , i(D)]T , (3)

where each i(d), d = 1, . . . , D, is called a latent factor of item
i, and D is the total number of latent factors.

The latent profile Λu represents the user’s preference in
the D-dimensional latent factor space, and Γi captures item
i’s feature in the D-dimensional latent factor space. A LFM
produces predicted rating that user u gives to i, r′u,i, as

r′u,i = ΛTu · Γi. (4)

A LFM thus tries to learn the latent factors for all users
and all items, by minimizing the regularized squared er-
ror [11]:

argmin
Λu,Γi,θ1,θ2

∑
ru,i∈R

(ru,i−ΛTu ·Γi)2+θ1 ·||Λu||2+θ2 ·||Γi||2, (5)

where R = (ru,i)|U|×|I| represents a (sparse) rating matrix
which contains the ground truth ratings for u ∈ U and i ∈
I, U and I denote the set of users and the set of items,
respectively. This can be seen as factorizing a rating matrix
R into a user factor matrix and an item factor matrix.

3. PROBLEM FORMULATION

3.1 The Goal of Rec2PI

Definition 4 (User’s Recommendations). The rec-
ommendations from the third-party RS to a target user t,
R̂t, is a vector of ratings3 as follows:

R̂t = [r̂t,i1 , r̂t,i2 , . . . , r̂t,in̂ ]T , (6)

where ij ∈ Ît is an item in t’s recommended item set Ît with

rating r̂t,ij , and n̂ = |Ît|.

Denote G : R̂t → Λt as the inference function of Rec2PI.
The goal of Rec2PI is thus to estimate Λt by applying
G into an open dataset. Once Λt is available, Rec2PI can
use LFM to produce the inferred user behavior r′t.

3.2 Why Does Traditional RS Not Work for
Rec2PI?

Estimating Λt based on R̂t is fundamentally different from
traditional RS, due to the fact that (1) the open dataset is
not the same as the hidden dataset and the target user may
not exist in the open dataset, (2) we may not have any

3 A prominent RS that sends predicted ratings along with
recommended items is Netflix (refer to Section 5.1 as well).



ground truth rating4 from the target user. Consequently,
Rec2PI needs to tackle two challenges:

1. Recommended item ratings R̂t cannot be used in the
same way as the ground truth ratings in traditional
RS that uses the ground truth ratings to obtain latent
factors by solving (5). Recommended item ratings are
determined by a specific third-party RS and do not
necessarily correspond to the user’s true ratings.

2. The details of F is hidden from the Wi-Fi provider,
meaning that Rec2PI has no knowledge on how recom-
mended ratings are generated. Since there are many
recommendation algorithms even in the same domain
(e.g., movie recommendation), we cannot assume a
specific algorithm for F . Guessing the algorithms be-
hind a proprietary RS is still an open challenge.

3.3 Intuition and Discussion
One may wonder about two obstacles we need to overcome

in Rec2PI: why is it possible to infer a user’s profile based
on the recommendations generated with some unknown al-
gorithm over a hidden dataset? how can the accuracy of the
inference results be evaluated without knowing the original
user behavior (ground truth)?

To answer the first question, we give an intuitive explana-
tion before we dive into technical details. In principle, an RS
makes recommendations based on the dependence between
the features of items and the flavor of the user. This depen-
dence structure reflects the statistical patterns inherent in
the real-world phenomenon, e.g., males tend to love action
movies more than females. These statistical patterns can be
found in different datasets. In other words, it is the statis-
tical patterns instead of the uniqueness of dataset that de-
termine the recommendation results. Two different datasets
in the same domain (e.g., user-movie ratings), even if they
are not identical, should exhibit similar statistical patterns
as long as both are large enough to reflect the real-world
phenomenon. This explains why we can infer a user’s pro-
file based on the recommendations generated from a hidden
dataset using an unknown recommendation algorithm.5

To answer the second question, we design a special eval-
uation method to avoid the ground-truth problem in the
evaluation of Rec2PI. Our idea is to randomly select users
from the open dataset so that we know their ground-truth
behavior. For each selected user, we manually create an
“agent” user in the third-party service and manually set the
ratings of the “agent” user the same as the ones in the cor-
responding user in the open dataset. Note that since the
third-party datasets and open datasets belong to the same
category (e.g., books or movies), it is reasonable to assume
that items in both datasets have overlaps and that we can
find corresponding items in the third-party datasets for rat-
ing assignments. The recommendations to the “agent” user
by the third-party RS will be used as the input to Rec2PI.
The inferred behavior by Rec2PI for the “agent” user is com-
pared to the ground-truth behavior in the corresponding

4Ground truth ratings of the user in consideration are part
of the input in traditional RS, because RS will not be able
to create a personalized recommendation if the user has not
rated any item.
5The unknown algorithm is assumed to make reasonable rec-
ommendations that reflect the statistical patterns.

user in the open dataset. More details will be disclosed in
Section 5.

3.4 A New Approach
To overcome the difficulties raised in Section 3.2, we model

Rec2PI in a new approach different from traditional RS.
Specifically, we only assume limited prior knowledge about
F , i.e., F is trained on a certain type of hidden datasets (e.g.,
user-item ratings) in a particular category. Although Rec2PI
does not have access to the hidden datasets, it can make use
of similar types of open datasets in the same category and
learn similar patterns using common methods. The open
datasets do not necessarily contain the target user’s records,
and therefore we do not attempt to infer t’s profile with
Equation (5). Instead, we consider each recommended item

i ∈ Ît individually and explore its association with the user,
i.e., what type of users are likely to be interested in the
recommended item. In other words, given a recommended
item, we first obtain its latent factors using the open dataset
and then calculate the most-likely latent factors that a user
should have such that the item would be recommended to
the user.

This task requires us to study the dependence between
user latent factors and item latent factors. To model the
relationship in a probabilistic approach, we first denote U =
{U (1), . . . ,U (D)} as a set of continuous random variables for

each dimension of user factors, and I = {I(1), . . . , I(D)} as
a set of continuous random variables for each dimension of
item factors. Let f denote the probability density function
(PDF) and F the cumulative density function (CDF). In ad-
dition, let E denote the set of observed evidence variables
(i.e., item factors and the ratings in the open dataset). Given

a set of recommended items Ît with ratings R̂t, Rec2PI
solves a series of the maximum a posteriori probability esti-
mation problems (MAP) as follows:

MAP(U|E) = argmax
u

f(u|i, r̂t,i), ∀i ∈ Ît, (7)

where u and i represent values for random variables in U
and I, respectively.

4. COPULA-BASED PROBABILISTIC
PROFILE INFERENCE

4.1 Outline of Solution
We introduce our proposed method to solve the problem

formulated in Equation (7) by converting the equation to a
more detailed form in our context. Without loss of general-
ity, we assume that r̂t,i has an integer range6. Denote the
rating matrix in the open dataset as R. Denote the range of
ratings as [1,Mr]. It is reasonable to assume that the item
sets (e.g., movies) in the hidden dataset (used in the third-
party RS) and the open dataset (explored by Rec2PI) are
close, because we have the freedom to use any open dataset
that sufficiently covers all pushed items to the target user.

Ratings of recommended items, predicted by the (unknown)
recommendation algorithm F , reflect the statistical patterns
in user-item association. Since we do not attempt to min-
imize the distance metric such as that defined in Equa-
tion (5), we solve the problem based on the fact that the rat-
ings reflect the dependence structure between item factors

6Decimal ratings can be converted into integers.



and user factors. As such, for each rating value x ∈ [1,Mr],

we associate x with Ux = {U (1)
x , . . . ,U (D)

x }, the set of con-
tinuous random variables for each dimension of user factors,

and with Ix = {I(1)
x , . . . , I(D)

x }, the set of continuous ran-
dom variables for each dimension of item factors. The details
on how to obtain sample values of Ux and Ix from R will be
given in Subsection 4.3.

A common assumption in LFM is that the latent user fac-
tors are independent of each other [16, 14]. This assumption
suggests that we can infer the D-dimensional user factors
one at a time. Therefore, corresponding to a recommended
item i ∈ Ît with rating r̂t,i, we can infer user t’s d-th latent

factor, conditioning on i, denoted as Λ
(d)
t,i , as

Λ
(d)
t,i = argmax

u
(d)
x

f(u(d)
x |ix), ∀i ∈ Ît, (8)

where to simplify notation x = r̂t,i and ix = {i(1)
x , . . . , i

(D)
x }.

Note that ix = {i(1)
x , . . . , i

(D)
x } represent the values for ran-

dom variables in Ix = {I(1)
x , . . . , I(D)

x }.
We then take the average value over all Λ

(d)
t,i , ∀i ∈ Ît as

the final value of inferred d-th latent factor, i.e.,

Λ
(d)
t =

1

|Ît|

∑
i∈Ît

Λ
(d)
t,i . (9)

Nevertheless, f(u
(d)
x |ix) in Equation (8) is non-trivial to

model because it involves the dependence structure between
user factors and item factors. In the next subsection, we will
introduce a powerful statistical method, copula modeling,
that can characterize this dependence information.

4.2 Why Copula-based Inference?
We start the introduction to copulas with the definition

of 2-dimensional (bivariate) copulas and core theorems.

Definition 5. A 2-dimensional copula is a function C
having the following properties [18]:

1. Its domain is [0, 1]2;

2. C is 2-increasing, i.e., for every u1, u2, v1, v2 ∈ [0, 1]
and u1 ≤ u2, v1 ≤ v2, we have C(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0.

3. C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v, for
every u, v ∈ [0, 1].

Theorem 1. (Sklar’s theorem) [18] Consider two ran-
dom variables X and Y , with F (x, y) as the joint CDF. De-
note the marginal CDF of X and the marginal CDF of Y as
FX(x) and FY (y), respectively. Then there exists a copula
C such that for all x and y, F (x, y) = Pr(X ≤ x, Y ≤ y) =
C(FX(x), FY (y)).

Sklar’s theorem shows how the copula models the depen-
dence between univariates. The copula is a function that
links univariate marginals to their joint distributions. This
property is especially useful since the joint distribution of
random variables is difficult to find directly in many appli-
cations. For example, in our problem, when considering a
feature of users and a feature of items as two random vari-
ables, their joint distribution is not easy to obtain. By using
copulas to model the dependence, their joint behavior can

be revealed based on Theorem 1 by integrating marginal
distribution into a copula model.

Copulas are efficient and well known for dependence mod-
eling and have been widely used in finance and risk manage-
ment [7, 18]. There are a variety of copula families which
are well studied, such as Archimedean copulas, Gaussian
copula, student’s t copula, and etc. These known copulas
are powerful tools to capture different types of dependence
structure [7], so that we will have enough choices when us-
ing copulas for dependence modelling in our problems. In
addition, compared with other dependence measurements,
such as covariance and correlation, copulas not only cap-
ture the linear dependence, but also model the functional
dependence between random variables [7]. In the context of
Rec2PI, there is no evidence that the dependence structure
between users and items is linear. In this case, copulas can
be used to model this dependence well even if the depen-
dence goes beyond the linear scope.

The following theorem is also useful in our copula-based
model.

Theorem 2. [2] Assume X and Y have the copula C be-
tween them, the conditional density function f(Y = y|X =
x) is

f(Y = y|X = x) = c(FX(x), FY (y))fY (y) (10)

where c(u, v) = ∂
∂u

∂
∂v
C(u, v) is called the copula density

function, and fY (y) is the probability density function (PDF)
of the marginal.

4.3 Copula-based Probabilistic Model (CPM)
To ease notation, in the rest of the paper, we use f to de-

note the PDF for univariate, bivariate and multivariate and
F to denote the CDF for univariate, bivariate and multivari-

ate, without using subscripts. For instance, F (i
(1)
x )F (i

(2)
x )

· · · F (i
(D)
x ) should be read as FI(1)x

(i
(1)
x )FI(2)x

(i
(2)
x ) · · ·

FI(D)
x

(i
(D)
x ).

We use the copula method to solve Equation (8). To sim-
plify calculation, we in this section assume that the item fac-
tors are independent of each other. In the next section, we
will relax this assumption and introduce an improved algo-
rithm that can handle the dependence between item factors.

Assume r̂t,i = x. Due to the independence assumption on
item latent factors, F (ix) can be computed as:

F (ix) = F (i(1)
x , i(2)

x , . . . , i(D)
x )

= F (i(1)
x )F (i(2)

x ) · · ·F (i(D)
x )

(11)

Based on Theorem 2, Equation (8) can be rewritten as:

Λ
(d)
t,i = argmax

u
(d)
x

f(u(d)
x |ix)

= argmax
u
(d)
x

cx(F (u(d)
x ), F (ix))f(u(d)

x ), ∀i ∈ Ît, (12)

where cx is the bivariate copula density function of U (d)
x and

Ix. Note that we transform Ix as one random variable with
Equation (11). From Equation (12), the inference on d-th
latent factor will be made by modelling its dependence with
recommended items and its own marginals.

Next, we present an algorithm that, for each rate value x ∈
[1,Mr], constructs the sample values for Ux = {U (1)

x , . . . ,U (D)
x }

and Ix = {I(1)
x , . . . , I(D)

x }, using the open dataset R.



Let Nx denote the total times of occurrence for a rating
value x in R. For a rating value x, let a (Nx×D)-dimensional

matrix L
(x)
U denote the user-side matrix where each row is a

vector of user latent factors, and let a (Nx×D)-dimensional

matrix L
(x)
I denote an item-side matrix where each row is

a vector of item latent factors. Algorithm 1 presents the

details of constructing L
(x)
U and L

(x)
I , for all x ∈ {1, . . . ,Mr}.

Algorithm 1: Preprocessing for Latent Factors

Input: A rating matrix R, user set U and item set I

Output: L
(x)
U and L

(x)
I , ∀x ∈ {1, . . . ,Mr}

1 Learn a LFM model by factorizing R with Equation (5)
to obtain D-dimensional latent factors Λu for u ∈ U
and Γi for i ∈ I;

2 For all ru,i ∈ R, insert ΛTu into L
(ru,i)

U , and insert ΓTi

into L
(ru,i)

I ;

Algorithm 2: Bivariate-CPM

Input: L
(x)
U and L

(x)
I , x ∈ {1, . . . ,Mr}, and a set of

recommended items Ît with ratings R̂t
Output: The target user t’s inferred profile

Λt = [t(1), t(2), . . . , t(D)]T

1 foreach x in {1, . . . ,Mr} do
2 foreach d in {1, . . . , D} do
3 Fit a Gaussian distribution N (µU(d)

x
, σU(d)

x
) to

the d-th column of L
(x)
U , i.e., L

(x)
U [:, d];

4 Fit a Gaussian distribution N (µI(d)x
, σI(d)x

) to

the d-th column of L
(x)
I , i.e., L

(x)
I [:, d];

5 Set U (d)
x ∼ N (µU(d)

x
, σU(d)

x
) and

I(d)
x ∼ N (µI(d)x

, σI(d)x
);

6 Compute a CDF value for each entry in the d-th

column of L
(x)
U as F (u

(d)
x ) ;

7 Compute a CDF value for each row of L
(x)
I as

F (ix) by Equation (11) ;

8 Fit a bivariate copula cx(F (u
(d)
x ), F (ix)) to the

CDF values of F (u
(d)
x ) and F (ix) ;

9 foreach d in {1, . . . , D} do

10 Λ
(d)
t = 1

|Ît|

∑
i∈Ît

argmax
u
(d)
x

cx(F (u
(d)
x ), F (ix))f(u

(d)
x );

11 return Λt = [t(1), t(2), . . . , t(D)]T ;

As an example, consider the case where any rating value
x ∈ {1, 2, 3, 4, 5}. Algorithm 1 outputs 5 user-side matrices

{L(1)
U , · · · ,L(5)

U }, and 5 item-side matrices {L(1)
I , · · · ,L(5)

I }.
In Algorithm 2, we describe the training and inference

procedures. We place Gaussian priors over U (d)
x and I(d)

x ,

i.e., U (d)
x ∼ N (µU(d)

x
, σU(d)

x
) and I(d)

x ∼ N (µI(d)x
, σI(d)x

). The

samples for U (d)
x is the d-th column of L

(x)
U . Similarly, the

samples for I(d)
x is the d-th column of L

(x)
I .

4.4 Vine-copula Probabilistic Model (VPM)
In Line 7 of Algorithm 2, we assume that the D ran-

dom variables of item latent factors are independent, i.e.,

I(j)
x ⊥⊥ I(k)

x , j 6= k, so that we can transform Ix as one ran-
dom variable with Equation (11) and apply bi-variate copula
modeling. In this section, we relax this assumption and pro-
pose a vine-copula probabilistic model (VPM) to explore the
dependence between item factors for further improvement.
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Figure 2: Correlation coefficients (whose values
correspond to the right color bar) between 10-
dimensional of latent factors (rating x = 3).

Figure 2 shows the correlation coefficient values (i.e., lin-
ear dependence7) among 10 user/item factors learned from
LFM on a movie ratings dataset, the details of which will be
described in Section 5. While the dependence between user
factors is weak, we can easily observe the strong correlations
between item factors (e.g., V 2-V 9, V 5-V 8). Therefore, by
capturing the dependence structure among the D random
variables for item factors, we may be able to obtain better
inference results in Rec2PI.

While so far we introduced copulas for the bivariate case,
all definitions and theorems in Subsection 4.2 can be ex-
tended to multivariate copulas [18]. In this section, mul-
tivariate copulas are used to capture the dependence be-
tween item factors, i.e., to calculate the joint CDF F (ix) =

F (i
(1)
x , i

(2)
x , . . . , i

(D)
x ).

A general approach to construct multivariate copulas is
to extend a bivariate copula into the high dimensional ver-
sion. Such extension has been made for multivariate Gaus-
sian copula and multivariate student’s t copula. Taking mul-
tivariate Gaussian copula as an example, it essentially mod-
els the dependence between any pairs of the multivariates
with a bivariate Gaussian copula. This approach, however,
is inflexible in high dimensions. In addition, since it con-
strains all pairs of random variables with the same depen-
dence structure, the modelling power is limited.

Another construction method for multivariate copulas is
to decompose the multivariate distribution into products of
marginal PDFs and bivariate copulas PDFs. This method
is called pair-copula construction (PCC). With PCC, each
pair-copula can be chosen independently from the others,
making the model more flexible. For high dimensional dis-
tributions, PCC often results in a great number of possible
pair-copula constructions. Brechmann et al. [3] proposed to
organize these constructions using a graphical model involv-
ing a sequence of nested trees, which are denoted as regular
vines. There are two popular special cases of regular vines:
the canonical (C-) vine and the D-vine. Each vine decom-
poses a multivariate distribution in a specific structure. In
7Note that the linear dependence between item factors does
not suggest/imply the linear dependence between users and
items.



this work, we adopt D-vine in our algorithm. The D-vine [3]
decomposes a D-dimensional multivariate PDF f(x) as

f(x) =

D∏
d=1

f(xd)×

D−1∏
i=1

D−i∏
j=1

cj,j+i|j+1,...,(j+i−1)(F (xj |xj+1, . . . , xj+i−1),

F (xj+i|xj+1, . . . , xj+i−1)), (13)

where f(xd), d = 1, · · · , D, denote the marginal PDFs and
cj,j+i|j+1,...,(j+i−1) denote bivariate copula densities. Joe [10]
showed that marginal conditional distributions of the form
F (x|v) in Equation (13) can be computed as:

F (x|v) =
∂Cx|vj (F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
∀vj ∈ v, (14)

where vj is any element of v and v−j denotes the vector
without this element. Once f(x) is calculated, we use sam-
pling to estimate the joint CDF F (x). Given any instance
i (values of an item’s factors), the idea is to generate S
samples from f(x), and count the number of samples s sat-

isfying x(d) ≤ i(d), ∀d ∈ {1, . . . , D}. Then F (ix) in Line 7 of
Algorithm 2 can be calculated as F (ix) ≈ s/S.

To summarize, VPM is also based on Algorithm 2, except
that it uses Equations (13), (14) and a sampling technique
to calculate F (ix) in Line 7 of Algorithm 2.

5. EXPERIMENTAL EVALUATION
We conduct experiments to evaluate our proposed meth-

ods, CPM and VPM, in the scenario of movie preference
inference. To avoid the ground-truth problem raised in Sec-
tion 3.3, we design an evaluation method shown in Figure 3,
whose details will be given in the next subsection. Note that
the experimental steps shown in Figure 3 is for purpose of
evaluation only. The true work flow of Rec2PI in real world
should follow Figure 1. In addition, we perform evaluation
in the movie domain not only because it is an important
source of preference information, but also because it allows
us to conveniently collect item recommendations generated
by third-party RS (details explained in the next subsection),
which are the input to Rec2PI but are often not included in
publicly available datasets. Rec2PI can be applied to data in
other domains as well, such as transactional datasets (pur-
chases as binary ratings) in Ecommerce.

5.1 Data Preparation and Evaluation Steps
In the experiments, we use MovieLens as the open dataset

to train Rec2PI for the Wi-Fi provider side and use Netflix’s
recommender system to create recommendations for target
users. We describe how we select target users and collect
recommended movie ratings in the following steps:

1. We use the latest (released in April, 2015) MovieLens-
20m dataset8 as the open dataset. We first filter movies
in MovieLens to retain those appearing in both Movie-
Lens and Netflix.

2. We randomly select target users from MovieLens (so
that ground truth ratings can be obtained) and exclude
them as well as the associated ratings from the dataset
used for evaluation afterwards.

8http://grouplens.org/datasets/movielens/20m/

3. For each target user, we randomly choose a set of ti-
tles of his/her unrated movies from MovieLens. Movies
in this set serve as the recommended ones whose pre-
dicted ratings will be determined by Netflix’s RS.

4. For each target user, we create an individual “agent”
account on Netflix and manually assign the ground
truth ratings to the corresponding movies for the ac-
count.

5. On each target user’s account, we search the titles of
the selected unrated movies on Netflix’s RS. We then
record Netflix’s predicted ratings.

We summarize the key aspects in data preparation:

• Open Dataset: The filtered MovieLens 20m dataset
contains 137055 users, 1231 movies and 2606513 movie
ratings.

• Target Users: In total, we select 20 distinct target
users from the Movielens dataset. This simulates a
real-world scenario where 20 customers are in the store
and accessing the Internet via Wi-Fi. In reality, a tar-
get user t’s number of rated movies |It| (with ground
truth ratings) may or may not be near the number of

recommended movies |Ît| (which is set to 50 in the ex-
periments). To conduct experiments on different users,
we randomly select 10 targets (T1 to T10) from the set
of users whose |It| is within the range from 50 to 60.
We also randomly select 10 targets (T11-T20), whose
|It| is in a wider range from 20 to 100. Table 2 sum-
marizes |It| of each target user9.

• Ground Truth Ratings: Each target user’s ground
truth ratings are all ratings he/she assigns in Movie-
Lens. We round decimal ratings to integers based on
IEEE 754 standard for arithmetic operations.

• Movie Titles of Recommendations: We sort movie
titles in the filtered MovieLens by the number of rat-
ings in descending order. For each target user, we ran-
domly select 50 movies from the top-500 as the recom-
mended movie set whose ratings will be predicted by
Netflix. Table 2 summarizes |Ît| of each target user9.

• Predicted Ratings by Netflix: Netflix displays the
predicted rating via a feature shown under the movie
title as “Our best guess for ... is ...”. We record such
ratings for all movies in the recommended movie set.
We round decimal ratings to integers based on IEEE
754 standard for arithmetic operations.

5.2 Metrics
In the experiments, Rec2PI infers the target user’s pref-

erence profile about movies. To evaluate the effectiveness,
we need to first obtain the user’s inferred behavior (inferred
ratings) based on the inferred profile and then compare it
to the original behavior (ground truth ratings). For a num-
ber of repeated runs (10 in the experiments), the average
distance between inferred ratings and ground truth ratings,

9For some target users, |It| or |Ît| differs from the range
or value setting because Netflix is constantly updating their
streaming movies and some pre-selected movies have become
inaccessible when we collect the ratings (Dec. 2015).



Figure 3: Experimental setup for the evaluation of Rec2PI (Refer to Section 5.1 for details).

Table 2: Statistics of Target Users
TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|It| 55 54 57 49 56 51 44 53 46 46 22 93 22 60 23 21 76 26 73 21

|Ît| 49 47 49 49 49 47 48 47 39 41 50 50 50 50 50 50 50 50 50 50

from retailers’ viewpoint, should not only be small (accu-
racy), but also remain stable (stability). Therefore, we use
the following two metrics:

1. Root mean squared error (RMSE) to measure the dis-
tance in each run. RMSE is defined as:

RMSE =

√√√√(

N∑
n=1

(rn − r′n)2)/N, (15)

where N is the number of ground truth ratings, rn is
the ground truth rating and r′n is the inferred rating.
Denote MEANRMSE as the average RMSE value of all
repeated runs on each target user.

2. Standard deviation of RMSE values (SDRMSE) to mea-
sure the stability.

5.3 Algorithm Settings and Baselines
The types of copulas that are used to fit the data should

be specified for the proposed algorithms. For CPM, we spec-
ify Gaussian copula in Line 8 of Algorithm 2. For VPM, we
specify Clayton copula for modeling the dependence struc-
tures for pair copulas constructed by item factors (Line 7
of Algorithm 2). To demonstrate how we specify these cop-
ula types, we show the empirical copula result for a certain
pair of item factors with a specific rating value. In Fig-
ure 7(a), we plot the empirical copula contour of the pair
of 8-th and 9-th item factors for 3-valued ratings. There
are no well-known copula families that well fit the empirical
copula contour. The closest fit that we can find so far is
Clayton copula. Therefore, we approximate the empirical
copula with Clayton copula. Figure 7(b) depicts the fitted
Clayton copula contour. In Subsection 5.4, we show that
with the best approximation we have found, we can obtain
performance results better than that of existing methods
with regard to stability. If in the future, a new parametric
copula type can be found to fit the empirical copula better,
we expect even better performance results.

To illustrate the effectiveness of the proposed algorithms,
we compare them to three baseline methods that estimate a
target user t’s profile Λt in an intuitive way:
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Figure 7: Empirical and fitted Clayton copula con-
tour comparison of the pair of 8-th and 9-th item
factors for rating x = 3.

1. Most Similar User (MSU): We first factorize R
to get Λu, ∀u ∈ U and Γi, ∀i ∈ I. For each u ∈ U ,
we construct a vector vu, containing ground truth and
predicted (if u has not rated i) ratings for i ∈ Ît. Then

we find a user u∗ = argmin
u∈U

||R̂t − vu||. Set Λt = Λu∗ .

2. Average User Profile (AveU): We first factorize
R to get Λu, ∀u ∈ U and Γi,∀i ∈ I. For each element
t(d) ∈ Λt (for 1 ≤ d ≤ D), set t(d) = 1

|U|
∑
u∈U

u(d), for

1 ≤ d ≤ D.

3. LFM: Treat the recommended ratings as t’s ground
truth ratings. Add ratings in R̂t to R. Then factorize
the rating matrix R ∩ R̂t to get Λt.

The dimension of user/item factors is set as D = 10. We
use the LFM implementation provided by the authors of [6].

5.4 Performance Comparison
For each target user, we run all algorithms 10 times. We

then take the average values of the two metrics, MEANRMSE

and SDRMSE, of each group of target users and of all 20 tar-
get users, as specified in Subsection 5.1. The results are
shown in Figures 4, 5, and 6. Each figure consists of three
subfigures, including (a) the average of MEANRMSE over
the users, (b) the average of SDRMSE over the users and (c)
the SD improvement of each algorithm against LFM, which
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Figure 4: Average metrics and SD improvements against LFM of users from T1 to T10.
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Figure 5: Average metrics and SD improvements against LFM of users from T11 to T20.

has the lowest average MEANRMSE value. Figures 4 and 5
depict the results of the two target user groups. From the
figures, we can see that the average RMSE values do not in-
dicate significant difference for the 5 algorithms, with LFM
only slightly better than others. The average SD values and
the SD improvements, however, clearly show the advantages
of our proposed methods, especially VPM. While CPM and
VPM maintain close performance to LFM in accuracy (sim-
ilar average RMSE values), they achieve much better sta-
bility (less variance), with average SD improvements of all
target users at 69.05% and 93.54%, respectively, as shown
in Figure 6. This implies that VPM is more robust and can
generate much stabler profiles. Although AveU is also stable
(because it takes the average of all users’ factors), it is less
accurate than VPM.

In addition, the superiority of our proposed vine-based
modelling of dependence structure among item factors is
verified due to the fact that VPM improves the performance
over CPM (which applies independence assumption for item
factors) with regard to both accuracy and stability. The
promising performance implies that the inferred target users’
ratings by our proposed methods, especially VPM, are con-
sistently close to their ground truth ratings in different runs.
This characteristic has an important practical meaning be-
cause the user preference inferred by Rec2PI is not only ac-
curate, but also stable. Retailers thus can take advantage of
it to maintain reliable and valuable customer management.

6. RELATED WORK
Rec2PI solves a user profile inference problem arising in

Wi-Fi data mining. Wi-Fi providers of brick-and-mortar
stores can take advantage of Rec2PI to infer customers’
preference based on Wi-Fi collected information so as to
obtain a better understanding of in-store customers. Data
mining on Wi-Fi collected information has not been fully
investigated. Most relevant research works about mining
the interaction between users and items focus on online rec-

ommender systems (RS) in a variety of domains, such as
Ecommerce ([13]), online social networks ([4]) and Internet
streaming media ([9]). As Rec2PI does not assume access
to a target user’s ground truth behavior, it is fundamen-
tally different from these existing works on RS. Rec2PI is
also related to transfer learning. Pan et al. [19] categorized
and reviewed the progress on transfer learning for classifica-
tion, regression, and clustering problems. Pan and Yang [20]
proposed to model both the numerical ratings and binary
auxiliary preference in a principled way, and therefore to al-
leviate data sparsity (cold start) for collaborative filtering
domains expressed in numerical ratings. Wongchokprasitti
et al. [21] transferred user models built by one system to
another to address the cold start problem. Indeed, trans-
fer learning is part of Rec2PI: Rec2PI learns the pattern
of user behavior from open datasets and applies it to the
novel recommendation-based user profiling (the middle step
in the red dashed box in Figure 1). However, Rec2PI goes
beyond transfer learning because inferring a target user’s
profile from recommended content is different from the infer-
ence from his/her ground truth behavior and requires novel
and dedicated approaches. To the best of our knowledge, the
research problem posed in Rec2PI for Wi-Fi data mining is
completely new.

The core of Rec2PI involves a copula-based probabilistic
model, which is vital to profile inference. As a powerful sta-
tistical tool, copulas (including vines) are quite mature and
have been broadly used in the domain of financial analysis
for multivariate dependence modelling [1, 8]. The properties
of copula theory are described in detail in [17]. With copula
theory, we can capture the dependence structure between
user factors and item factors, as well as those among item
factors.

7. CONCLUSIONS
In this paper, we initiated the study of a novel value-added

service, Rec2PI, to Wi-Fi data mining. The goal is to infer
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Figure 6: Average metrics and SD improvements against LFM of all target users.

a user’s preference profile given a set of recommendations
from third-party RS, whose algorithms and the used dataset
in the recommendation are unknown.

We formulated the inference task as a marginal maxi-
mum a posteriori probability (MAP) estimation problem.
We provided a formal definition of Rec2PI in the context
of rating-based item recommendation, including the mod-
elling of user/item profile, user behavior and the interaction
between users and items. We proposed a novel approach in-
corporating copulas into the modelling procedure to capture
the dependence structure between any user feature and a set
of item features. Vines for multivariate copulas capture the
dependence structures among item features. We learned the
inference model on an open dataset and evaluated the per-
formance of Rec2PI using recommendations generated by a
real-world RS. Evaluation results showed that our proposed
algorithms, especially VPM, are accurate and stable.

We believe that we can further improve on our results with
better parametric copulas. Finding more accurate copula
models is a promising future work direction.
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Département de mathématiques, Institut Fédéral de
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