
CutTheTail: an Accurate and
Space-Efficient Heuristic Algorithm

for Influence Maximization
Diana Popova1, Ken-ichi Kawarabayashi2 and Alex Thomo1

1Computer Science Department, University of Victoria, British Columbia, Canada
2National Institute of Informatics, Tokyo, Japan

Email: dpopova@uvic.ca, k keniti@nii.ac.jp, thomo@uvic.ca

The algorithmic problem of finding the most influential nodes in an arbitrary
directed graph (influence maximization) is an important theoretical and practical
problem and has been extensively studied for decades. For massive graphs
(e.g., modelling huge social networks), randomized algorithms are the answer
as the exact computation is prohibitively complex, both for the runtime and
space. This paper concentrates on developing new accurate and efficient
randomized algorithms that drastically cut the memory footprint and scale up
the influence maximization. Using the Reverse Influence Sampling method
proposed by Borgs, Brautbar, Chayes, and Lucier in 2014, we engineered a novel
algorithm, CutTheTail, that finds a good approximation to the optimal influence
maximization while using up to five orders of magnitude smaller space than the
existing renown algorithms. CutTheTail is a heuristic algorithm. We tested the
accuracy of CutTheTail on large real-world graphs using Monte Carlo simulation
as the benchmark. Experiments show that CutTheTail provides solutions with
quality comparable to the quality of the algorithms with theoretically proven
approximation to the optimal influence maximization. Savings in required space
allow to successfully run CutTheTail on a consumer-grade laptop for a graph with
640 million edges. To the best of our knowledge, no other influence maximization
algorithm can compute a solution for a graph of this size on a 16 GB RAM laptop.

Keywords: Algorithms, Social computing, Approximate computing, Probabilistic computing,
Performance analysis

1. INTRODUCTION

An actively researched problem in graph structure
discovery is the problem of influence maximization
(IM): in an arbitrary graph, given an integer k, find
a subset S of k nodes that maximizes some influence
function. A commonly used influence function is
reachability [9, 26, 13]: the network is modelled as a
directed graph where entities correspond to nodes; a
node influence is calculated as the number of other
nodes reachable from it. For a probabilistic graph,
where edge existence is not determined, but probable, it
is probabilistic reachability: to reach the neighbouring
nodes, IM algorithms select each edge with a given
probability. Then a node influence is defined as the
expected number of reachable nodes.

Kempe et al. [13] formalized several IM models,
including the Independent Cascade (IC) model [9]:
IM starts with a sampling of a probabilistic graph
performing Breadth-First-Search or Depth-First-Search
from a randomly selected node, proceeding at each step
with the given probabilities of graph edges, to get a list

of reached nodes. Kempe et al. showed that IM on the
IC model is monotone and submodular, and the use of a
Greedy algorithm for finding the most influential nodes
produces good quality solutions. They also proved that
the IM problem is NP-hard, but can be approximated
to within a factor of (1 − 1/e − ε) for any ε > 0, in
polynomial time, via a Greedy hill-climbing method
([13, 16, 15]).

In 2014, a different method for IM on probabilistic
graphs was proposed by Borgs et al. [3]: the Reverse
Influence Sampling (RIS) method3. The idea is to select
a node v uniformly at random, with replacement, and
determine the set of nodes that would have influenced v.
This can be done by simulating the influence process
using the IC model on the graph with the directions
of edges reversed (transpose graph). If a certain node
u appears often in samples from different randomly
selected nodes, then u is a good candidate for a most
influential node. Comparing to Greedy on Monte Carlo

3The latest version 5 of the paper, issued on the 22nd of June
2016, can be found at https://arxiv.org/pdf/1212.0884.pdf

The Computer Journal, Vol. ??, No. ??, ????

2 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

simulations, RIS can be much faster, obtaining an
approximation factor of (1 − 1/e − ε), for any ε > 0,
in time O((m+n)kε−2 log n), where n is the number of
nodes, m is the number of edges, and k is the number
of seeds [3].

Substantial research has been done on developing
approximation algorithms for IM, both heuristic and
with a theoretical guarantee: [13, 5, 4, 10, 12, 8, 6, 22,
32, 31, 23, 14, 18, 28], to name a few. However, in
spite of ingenious design and successful implementation
of the above algorithms, the achieved scalability is not
enough for the modern massive networks ([1]).

All of the approximation methods, including RIS,
require a large number of graph samples. Keeping the
sampling results in main memory for the consequent
calculation of the most influential nodes consumes
vast amounts of memory resources. There are several
algorithms that propose tighter bounds than RIS on
the number of samples to be taken (for example,
[31, 20, 11, 19, 17] and references therein). In this
paper, we focus on the Borgs et al. Reverse Influence
Sampling (RIS) family of algorithms. We approach the
IM complexity from a different angle: we concentrate
on minimizing the memory footprint of RIS-based IM
algorithms instead of trying to cut down on the number
of samples. That is, we are managing the space
complexity.

We note that we are not claiming that sampling
algorithms not in the RIS family are better or worse
that those in the RIS family. This is orthogonal to
our focus in this paper. Our approach and engineering
techniques may as well be used for space savings while
using different methods of sampling than RIS. For our
future research, we plan to apply our space-saving
approach to other algorithms to further increase their
scalability.

In 2017 - 2018, Tang et al. researched a hop-
based approach to approximate the IM solution [29,
30]. They modelled the one-hop and two-hop spreads,
and compared the resulting sets of seeds with other
algorithms. Tang et al. main focus was the time
complexity, but a by-product of the design was a
significant savings in required space. However, this
work does not belong to the RIS-based family of
algorithms and as such does not provide the same set
of guarantees as those based on RIS. Again, the focus
of our paper is not to advocate for one or the other
approach, but to provide space-savings techniques for
the RIS-based family of algorithms.

To the best of our knowledge, our research is the
first one focusing on data structures for space-efficient
IM algorithms. We designed several data structures
for storing the sampling results [24, 25], tested them
on real-world graphs, and selected the most space-
efficient data structure, Webgraph framework [2], for
our IM algorithms. Both the input graph and the
intermediate results (samples) of the IM computation
are compressed. Compression helps to process large

graphs on a consumer-grade machine: it gives us up
to one order of magnitude saving of space.

This paper proposes a CutTheTail (CTT) concept
that works by separating the samples into important
ones that must be saved and others that can be
ignored. It is a further development of the same idea we
researched in our previous papers [24, 25]: to minimize
the memory footprint in order to increase the scalability
without sacrificing the quality. Our algorithms allow
space savings up to five orders of magnitude compared
with other IM algorithms. For example, tests in [25]
performed on DIM [23] and D-SSA [20] show that the
memory required by these algorithms for processing a
large graph is on the order of terabytes, while our IM
algorithms process the same graph on a laptop with 16
GB of RAM. We design two variants of CTT:

1. CTT1 which saves samples containing the nodes
with a larger number of outgoing connections; and

2. CTT2 which saves the longer samples.

The main contributions of this paper are as follows:

1. We develop a new approach to IM complexity:
minimizing the memory footprint of IM algorithms,
we significantly increase the IM scalability.

2. We design and implement new accurate and space-
efficient IM algorithms: CTT1 and CTT2.

3. We present experiments on eleven different large
real-world graphs, conducted on a consumer-grade
laptop, with an analysis of the results.

Details of CTT1 and CTT2 design can
be found in Sections 4 and 5. The
source code is published on GitHub:
https://github.com/dianapopova/InfluenceMax.

2. PRELIMINARIES

Let G = (V,E, p) be a directed probabilistic graph,
where the number of nodes |V | = n, the size of the
edge set |E| = m, and p : E → [0, 1] is a probability
function on edge existence. In this paper, we consider
the case where p is constant, i.e., for some constant
number c < 1, it holds that p(e) = c for all e ∈ E.
IM researchers have often used a constant probability
p. For example, Jung et al. [12] use the “trivalency”
model where p is randomly assigned a value from the set
(0.1, 0.01, 0.001). We are using a larger set of p values:
(0.1, 0.05, 0.01, 0.005, 0.001). Using p as a constant
allows to research information diffusion under different
conditions by varying p. This is especially advantageous
while experimenting with social networks where degrees
of influence of one node over the others is often unknown
or highly volatile.

2.1. Independent Cascade

The Independent Cascade (IC) model [9]: Starting from
a set S ⊆ V of seeds (initial nodes), IC selects incident

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 3

edges with independent probabilities. That is, each edge
is selected or not selected independently of the previous
trials. It is implemented by generating a random
number in the closed interval [0, 1] and comparing it
with the given probability of the edge. If an edge is
selected (considered existing), the node at the other end
of the edge is influenced. Influenced nodes, in their turn,
have a possibility to influence their neighbours forming
a cascade of influence propagation. Hence, the name –
Independent Cascade. The influence spread of a seed
set S, denoted by σ(S), is defined as the expected total
number of influenced nodes for S.

2.2. IM Problem

Problem 1 (Influence Maximization Problem (IM)).
Given a graph G = (V,E, p) and an integer k, find a
node set S ⊆ V of size k that maximizes the influence
spread σ(S).

2.3. Reversed Influence Sampling Method

In the Reverse Influence Sampling (RIS) method, Borgs
et al. [3] suggested the following sampling process:
select (uniformly at random, with replacement) a node
and find a set of nodes that would have influenced it.
If a node appears in samples often, then this node is a
good candidate for a most influential node in the graph.

To find the “influencers”, Borgs et al. propose to
repeatedly run a graph search, starting from a randomly
selected node, on the transpose (with the directions
of edges reversed) graph. The resulting list of nodes
reached by a search is called a sketch. The algorithm
creates a structure that Borgs et al. called a hypergraph
that stores the information derived from the sketches.
We are using the term “hypergraph” throughout this
paper. In order to determine the time at which to stop
sampling, Borgs et al. calculate the target weight of
the hypergraph, R. Borgs et al. proved that when the
hypergraph weight is calculated by their formulae, the
resulting IM solution is a guaranteed approximation to
optimal: [3, Theorem 3.1] and [3, Theorem 4.1]. To find
the most influential nodes, a Greedy algorithm is run
on the hypergraph. The most influential node is the one
that participated in the most sketches.

Theoretically, RIS achieves a near-linear time and
space complexity. Despite these strong theoretical
results, RIS and its implementations suffer from a
practical inefficiency: the hypergraph has to be kept in
main memory during the build and for the calculation
of seeds. The hypergraph is large and the space needed
for keeping the RIS hypergraph makes it impossible to
run RIS on a consumer-grade machine for large graphs.

3. DATA STRUCTURES FOR IM

One of the recent algorithms implementing RIS is
DIM [23]. Essentially (though with interesting
shortcuts and improvements), DIM implements the

hypergraph as a list of lists following a suggestion
by Borgs et al. [3]. Figure 1 left, shows the DIM
data structure. We designed a more space-efficient

FIGURE 1: Comparing hypergraph structures

data structure, a Webgraph hypergraph [24, 25]. The
Webgraph framework [2] is based on a compression
technique that decreases the graph size down to 10% of
its edge list size. It also includes multiple algorithms
implemented in Java for a quick and easy manipulation
of compressed graphs.

Let us compare how hypergraphs are built and stored
using DIM data structure vs. Webgraph data structure.
DIM hypergraph is built as a list of graph nodes, from
0 through n − 1. Each node has a corresponding list
of sketch IDs. After each sample, the resulting sketch
ID is added to the lists of all nodes participating in the
sketch. At the end of the sampling process, the most
influential nodes will have the longest lists of sketch IDs.
Note that the whole DIM hypergraph must be available
for a random access, in order to update the hypergraph
with each new sketch.

Webgraph hypergraph building process saves the
sketches appending them, one by one, to a stack of
sketches, in no particular order: as long as each sketch
ID is unique, the order is irrelevant. Note that the
building process does not require a random access to the
hypergraph. This makes the building process simpler,
quicker, and easily parallelized: each machine core takes
samples and stacks them; when the sampling is finished,
the core stacks are merged together.

After its build is completed, DIM hypergraph re-
sides in main memory for the seed calculation. The
hypergraph is wiped out when the seed calculation is
completed. This read-once hypergraph is computation-
ally expensive; can we make the cost-per-usage lower?
Our solution is to store the hypergraph on a secondary
memory medium, with a possibility to load the hyper-
graph into main memory for seed calculation (the load
takes only few seconds for billion-size graphs).The hy-
pergraph in main memory will be wiped out after the
seed calculation, but it persists on the disk. We can
re-use the hypergraph for, for example, computing the
influence spread of different sets of seeds.

The Computer Journal, Vol. ??, No. ??, ????

4 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

Algorithm 1 BuildHypergraph

Input: directed graph G, weight R, int node tail
Output: hypergraph H

1: sk num← 0
2: while H weight < R do
3: v ← random node of GT

4: sk ← BFS in GT starting from v
5: sk num = sk num+ 1
6: sk deg ← 0
7: sk outdeg ← 0
8: for each u ∈ sk do
9: node cover[u]← node cover[u] + 1

10: sk deg ← sk deg +GT .outdeg(u)
11: sk outdeg ← sk outdeg +G.outdeg(u)

12: if sk cardinality > 1 & sk outdeg > node tail
then

13: append sk to hypergraph H

14: H weight← H weight+ sk deg
return H

4. CUT THE TAIL1 ALGORITHM

The logic of CutTheTail1 (CTT1) algorithm is based
on the following assumption:

Assumption 1. 80% of the nodes that have lower
out-degrees will never become seeds.

In other words, we assume that top 20% of nodes
is the pool where we will find all the seeds. This
is an application of the Pareto principle to the out-
degree of nodes in the original graph (with the original
edge directions). The Pareto principle works well
for many phenomena, e.g., PageRank calculation, and
experimental results in Section 6 show that it works for
IM as well.

4.1. CTT1 Hypergraph

An out-degree of a node is the number of edges going
out to other nodes. For an undirected graph, the out-
degree is equal to the in-degree, as each undirected
edge is replaced by two edges pointing in the opposite
directions. Calculation of the 80th percentile for the
node out-degrees in the original graph is done before
the hypergraph build starts. The 80th percentile is
stored into an integer node tail. The BuildHypergraph
procedure (Algorithm 1) gets node tail as an input
parameter.

For each sketch, the BuildHypergraph sums up the
out-degrees of all the nodes participating in the sketch,
calculating a combined out-degree of the sketch. The
sketches with the combined out-degree at less than the
80th percentile are not saved. Imagine a list of sketches
sorted by the combined out-degrees. CTT1 is cutting off
a long “tail” of sketches with low combined out-degrees;
this is why we named the algorithm “CutTheTail”.
Additionally, CTT1 does not save sketches containing

only one node, regardless of the node out-degree.
While creating CTT1 hypergraph, the

BuildHypergraph procedure also stores the num-
ber of sketches for each node in an integer array
node cover (line 9 in Algorithm 1). The node cover
index corresponds to a node ID, and the stored integer
is equal to the number of sketches the node partici-
pated in; we call this number “count”. After the build
is completed, node cover is saved on the secondary
memory along with the CTT1 hypergraph.

4.2. CTT1 Seeds Computing

The seed calculation starts with loading the hypergraph
and the node cover array into main memory and finding
a largest count. The corresponding node is the first
seed. Its influence is calculated (line 6) by the formula
provided by Borgs et al. [3]. After finding the first
seed, the node cover array and the hypergraph must be
updated, to avoid the overlapping of influenced nodes.

Algorithm 2 shows how to do it. The hypergraph
(line 7) is scanned, and after the first seed in a sketch is
found (line 8), the counts in node cover are decreased
for all the nodes in the sketch (lines 9 - 10). Then the
sketch is removed from the hypergraph (line 11) and
the count for the first seed is set to zero (line 12). To
find the next seed, the algorithm finds a node with a
largest count in the updated node cover array (line 4),
adds it to the set of seeds (line 5), and calculates its
influence (line 6). The process is repeated until k seeds
are found.

Algorithm 2 GetSeeds

Input: hypergraph H, array node cover, number of
seeds k

Output: seeds S, set influence σ(S)
1: S ← ∅
2: σ(S) ← 0
3: for i = 1, . . . , k do
4: vi ← argmaxv{node cover[v]}
5: S.insert(vi)
6: σ(S)← σ(S) + node cover[vi] ∗ n/sk num
7: scan H
8: if vi ∈ skj then
9: for each u ∈ skj do

10: node cover[u]← node cover[u]− 1

11: remove skj from H

12: node cover[vi]← 0
return S, σ(S)

4.3. Analysis of CTT1

Quality. An important question to answer is ”How
good is the quality of CTT1 solution for IM problem?”.
How cutting off a potentially large number of sketches
affects it? First of all, dropping all the sketches

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 5

containing only one node regardless of this node’s out-
degree, does not affect the solution. [25, Theorem 5.1]
proves that.

Furthermore, the first seed is always calculated
correctly, holding the RIS theoretical guarantee of its
approximation to optimal, because CTT1 finds the first
seed and calculates its spread following the RIS method
exactly: the node cover array contains the number of
sketches each node participated in. This includes all the
sketches, saved or dropped.

To find the second seed, CTT1 needs to

1. remove from the hypergraph all the sketches the
first seed participated in, and

2. lower the counts for all the other nodes participat-
ing in the same sketches.

To satisfy (1), all the sketches the first seed participated
in are removed and if there are some sketches with the
first seed that were not saved, they can be considered
“removed” as well.

It is more difficult with (2): if there happened to
be a sketch with the first seed that was not saved,
and if the sketch included other nodes, the counts for
all these nodes cannot be updated. Consequently, the
counts for all the nodes in dropped sketches with the
first seed will become inflated. This makes it possible
to incorrectly pick up the next seed(s): the count of a
node was inflated, and it might, erroneously, become
the largest in the node cover array.

What is the probability of CTT1 not saving a sketch
containing the first seed? It could happen only if
Assumption 1 is wrong, and the first seed is at a lower
than the 80th percentile of out-degrees.

The same reasoning can be applied to all found seeds:
CTT1 might get an inaccurate result only if

1. the previously found seed is at a lower than 80th
out-degree percentile, and consequently,

2. the node cover update became inaccurate: the
counts for the other nodes in dropped sketches were
not decreased.

Is it possible that Assumption 1 is wrong? Well, we
can imagine a node influencing just one other node,
but enjoying an enormous influence overall. This can
happen if that other node has huge influence over many.
We all heard about “a shadow behind the throne”: a
person influencing just a king (or just a queen, or, in
modern times, just a president) and making history.
How often does it happen in an arbitrary graph? We
conducted hundreds of tests on over a dozen graphs of
different types, modelling different phenomena, and all
the results show a high IM solution quality of CTT1
algorithm. Details are provided in subsection 6.1.3.

Space. CTT1 requires loading the original graph
into main memory and keeping it there, along with the
transpose graph, for the duration of the hypergraph
build. It increases the pressure on the main memory

compared to DIM [23] or NoSingles [25] algorithms
where we need only the transpose graph. But CTT1
hypergraph is smaller as it contains only samples with
high out-degree nodes. Subsection 6.5 show that this
saving is more than enough to cover the additional
memory for the original graph.

Time. Time complexity was not a primary concern
for this research, as we propose to build the Webgraph
hypergraph once and use it multiple times. Still, we
analyzed the CTT1 runtime. CTT1 requires additional
computations:

1. calculate the 80th out-degree percentile , and
2. compute a combined out-degree for each sketch.

Calculation time for (1) is negligible compared to the
sampling time, but (2) might noticeably increase the
runtime of CTT1. On the other hand, compared
to other IM algorithms, CTT1 takes less time saving
sketches (because it saves a smaller number of sketches),
and CTT1 creates a smaller hypergraph, so that
computing seeds takes less time. Testing shows that
CTT1 is faster than NoSingles algorithm and much
faster than DIM (subsection 6.6).

5. CUT THE TAIL2 ALGORITHM

CutTheTail2 (CTT2) algorithm logic is based on the
following assumption:

Assumption 2. Sketches with relatively few nodes
can be ignored when calculating the seeds.

5.1. CTT2 definition of “tail”

CTT2 saves all sketches with cardinality (the number
of participating nodes) exceeding the sk tail value. The
value of sk tail is calculated by an additional sampling
of the graph before the hypergraph build starts. After
multiple tests on many different graphs, we came up
with an empirical formula for the number of samples
for the sk tail calculation:

sk limit = max(n/100, 10000) (1)

where n is the number of nodes in the graph.
From each sample, we save the cardinality of the
resulting sketch. After taking sk limit samples, we find
the longest sketch; its cardinality is saved in an integer,
max card. The value of sk tail is calculated by the
following formula:

sk tail = max(min(0.1 ∗max card/ log k, 100), 2) (2)

where k is the number of seeds to compute.
The formula establishes the range of sk tail values.
Algorithm CTT2
(1) drops all the sketches containing 1 or 2 nodes, and
(2) saves all the sketches containing more than 100
nodes
for any graph, regardless of the initial sampling results.

The Computer Journal, Vol. ??, No. ??, ????

6 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

For a particular graph, sk tail can get a value between
2 and 100. The value depends on k: the error (in the
spread estimate) might get larger the more seeds CTT2
computes.

5.2. CTT2 hypergraph

Algorithm 3 BuildHypergraph2

Input: directed graph G, weight R, int sk tail
Output: hypergraph H

1: sk num← 0
2: while H weight < R do
3: v ← random node of GT

4: sk ← BFS in GT starting from v
5: sk num = sk num+ 1
6: sk deg ← 0
7: for each u ∈ sk do
8: node cover[u]← node cover[u] + 1
9: sk deg ← sk deg +GT .outdeg(u)

10: if sk cardinality > sk tail then
11: append sk to hypergraph H

12: H weight← H weight+ sk deg
return H

Algorithm 3 shows that CTT2 hypergraph build is
similar to CTT1. However, CTT2 does not have to
calculate the combined out-degree in the original graph
for each sketch, saving time and space.

5.3. CTT2 Seeds Computing

CTT2 computes the seeds exactly as CTT1 does
(Algorithm 2):

1. finds a largest value in the node cover array,
2. adds the corresponding node to the seed set S,
3. scans the hypergraph, finds all the sketches the

newly found seed participated in, and
4. updates node cover and the hypergraph accord-

ingly.

(3) and (4) are done only if S does not contain k seeds
yet.

5.4. Analysis of CTT2

Quality. CTT2 drops the sketches that contain fewer
than sk tail nodes. The dropped sketches might include
influential nodes. The first seed is always selected
correctly, as the node cover array keeps counts of all
the sketches including those that were not saved. Using
the node cover array with the counts of all sketches
is crucial: in spite of the fact that CTT1 and CTT2
drop a large number of sketches, node counts reflect the
sampling in its entirety. The guaranteed approximation
to optimal by Borgs et al. [3] holds for the first seed.

To find the next seed, CTT2 updates the node cover
array decreasing the counts for all the nodes that

participated in the sketches with the selected seed. It is
possible that some of the sketches with the selected seed
were not saved; then, after the update, all the nodes
participating in them will have their counts inflated.
It might lead to selecting as the next seed a node
with lower real count than another node that did not
participate in the dropped sketches. It is clear that a
possible error is accumulating as the number of seeds
increases. The intuition underlining our formula for
calculating sk tail is that highly influential nodes, as a
rule, participate in longer sketches. The small number
of short sketches with the highly influential nodes will
not lead to a big error. Subsection 6.1 shows test results
that support this intuition.

Space. CTT2 requires additional initial sampling
before the hypergraph creation. Results (the number
of nodes in each sketch) are saved in an integer array.
The memory taken by this array is very small, and
it is released immediately after calculating max card.
CTT2 takes less memory than DIM [23], NoSingles [25],
or CTT1, for all tested graphs (subsection 6.5).

Time. CTT2 requires additional computations:

1. calculate the sk tail , and
2. compare the number of nodes in each sketch with

sk tail.

Calculation time for (2) is negligible compared with
the sampling time, but calculating sk tail requires
taking additional 10000 or more (n/100) samples
before the hypergraph build. Subsection 6.6 shows
that the time increase could be noticeable only for
small graphs, where 10000 additional samples take the
time comparable with the hypergraph build. On the
other hand, CTT2 takes less time saving the sketches
(because it saves a smaller number of sketches), and
CTT2 creates a smaller hypergraph, where computing
seeds takes less time. Tests (subsection 6.6) show that
CTT2 is faster than other IM algorithms.

However, there are cases when we recommend using
CTT1: (a) CTT2 gives a larger error than CTT1
for a large number of seeds. The inflation of spread
estimation is potentially increasing with each selected
seed. We recommend using CTT1 when more than 25
seeds are needed.
(b) CTT2 can be slower than other algorithms for
p >= 0.1 and dense graphs, because CTT2 has to take
at least 10,000 additional samples for calculating the
sk tail. For the dense graphs with high probability
on edges (for example, protein-to-protein interaction,
where p can be 0.5 – 0.9) we recommend using CTT1.

6. EXPERIMENTAL RESULTS

While any formula for the number of samples can be
used by our algorithms, we have been using Borgs et al.
formula from [3, Theorem 3.1]:

R = (c ∗m ∗ k ∗ ε−2 ∗ log(n)) (3)

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 7

Dataset n m type

WordAsn 10.6K 72K association, directed

Caida 65.5K 106.7K social, directed

FB 4K 176K social, undirected

EnronD 69K 275K e-mails, directed

Enron 36.7K 368K e-mails, undirected

Deezer 54.6K 996K social, undirected

DBLP2010 326 K 1.6 M collaboration, undirected

UK100K 100 K 3 M web, directed

CNR2000 326 K 3.2 M web, directed

DBLP2011 986K 6.7M collaboration, undirected

Arabic2005 23M 640M web, directed

TABLE 1: Test datasets ordered by m.

where

c = 4.0 ∗ (1 + ε) ∗ (1 + 1/k) (4)

m is the number of graph edges, k is the number of
seeds, and n is the number of graph nodes.

This is done for two reasons: (1) the formula
guarantees an approximation to the optimal solution
that can be explicitly calculated4, and (2) for
consistency, when evaluating the scalability of our
algorithms.

We implemented the algorithms in Java 8 and used
Webgraph [2] as a graph compression framework.

Datasets. The graphs were downloaded from [27],
and [7]. We purposefully picked up graphs of different
types (Table 1), to thoroughly test our algorithms’
performance.

Equipment. All the experiments were conducted on
a laptop with processor 2.2 GHz Intel Core i7 (4-core),
RAM 16GB 1600 MHz DDR3, running OS X Yosemite.

The experiments could be divided into two categories:
evaluating the quality of the calculated IM solutions
by comparing the results with other IM algorithms; and
the scalability of the proposed algorithms.

6.1. Quality of IM Solution

To evaluate the quality of IM solutions calculated by
CTT1 and CTT2, the following assessments were made:
(1) confidence in the approximation;
(2) accuracy of spread estimation;
(3) influence spread comparison.

6.1.1. Confidence in the approximation
The first question we would like to answer is: “How
much confidence can we have in the IM solution when
using Borgs et al. formula 3?” In [3], Borgs et al.
explain that, theoretically, the confidence in IM solution
computed by the RIS method, is “at least 3/5”. It is
just 60% confidence, because there is a danger that,
by chance, RIS will pick up a dense part of the graph

4Borgs et al. proved that this formula guarantees the
approximation factor of (1 − 1/e − ε), for any ε > 0, with the
confidence of at least 3/5.

p samples taken mean St. Dev St.Dev/mean

0.1

504,244
506,257
503,812
505,355
500,904
504,016
504,385
502,700
504,063
498,966
501,107
504,427
506,203
502,782
504,890
503,593
504,357

503,651 1,899 0.38%

0.001

2,319,933,031
2,319,182,149
2,318,487,182
2,320,343,923
2,319,352,759
2,320,169,958
2,319,320,032
2,318,046,484
2,319,662,355
2,318,291,684
2,319,869,627
2,318,774,277
2,320,434,972
2,319,981,483
2,318,148,705
2,318,818,136
2,318,574,922

2,319,258,334 792611 0.03%

TABLE 2: UK100K: Samples taken by log(n) = 17
runs.

and reach the required weight of the hypergraph with
too small number of samples. Then the sampling will
not adequately represent the graph structure, and IM
solution will be a poor approximation to optimal. Borgs
et al. advised to run RIS log(n) times and pick up
the largest number of samples taken, for the confidence
to rise from 3/5 to (1 − 1/n). We did a number of
tests on different graphs, varying the probability of edge
existence, to see how much the number of samples is
changing from run to run.

The tests show that the number of samples taken by
our algorithms varies negligibly. After hundreds and
hundreds of tests, we never encountered a situation
where the difference in the number of samples appeared
significant; it is always well below 1%. Table 2 presents
the results for UK100K graph. We got similar results
for other graphs and probabilities. From Table 2, we
can also see that with probability of edge existence
p decreasing, the difference in the sample numbers is
decreasing too. We came to the conclusion that, for
the real-world graphs, especially social networks, the

The Computer Journal, Vol. ??, No. ??, ????

8 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

Graph k p spread CTT spread MC spread CTT2 spread MC

UK100K 5

0.1
0.05
0.01

0.005
0.001

15,078.54
4,158.83

166.35
61.76
15.17

14,988.20
4,138.54

166.04
61.56
15.19

14,920.17
4,131.67

166.57
61.67
15.16

14,984.00
4,133.76

166.04
61.56
15.19

UK100K 10

0.1
0.05
0.01

0.005
0.001

16,617.89
5,130.09

250.30
90.00
24.32

16,617.00
5,136.73

250.34
90.11
24.34

16,639.59
5,145.54

250.75
90.08
24.33

16,619.00
5,141.64

250.00
90.11
24.34

DBLP 5

0.1
0.05
0.01

0.005
0.001

25,998.84
3,970.59

27.80
12.61
6.22

25,989.80
3,970.13

27.78
12.63
6.21

26,126.97
3,964.74

27.85
12.61
6.21

25,859.80
3,909.11

27.78
12.62
6.21

DBLP 10

0.1
0.05
0.01

0.005
0.001

26,160.32
4,194.50

46.51
22.64
12.06

26,126.80
4,179.77

46.43
22.65
12.08

26,231.23
4,282.92

46.51
22.64
12.09

25,862.90
3,969.08

46.43
22.65
12.07

TABLE 3: Comparison of Spread Estimations.

confidence in IM solution is higher than theoretically
proven 60% and approaches 100%.

6.1.2. Accuracy of Spread Estimation
The accurate estimation of influence spread (the
estimated number of reached vertices by a set of seeds)
is an important factor in ensuring the high quality of
IM solution.

Benchmark As a benchmark, we use Monte Carlo
simulation of influence spread in the original graph.
The benchmark takes as an input two text files: the
graph edge list, and the list of seeds. The output of the
benchmark is the estimation of information spread. We
tuned the benchmark for 20,000 simulations for each
estimation.

Spread Estimation by CTT1, CTT2 vs.
Benhmark Table 3 shows the comparison of spread
estimations calculated by our algorithms with the
ones calculated by the benchmark, for the same seed
sets computed by CTT1 or CTT2. We tested the
estimations for different edge probabilities and different
graphs. We present the results for two graphs of
different types and two probabilities p, to save the
paper space. The table displays the spread calculated
by CTT1 and CTT2 side by side with the benchmark
spread (“spread MC” in the heading). The presented
results are very similar to all other tested graphs:
spread estimation by CTT1 is practically identical to
the ones by the benchmark; spread estimation by
CTT2, in some cases, gets slightly inflated. In our
testing, the largest difference of spread estimation by
CTT2 and the benchmark was under 7%.

6.1.3. Influence Spread Comparison
DIM code was downloaded from GitHub [21] and tuned
to compute IM solutions using Formula 3. The tuning
was reviewed and approved by the DIM author, Dr.
Naoto Ohsaka. The large amount of memory required
for a successful run of DIM is the reason for presenting
only two smaller graphs in that subsection (the larger
one, FB, has m = 176 K). These were the only graphs
DIM computed IM solution for. We tried to test other
graphs, but 16 GB memory of our laptop was not

enough: DIM ran out of memory.
To compare the quality of the selected seeds, we

assessed the value of the resulting influence spread
using Monte Carlo simulation. Figure 2 presents the
results of testing CTT1 vs. CTT2 vs. DIM [23] vs.
NoSingles [25] algorithms. The quality of IM solutions
by DIM, NoSingles, CTT1, and CTT2 is so close, that
we present, instead of the charts, the actual values of
spread (Figure 2).

NoSingles, TopDegree. To test the quality of CTT
algorithm solutions on larger graphs, we compared the
spreads of CTT1 and CTT2 seeds with the spread of
NoSingles seeds. NoSingles is proven ([25, Theorem
5.1]) to hold Borgs et al. theoretical guarantee for
the approximation to optimal, so it can serve as a
yardstick. For a fair comparison, we calculated all the
spreads using our benchmark, Monte Carlo simulation.
Additionally, we tested the quality of a simple IM
solution that is often used by marketing teams: pick up
the top out-degree nodes in the network as the seeds.
We found the top-5 and top-10 nodes in each of the
tested graphs and used the benchmark to calculate their
spread.

The charts in Figure 3 show the spreads achieved
by NoSingles (NS), CutTheTail1 (CTT1), CutTheTail2
(CTT2) algorithms, and Top Degree (TopDeg) nodes.
Analysis of the test results shows that the quality of
CTT1 and CTT2 solutions is very close to the quality
of NoSingles solution for all tested graphs. The quality
of Top Degree solutions varies. Top Degree spread is
never larger than the spread achieved by our algorithms,
and often smaller. The largest difference was detected
while testing Caida graph: Top Degree spread reached
only 33% of the number of nodes reached by the seeds
computed by NoSingles, CTT1, or CTT2 (Figure 3a,
p = 0.005). This result shows that using Top Degree
solution can lead to a poor quality result. Moreover,
the marketing team would not realize that the result
was only a fraction of what it might have been, had
they used an IM algorithm for calculating the influential
nodes.

6.2. Scalability

The quality of an IM solution is the most important
characteristic of IM algorithms, but the scalability is
what defines the utilitarian possibilities in practical
scenarios. Imagine a campaign manager acquiring a
piece of positive information about her candidate (or
a piece of negative information about a rival). With
a model of the constituency in graph form, she can
calculate the most influential individuals to share the
information. If it is possible to do this on a consumer-
grade laptop, it makes the usage of a scalable IM
algorithm both practical and desirable.

A fair evaluation of the scalability of IM algorithms
is complex:
(1) The algorithms might use different sets of input

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 9

(a) WordAsn spreads; k = 5. (b) FB spreads; k = 5.

FIGURE 2: Quality: DIM, CTT1, CTT2, and NoSingles.

10−3 10−2 10−1
100

101

102

103

104

(a) Caida spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

(b) Caida spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

(c) EnronD spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

(d) EnronD spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

(e) Enron spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

(f) Enron spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

105

(g) DZR spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

105

(h) DZR spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

105

(i) DBLP spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

105

(j) DBLP spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

105

(k) UK spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

105

(l) UK spread; k = 10

10−3 10−2 10−1
100

101

102

103

104

(m) CNR spread; k = 5

10−3 10−2 10−1
100

101

102

103

104

(n) CNR spread; k = 10

10−3 10−2 10−1
100
101
102
103
104
105
106

(o) DBLP2011 spread; k = 5

10−3 10−2 10−1
100
101
102
103
104
105
106

(p) DBLP2011 spread; k = 10

FIGURE 3: Information Spread of IM solution, varying p; TopDegree, NS, CTT1, and CTT2.

parameters, sometimes overlapping, sometimes disjoint. (2) The scalability achieved by the research teams that

The Computer Journal, Vol. ??, No. ??, ????

10 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

they describe in their papers can vary significantly from
the results of the replicating tests.
Tests of eleven different IM algorithms by Arora et
al. [1] proved both points. According to [1, Table 3],
under IC model the only IM algorithm that successfully
completed on a 1.5-billion-size graph, was PMC [22]. It
took almost 300 GB of memory.

In [25], our team tested DIM ([23]) and D-SSA
([20]) vs. our NoSingles algorithm. For the number
of samples calculation, we used the formula from [3,
Theorem 3.1]. That formula allows to take a smaller
number of samples (compared with Formula 3 used in
this paper), but guarantees a rather low approximation
to the optimal solution (at the most, 25 %). To the
best of our knowledge, the tests conducted by other IM
researchers using RIS are all using that formula, with
a reduced number of samples. Even for the reduced
number of samples, D-SSA and DIM required so much
memory, that we had to use a machine with 1TB RAM,
to successfully complete the testing for medium-size
graphs.

In this paper, we did all the testing on a laptop with
16 GB RAM. Furthermore, we used Formula 3 for the
number of samples calculation. This formula requires a
much higher number of samples, and guarantees a much
higher approximation to optimal: with the parameters
we used, it is 59%.

The following experiments were conducted to
evaluate the scalability of CTT algorithms:
(1) comparison with DIM;
(2) comparison with TESA;
(3) required space;
(3) runtime;
(5) large graph IM solution computed on a laptop.

6.3. Comparison with DIM

6.3.1. Space Comparison
Figure 4 shows the memory required for a successful
run of DIM and our algorithms. DIM needs up to
five orders of magnitude more memory for keeping the
intermediate results of IM computing.

10−3 10−2 10−1

100

102

104

(a) WordAsn; k = 5

10−3 10−2 10−1

100

102

104

(b) FB; k = 5

FIGURE 4: Space, MB, varying p; NS, CTT1,
CTT2, and DIM.

6.3.2. Runtime Comparison

10−3 10−2 10−1

100

101

102

(a) WordAsn; k = 5

10−3 10−2 10−1

100

101

102

(b) FB; k = 5

FIGURE 5: Time, min, varying p; NS, CTT1,
CTT2, and DIM.

Figure 5 shows the difference in the runtime between
DIM, CTT1, CTT2, and NoSingles. Our algorithms
take few minutes to output a solution, while DIM
takes several times more. It must be noted that these
charts are shown for information only; the comparison
of DIM runtime to our algorithms’ can be seen as
unfair, because DIM builds hypergraph sequentially,
while CTT1, CTT2, and NoSingles utilize the parallel
processing: eight logical cores sampled the graphs in
parallel.

6.4. Comparison with TESA

A new IM algorithm, TESA, was published in 2019
[33]. TESA code was not made available to us. We
implemented TESA as described in the paper.

1. TESA conducts an initial sorting of graph nodes
by their degrees; one of the top 20% of nodes is
randomly selected as the root for each sampling.
This invalidates the quality guarantee proved by
Borgs et al.

2. The samples are saved only if they include three or
more nodes, regardless of the graph structure. This
design further erodes the quality of IM solution.

3. TESA is sampling only and exclusively the most
dense parts of a graph, and saves only the longer
samples. The resulting hypergraph reflects not the
orginal, but a distorted graph structure.

4. TESA paper provides no analysis of possible
errors. Moreover, no experiments are evaluating
the quality of TESA solutions for IM.

We conducted dozens of experiments on several
graphs. Our testing shows that TESA is providing
solutions that are always worse than our algorithms’
solutions and, in many cases, worse than the top-degree
solutions.

Fig. 6 demonstrates the solution quality of TESA
compared to our algorithms NoSingles and CTT1. The
spreads achieved by the seeds were calculated by Monte
Carlo simulation, for a fair comparison. Note, that

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 11

(a) CNR spreads; p = 0.1. (b) CNR spreads; p = 0.01. (c) CNR spreads; p = 0.001.

FIGURE 6: Quality: TESA, CTT1, TopDegree, and NoSingles.

NoSingles and CTT1 spreads are so close, that they
appear the same on the charts.

The seeds computed by TESA, produce the spreads
that are always smaller than our algorithms’. TESA
disadvantage appears to increase when the number of
seeds grows: for example, Fig. 6(b) shows that TESA
spread is about 80% for k = 5; but only 60% for k = 25.

The poor performance of TESA is caused by a major
design flaw: as TESA sampling starts not at random,
but always at one of the top 20% degree nodes, the
seeds are calculated not for the actual graph, but for
a subgraph of most connected nodes. The key point
of RIS is a random, with replacement, selection of
any node in the graph. TESA sampling is conducted
by a different method than RIS. Consequently, the
theoretical proof of the solution quality by Borgs at al.
is not applicable.

Additionally, we compared TESA with the TopDe-
gree method, when top out-degree nodes are taken as
seeds. TopDegree has no quality guarantee, the re-
sults depend on the graph structure. More TopDe-
gree results, for diverse graphs, can be found in Sub-
section 6.1.3 and Fig 3. Our algorithms always pro-
duce a better solution than TopDegree. The black line
on the Fig. 6 charts shows the TopDegree spreads. In
many cases TESA (the red line) computed a worse IM
solution than TopDegree.

6.5. Required Space

To thoroughly test the scalability of CTT1 and CTT2,
we conducted experiments on large, different types
graphs (Table 1).

Figure 7 shows the space required by CTT1, CTT2,
and NoSingles. For all tested graphs, NoSingles takes
the most space to store IM intermediate results, CTT1
follows closely, and CTT2 takes less space. Dynamics of
space requirement vary from graph to graph. For some,
with probability of edge existence p decreasing, less
and less space is required for storing the hypergraph.
For other graphs, the dynamics is more complex: the

most space is needed when the probability p = 0.01 or
p = 0.05. It depends on the graph structure and the
distribution of degrees over the nodes.

6.5.1. Sketches Saved
Table 4 provides statistics on the number of sketches
taken by our algorithms and the number of sketches
saved in the hypergraph. We present this statistics for
two graphs, to save the paper space, though we collected
it for all the graphs we tested. It is rather surprising
that, for example, CTT2 can drop 99.99% of sketches
(for DBLP graph, when p = 0.001), and compute a good
set of seeds from just 0.01% longest sketches. Note,
that other RIS method implementations save all of the
sketches; this explains the enormous savings in memory
consumption by our algorithms.

6.6. Runtime

Figure 8 shows the time taken by CTT1, CTT2, and
NoSingles for computing a seed set. As a rule, NoSingles
takes the most time to complete the task, CTT1 – a
little less time, and CTT2 - the least time. However,
as can be seen in Figure 8g, CTT2 can be slower than
other algorithms for p = 0.1 and dense graphs, because
CTT2 has to take at least 10,000 additional samples for
calculating the sk tail, as explained in subsection 5.4.

6.7. CTT2 on Arabic-2005

We successfully ran CTT2 on a large graph, Arabic-
2005 (n = 23 M, m = 640 M). We set k = 5, ε = 0.2,
and p = 0.001. Results are presented in Table 5,
where R is the hypergraph weight, sk means sketch,
and H means the hypergraph. Table 5 shows that
CTT2 took 2.5 billion sketches, and saved 1.4 million
of them, which took only 437 MB of space. This
small hypergraph allowed CTT2 to calculate the seeds
with an estimated spread of 8,256 nodes. Monte Carlo
simulation for the seeds shows that the spread is 8,235
nodes. CTT2 estimation is inflated by 21 nodes, which

The Computer Journal, Vol. ??, No. ??, ????

12 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

10−3 10−2 10−1
0

50

100

150

(a) Caida; k = 5

10−3 10−2 10−1
0

100

200

300

(b) Caida; k = 10

10−3 10−2 10−1
0

100

200

250

(c) EnronD; k = 5

10−3 10−2 10−1
0

200

400

500

(d) EnronD; k = 10

10−3 10−2 10−1
0

50

100

150

200

(e) Enron; k = 5

10−3 10−2 10−1
0

100

200

300
350

(f) Enron; k = 10

10−3 10−2 10−1
100

101

102

103

104

(g) DZR; k = 5

10−3 10−2 10−1
100

101

102

103

104

(h) DZR; k = 10

10−3 10−2 10−1
100

101

102

103

104

(i) DBLP; k = 5

10−3 10−2 10−1
100

101

102

103

104

(j) DBLP; k = 10

10−3 10−2 10−1
0

250

500

750

1,000

(k) UK; k = 5

10−3 10−2 10−1
0

500

1,000

1,500

2,000

(l) UK; k = 10

10−3 10−2 10−1
0

1,000

2,000

3,000

(m) CNR; k = 5

10−3 10−2 10−1
0

2,000

4,000

6,000

(n) CNR; k = 10

10−3 10−2 10−1
102

103

104

(o) DBLP2011; k = 5

10−3 10−2 10−1
102

103

104

(p) DBLP2011; k = 10

FIGURE 7: Space, MB, varying p; NS, CTT1, and CTT2.

is just 0.25% of the spread calculated by Monte Carlo
simulation. This demonstrates high accuracy of CTT2
algorithm. Note that our algorithms can be modified
for a tighter bound on the number of samples, with the
corresponding increase in scalability.

7. CONCLUSIONS AND FURTHER RE-
SEARCH

We present CutTheTail, a new heuristic algorithm
for computing influence maximization on large graphs.

CutTheTail implements a novel approach to the
influence maximization problem: minimizing the
memory footprint for storing influence maximization
intermediate results. With two variants of this
algorithm, CutTheTail1 and CutTheTail2, we were
able to scale up influence maximization computation
by strategically saving only a small fraction of graph
sampling results (sketches). For some graphs, storing
only 0.01% of sketches is enough to get a high quality
influence maximization solution. The CTT memory
footprint is drastically cut compared to other IM

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 13

Graph k p NStaken NSsaved % CTTtaken CTTsaved % CTT2taken CTT2saved %

UK 5

0.1
0.05
0.01

0.005
0.001

504,104
3,781,711

616,675,480
1,526,286,139
2,318,758,443

172,671
904,552

55,864,238
86,516,196
41,562,254

34.25
23.92
9.06
5.67
1.79

500,612
3,777,766

616,689,630
1,526,807,116
2,318,647,899

161,354
839,588

50,704,781
78,136,116
37,168,980

32.23
22.22
8.22
5.12
1.60

500,612
3,800,353

615,797,837
1,526,802,460
2,319,550,427

161,354
278,757

4,102,052
5,288,614

12,143,373

32.23
7.34
0.67
0.35
0.52

UK 10

0.1
0.05
0.01

0.005
0.001

1,005,292
7,575,294

1,232,812,184
3,054,992,501
4,638,051,350

343,319
1,809,956

111,676,143
173,175,531
83,155,221

34.15
23.89
9.06
5.67
1.79

1,008,624
7,622,432

1,232,442,194
3,055,627,402
4,638,029,103

324,821
1,691,236

101,325,197
156,372,643
74,375,955

32.20
22.19
8.22
5.12
1.60

1,006,479
7,542,918

1,233,408,606
3,054,695,748
4,637,274,400

188,455
553,720

7,433,148
8,805,332

12,479,372

18.72
7.34
0.60
0.29
0.27

DBLP 5

0.1
0.05
0.01

0.005
0.001

1,284,575
35,719,493

7,345,860,286
8,303,430,952
8,955,580,165

402,773
6,697,295

338,513,636
198,025,876
44,014,278

31.35
18.75
4.61
2.38
0.49

1,285,569
35,750,958

7,345,906,804
8,303,805,759
8,955,521,972

347,623
5,828,306

299,282,101
175,565,190
39,116,784

27.04
16.30
4.07
2.11
0.44

1,280,650
35,797,155

7,345,585,104
8,303,626,741
8,955,785,780

101,726
421,462

60,801,600
20,200,381
1,011,315

7.94
1.18
0.83
0.24
0.01

DBLP 10

0.1
0.05
0.01

0.005
0.001

2,566,013
71,593,557

14,691,953,097
16,607,865,682
17,911,485,062

805,633
13,419,844

677,084,716
396,039,223
88,015,564

31.40
18.74
4.61
2.38
0.49

2,567,324
71,328,170

14,690,970,229
16,607,673,063
17,911,789,392

694,218
11,630,416

598,512,951
351,134,963
78,225,120

27.04
16.31
4.07
2.11
0.44

2,572,919
71,470,266

14,691,195,814
16,607,436,867
17,911,349,219

203,434
846,732

121,611,500
40,398,152
2,021,773

7.91
1.18
0.83
0.24
0.01

TABLE 4: Statistics on Sketches Saved.

R sk tail sk taken sk saved H space CTT2 spread MC

6.4 T 100 2.5 B 1.4 M 437 MB 8,256 8,235

TABLE 5: CTT2 on Arabic-2005.

designs. Experiments show that our algorithms use up
to five orders of magnitude smaller space than DIM [23].
The achieved scalability allows to use consumer-grade
machines for processing massive graphs, which, in
turn, raises the possibility of the algorithms’ practical
applications.

Furthermore, an algorithm can specify different
conditions for saving or dropping samples as was
demonstrated by CTT1 and CTT2. The resulting
compressed representation of the graph contains a
wealth of information that can be processed accordingly
to the problem at hand. Multiple processing using
different algorithms is possible, as the samples are kept
on a secondary medium.

One of the possible ways of re-using the hypergraph:
run CTT algorithm for as big a k as possible for the
available machine memory. The stored hypergraph will
provide the spreads (the number of nodes reachable
by the seeds) for any k in the range [1,k]. Another
possibility: in the k-centre clustering problem for the
probabilistic graphs, an IM algorithm can be used for
selecting the clusters’ centres. Our team is working on
applying the CTT concept for this problem.

High scalability of our data structure and flexibility of
its utilization is a significant contribution to the massive
graph discovery.

ACKNOWLEDGEMENTS

We are grateful to Dr. Naoto Ohsaka for providing

the code for Monte Carlo simulation and reviewing our
tuning of his algorithm, DIM [23].

REFERENCES

[1] A. Arora, S. Galhotra, and S. Ranu. Debunking
the myths of influence maximization: An in-depth
benchmarking study. In Proceedings of the 43rd ACM
SIGMOD International Conference on Management of
Data, pages 651–666, 2017.

[2] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proceedings of the 13th
International Conference on World Wide Web, pages
595–602, 2004.

[3] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier.
Maximizing social influence in nearly optimal time. In
Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 946–957, 2014.

[4] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-
scale social networks. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1029–1038, 2010.

[5] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In Proceedings of
the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 199–208,
2009.

[6] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck.
Sketch-based influence maximization and computation:
Scaling up with guarantees. In Proceedings of the
23rd ACM International Conference on Conference on
Information and Knowledge Management, pages 629–
638, 2014.

[7] Datasets. http://law.di.unimi.it/datasets.php. In
Laboratory for Web Algorithmics, 2018.

[8] N. Du, L. Song, M. G. Rodriguez, and H. Zha. Scal-
able influence estimation in continuous-time diffusion

The Computer Journal, Vol. ??, No. ??, ????

14 Diana Popova, Ken-ichi Kawarabayashi, Alex Thomo

10−3 10−2 10−1
0

5

10

(a) Caida time, min; k = 5

10−3 10−2 10−1
0

5

10

15

20

(b) Caida time, min; k = 10

10−3 10−2 10−1
0

10

20

(c) EnronD time, min; k = 5

10−3 10−2 10−1
0

10

20

30

(d) EnronD time, min; k = 10

10−3 10−2 10−1
0

5

10

(e) Enron time, min; k = 5

10−3 10−2 10−1
0

10

20

(f) Enron time, min; k = 10

10−3 10−2 10−1
0

10

20

(g) DZR time, min; k = 5

10−3 10−2 10−1
1

25

50

(h) DZR time, min; k = 10

10−3 10−2 10−1
0

1

2

3

4

(i) DBLP time, hrs; k = 5

10−3 10−2 10−1
0

2

4

6
7

(j) DBLP time, hrs; k = 10

10−3 10−2 10−1
0

25

50

(k) UK time, min; k = 5

10−3 10−2 10−1
0

50

100

(l) UK time, min; k = 10

10−3 10−2 10−1
0

1

2

3

4

(m) CNR time, hrs; k = 5

10−3 10−2 10−1
0

2

4

6

8

(n) CNR time, hrs; k = 10

10−3 10−2 10−1
0

10

20

30

(o) DBLP2011 time, hrs; k =
5

10−3 10−2 10−1
0

10

25

50

(p) DBLP2011 time, hrs; k =
10

FIGURE 8: Runtime, varying p; NS, CTT, and CTT2.

networks. In Proceedings of the Advances in Neural
Information Processing Systems 26, pages 3147–3155,
2013.

[9] J. Goldenberg, B. Libai, and E. Muller. Talk
of the network: A complex systems look at the
underlying process of word-of-mouth. Marketing
Letters, 12(3):211–223, 2001.

[10] A. Goyal, W. Lu, and L. Lakshmanan. CELF++: Op-
timizing the greedy algorithm for influence maximiza-
tion in social networks. In Proceedings of the 20th In-
ternational Conference on World Wide Web, pages 47–

48, 2011.

[11] K. Huang, S. Wang, G. S. Bevilacqua, X. Xiao,
and L. V. S. Lakshmanan. Revisiting the stop-and-
stare algorithms for influence maximization. PVLDB,
10:913–924, 2017.

[12] K. Jung, W. Heo, and W. Chen. IRIE: Scalable and
robust influence maximization in social networks. In
Proceedings of the 12th IEEE International Conference
on Data Mining, pages 918–923, 2012.

[13] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing

The Computer Journal, Vol. ??, No. ??, ????

CutTheTail 15

the spread of influence through a social network. In
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 137–146, 2003.

[14] B. Lucier, J. Oren, and Y. Singer. Influence at
scale: Distributed computation of complex contagion
in networks. In Proceedings of the 21st ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 735–744, 2015.

[15] G. L. Nemhauser and L. A. Wolsey. Maximizing
submodular set functions: formulations and analysis
of algorithms. Studies on Graphs and Discrete
Programming, 11:279–301, 1981.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing sub-
modular set functions—i. Mathematical Programming,
14(1):265–294, 1978.

[17] H. T. Nguyen, T. N. Dinh, and M. T. Thai. Cost-aware
targeted viral marketing in billion-scale networks. In
INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, IEEE,
pages 1–9. IEEE, 2016.

[18] H. T. Nguyen, T. P. Nguyen, T. N. Vu, and T. N.
Dinh. Importance sketching of influence dynamics in
billion-scale networks. In Proceedings of the 17th IEEE
International Conference on Data Mining, pages 337–
346, 2017.

[19] H. T. Nguyen, T. P. Nguyen, T. N. Vu, and T. N.
Dinh. Outward influence and cascade size estimation
in billion-scale networks. Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
1(1):20:1–20:30, 2017.

[20] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-
and-stare: Optimal sampling algorithms for viral
marketing in billion-scale networks. In Proceedings of
the 42nd ACM SIGMOD International Conference on
Management of Data, pages 695–710, 2016.

[21] N. Ohsaka. https://github.com/todo314/dynamic-
influence-analysis. In GitHub, 2017.

[22] N. Ohsaka, T. Akiba, Y. Yoshida, and
K. Kawarabayashi. Fast and accurate influence
maximization on large networks with pruned monte-
carlo simulations. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 138–144,
2014.

[23] N. Ohsaka, T. Akiba, Y. Yoshida, and
K. Kawarabayashi. Dynamic influence analysis
in evolving networks. Proceedings of the VLDB
Endowment, 9(12):1077–1088, 2016.

[24] D. Popova, A. Khot, and A. Thomo. Data structures
for efficient computation of influence maximization
and influence estimation. In Proceedings of the
21st International Conference on Extending Database
Technology, ISSN: 2367-2005, pages 505–508. EDBT,
OpenProceedings.org, 2018.

[25] D. Popova, N. Ohsaka, K.-i. Kawarabayashi, and
A. Thomo. Nosingles: A space-efficient algorithm for
influence maximization. In Proceedings of the 30th
International Conference on Scientific and Statistical
Database Management, SSDBM ’18, pages 18:1–18:12,
New York, NY, USA, 2018. ACM.

[26] M. Richardson and P. Domingos. Mining knowledge-
sharing sites for viral marketing. In Proceedings of
the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 61–70.
ACM, 2002.

[27] SNAP. http://snap.stanford.edu. In Stanford Network
Analysis Project, 2018.

[28] J. Tang, X. Tang, X. Xiao, and J. Yuan. Online
processing algorithms for influence maximization. In
Proceedings of the 2018 International Conference on
Management of Data, pages 991–1005, 2018.

[29] J. Tang, X. Tang, and J. Yuan. Influence
maximization meets efficiency and effectiveness: A
hop-based approach. In Proceedings of the 2017
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2017, pages 64–
71, 2017.

[30] J. Tang, X. Tang, and J. Yuan. An efficient and effec-
tive hop-based approach for influence maximization in
social networks. Social Network Analysis and Mining,
8:1–19, 2018.

[31] Y. Tang, Y. Shi, and X. Xiao. Influence maximization
in near-linear time: A martingale approach. In
Proceedings of the 41st ACM SIGMOD International
Conference on Management of Data, pages 1539–1554,
2015.

[32] Y. Tang, X. Xiao, and Y. Shi. Influence
maximization: Near-optimal time complexity meets
practical efficiency. In Proceedings of the 40th ACM
SIGMOD International Conference on Management of
Data, pages 75–86, 2014.

[33] G. Xia. Influence maximization: A time-space efficient
algorithm. IOP Conference Series: Materials Science
and Engineering, 533:012048, 2019.

The Computer Journal, Vol. ??, No. ??, ????

