Scalable APRIORI-Based Frequent Pattern Discovery

Sean Chester, lan Sandler, Alex Thomo
University of Victoria
Victoria, Canada
schester@uvic.ca, iansandl@uvic.ca, thomo@cs.uvic.ca

Table |

Abstract—Frequent pattern discovery, the task of finding sets gxawpLE oF A DATASET IN WHICH {a, ¢} IS FREQUENT DESIGNED TO
of items that frequently occur together in a dataset, has bee ILLUSTRATE THE FREQUENT ITEMSET MINING PROBLEM
at the core of the field of data mining for the past sixteen yeas.
In that time, the size of datasets has grown much faster than
has the ability of existing algorithms to handle those datasts. Transaction0 [a b ¢
Consequently, improvements are needed. Transaction1 | a d

In this paper we take the classic algorithm for the problem, Transaction2 | a ¢ e f

A Priori, and by adding a vertical sort drastically improve its

performance characteristics when processing very large da

sets. We use the benchmark large dataset webdocs from the

FIMI 2004 conference to contrast our performance against quite difficult for two primary reasonsD| is typically mas-
several st_at_e-of-the—_art implementations and demonstrat both sive and the set of possible itemse&®(i{)|, is exponential
equal efficiency with lower memory usage at all support . . - . .
thresholds and also the ability to mine support thresholds a In Size, 5_0 the problem search space |_s_I|ke_W|se equnentlal
yet unattempted in literature. We also indicate how this wok In fact, given a fixed sizé, even determining if there exists a
can be extended to achieve yet more impressive results. set of k items that co-occur in the datasetimes is difficult:

it was demonstrated in [2] to be NP-complete. Here, we are
trying to discovemll frequent sets, regardless of size, which
. INTRODUCTION is clearly at least as difficult (otherwise we could use the
output to determine if a frequent set of sizexists). So, all
algorithms for this problem need to emphasise an effective
search space pruning strategy or other heuristics to asldres

Keywords-frequent pattern discovery; apriori; data mining;

The frequent pattern discovery problem of [1] is by now
well-known within the data mining community. Informally
speaking, the objective of it is to detect those items in 41€ NP-completeness of the problem. _ o
dataset that commonly co-occur, preferably indicatinghwit ~ SiNc€ the introduction of the frequent itemset mining
what frequency. To achieve this, one fixes a threshgldnd task, numerous algorithms have been proposed for it. Two

then strives to output all those sets of items that co-octur s>tand out in literature because of their positive experialen
leasts times. Consider the rows of Table 1. If one sets thel€Sults.A Priori[3] is the oldest well-adopted algorithm, but

threshold to bes = 2, then the setg{}, {a}, {c}, {a,c}} has fallen out of favour for the newer, more popular, and

are frequent because the sets can be found in at least tfBCT€ complex-PGrowthalgorithm of [4].
rows of the table. In this paper, we revert back # Priori. With the novel

To make this more precise, we consider a univetse idea of introducingvertical sorting to the algorithm, we will
(which is {a, b, c,d, e, f} in Table I). Then, alataset D, is be able to contribute several new innovations that allow
defined to be a multiset of transactions antramsaction ~ US 0 mine support thresholds that are yet unattempted
+ is defined to be a subset df.: An itemsetis likewise N literature. But before explaining this sorting or those

defined to be a subset of. The supportof an itemset is innovations, first we review in Section Il the work that
has been done prior to now. The new ideas are explained

supp(i) = {t € D :i C t}]. in Section Il and we give experimental results in Section

With these definitions, the objective of frequent itemset!V: Finally, in Section V- we show how this work can be

mining is to determine, given a datagetind a fixedsupport extended.
threshold 0 < s < |D|, the set offrequentitemsets:{i : I
supp(i) > s}.

These frequent itemsets potentially imply new knowledgeA- The A Priori Algorithm

about the dataset. The task, although simple to describe, is Shortly after the problem was introduced, Agrawal et

al. proposed thé Priori algorithm[3] to solve it efficiently.
1In the original definition of the problem, a transaction idimied to be Th P |p f thei Ig ith [] f y .
a 2-tuple, (tid, set), but we do not use the tids in this paper so drop e cleverness of their algorithm comes from an aggressive

them from the definition to simplify the ensuing discussion. search space pruning strategy. The property that pernidts th

. BACKGROUND

has been coined tha Priori Principle and still forms the Tries: As demonstrated in [5], the primary bottle-
basis of many of the algorithms that have been published.neck of the classical Priori algorithm is in incrementing

If some sett contains some subsetthen it also contains counters for those candidates that are active in a particula
all subsets ofs. Considering this on a grander scalesif transaction. Storing candidates in a trie structure helps
is known to occur in, sayp transactions, then all subsets immensely because the process of matching a candidate to a
of s occur in at leasp transactions, since they must occur transaction simultaneously accomplishes that of loadieg t
in those transactions in which occurs, even if no others. appropriate counter because it is stored in the leaf of tae tr

Stating this alternatively gives th& Priori Principle: But even this approach is not fast enough. When comparing
nearly 1.7 million transactions t830 million candidates as
supp(s;) > supp(s; Us;), forall sets s;, s; is done on the webdocs data set[6], the cost of everything

is significantly magnified. Every node in the trie requires

The algorithm proceeds in a step-wise fashion, considertwo pointer dereferences and a candidate may require a
ing first all itemsets with one item, then all itemsets with traversal of as many nodes as items it contains. Having a
two items, and so on. On thg: + 1)*" step, three things data structure that permits faster access is invaluable.
happen. First, frequent itemsets of skzare merged together ~ This approach breaks down on large datasets once the
to produce candidates of siZze+ 1. Second, theA Priori data structure no longer fits in main memory. The depth
Principle is then applied to the candidates to determineof the trie is equal to the length of the candidates. To fit
which of them are quite obviously infrequent. Finally, the all nodes into main memory requires those candidate to
candidates which could not be pruned are compared againsterlap quite substantially. When they do not, the effect
D to explicitly ascertain their support count. The process iof the trie’s heavily pointer-based makeup is very poor
then repeated for step + 1. The algorithm terminates as localisation and cache utilisation. So, traversing thecstire
soon as all candidates of a particular size are pruned. causes thrashing on cache and disk. A typical random disk

It is commonplace to refer to these three happeningdO takes about 10 milliseconds; a typical memory access
as Candidate GeneratignCandidate Pruningand Support takes a small fraction of a microsecond, a ratio of at least
Counting respectively. Because they occur in series, theyl00,000:1. Consequently the efficiency of this structure is
are often considered in literature independently of eaciiuickly consumed by these costs.
other. For the details of each, refer to [3]. We do provide FPGrowth: In [4], Han et al. introduce a quite novel
a detailed description of the candidate generation praeedu algorithm to solve the frequent itemset mining problem.
next because it is particularly relevant to our discussion i They adapt the idea of a trie to the set of transactions rather
Section 11I-B. than candidates. In so doing, they effectively compress the

The (k — 1) x (k — 1) Candidate Generation Method: datasetD with the hope that it will fit entirely in main
How does one construct candidates of a particular siz&€mory.

from a set of frequent itemsets? Just taking the union of The data structure appears to eliminate the construction
arbitrary sets is not going to produce new sets with exactlpf candidates entirely. Experimental results have demon-
k + 1 elements. Although there are a number of ways tostrated consistently that it significantly outperforA®riori.
choose sets to join, only one is used prominently and witHiowever, once the trie no longer fits in memory it suffers
much success: thek — 1) x (k — 1) method that we adopt. exactly the same consequences as in [5]. Even building the
Consider two itemsets of size. Their union will contain trie becomes extremely costly, to the point that in [7] it is
preciselyk + 1 items exactly when they shate— 1 items. ~ remarked that the dominant percentage of execution time is
By imposing a lexicographical sort, one guarantees that eacthat of constructing the trie. Consequently, on truly large
candidate will be generated only once. datasets, th&PGrowth algorithm fails even to initialise.

When first introduced, it was remarked that the algorithm
scales quite elegantly. Indeed, if one has already coristtuc
a trie, then the cost of mining it is roughly the same inde-

Since the publication ofA Priori, many subsequent pendent of the support threshold (except that the recursion

ideas have been proposed. However, the majority of thesgroduces more intermediate trees).
interest us very little because they do not address the However, one must be careful hereEPGrowth has a
real issue of frequent itemset mining: scalability. Frague preprocessing step that prunes out all infrequieitemsets
itemset mining is not a real-time system, so the precisedspeeprior to building the trie. Consequently, it does not scale
of execution is not especially important. What is imporiant as claimed because as the support threshold is lowered, the
the ability to process datasets that are otherwise simgly tonumber of items pruned from the dataset decreases—and
large from which to extract meaningful patterns. As such,each of these newly unpruned items needs appear in the
we focus our discussion on those proposals that are designéie. So the trie needs to be reconstructed and it grows. How
to address the issue of scalability. much it grows is dependent on the distribution of the dataset

B. Recent Advances

Effective File Sizes for Webdocs Dataset [ll. VERTICALLY SORTEDA Priori

2e00 A. Overview of Improvements

1200 We start as in classic&l Priori by counting the support

1000 of every item in the dataset and sort them in decreasing
- order of frequency. Next, we sort the dataketizontally;

that is, we sort the items of each transaction least-freiguen
first2 We generate the candidate itemsets such that they
are also horizontally sorted. But in addition to this, we
generate them such that entire candidates are sorted with
Y e e e wr a1 e 0 e ar a s s respect to each other. We call thisvartical sort. When
Support (%) itemsets are both horizontally and vertically sorted, wié ca
themfully sorted. As we show, generating sorted candidate
Figure 1. Size of webdocs dataset with noise (infrequenterhsgets) itemsets (for any sizé), both horizontally and vertically,
removed, graphed under the number of frequent itemsetpubsize) is computationally free and maintaining that sort order
for all subsequent candidate and frequent itemsets rexjuire
careful implementation, but no cost in execution time. This
conceptually simple sorting idea has implications for gver
and the amount by which the support threshold is reducedsubsequent part of the algorithm.
This growth can be several orders of magnitude for relgtivel In particular, as we show, having transactions, candidates
small decreases in support threshold. and frequent itemsets all adhering to the same sort order has

To illustrate the significance of this growth, we show the foIIowmg.advanta.ges: o
in Figure 1 the size of the popular benchmark webdocs ¢ Generating candidates can be done very efficiently
dataset[6] after applying the preprocessing step. Thedfize * Indices on lists of candidates can be efficiently gener-

File Size (MB)

the trie is much closer related to this “effective file size” ated at the same time as are the candidates
than the size of the original dataset. This gives a better * Groups of similar candidates can be compressed to-
representation of the true input size of the dataset for argiv gether and counted simultaneously

support threshold. For contrast, the higher curve graphed ¢ Candidates can be compared to transactions in linear

on the right axis is the number of frequent itemsets in the time) .)
output. « Better locality of data and cache-consciousness is

. . hieved
Furthermore, despite the claim thePGrowth does not ac I,e,ve . .
produce any candidates, Goethals demonstrates in [8]tthat i " @ddition to that, our particular choice of sort order {tha
can, in fact, be considered a candidate-based algorithm arlg SOrting the items least frequent first) allows us to with
Dexters et al. later show that the probability of any patticu minimal cost entirely skip the-candld.ate pruning phase. .
candidate being generated is actually higheFRGrowth Each of thgse advantages is detailed more thoroughly in
than in the classical Priori algorithm[9]. the next sections.

Another general problem with thEPGrowth algorithm B. Candidate Generation

is that it lacks the incremental behaviour éf Priori, Candidate generation is the important first step in each
something that builds fault tolerance into the algorithm.jieration of A Priori. Typically it has not been considered a
Should a machine running Priori fail or shut down after gt1jeneck in the algorithm and so most of the literature fo-
producing, say, its frequeri-itemsets, the algorithm can ¢ ses on the support counting. However, it is worth pausing
be easily restarted from that point by beginning with thegn that for a moment. Modern processors usually manage
construction of candidaté-itemsets, rather than starting 6yt thirty million useful instructions per second. In the
from the beginning. However, becaus®Growth operates gxample of the webdocs dataset on a 10% support threshold,
by means of recursion, there are very few points at whiclyomnaring each frequent 6-itemset to each other involves
the program can save state in anticipation of failure. 6*(55881*55880)/2 comparisons. Even if each comparison

Consequently, despite its profound success to date, wean be done with just two operations, one still requires
choose not to use thEPGrowth algorithm on very large about 10.5 minutes to generate these candidates prior even
datasets with low support thresholds. Instead we have devefo pruning. In comparison, we count the support of these
oped a variant of thé Priori algorithm that that uses much

less memory, preventing the problems with disk thrashing “Stricty speaking, an ordered collection is not a set, so eesightly
busing the set notation. When we indicate the union ojperatfor

and QllOWIhg_ us to efficiently generate results when Othelrexample, we mean the union of the ordered collections suathtltie result
algorithms fail. maintains the ordering.

Table 1l . . .
EXAMPLE SET OF FREQUENT4-ITEMSETS we determined to be near-equd, in this case. Then,

because near-equality is transitive, we can take the union
of every possible pair of then = 3 itemsets to produce

}c‘l) 2 2 2 i our candidates. In this case, we create the three candidates
fo|6 5 3 0 {{6,5,3,2,1},{6,5,3,2,0},{6,5,3,1,0}} and in general

s 2 g i 8 (y) candidates will be produced.

fij 5 4 3 2 Then, to continue, we set the pointerfpand proceed as

f6 |5 4 3 0 before. We see that is not near-equal tg,, so we have no

pairs to merge. The pointer is next set fpfor which the
same can be said. We then set the pointefst@and verify

. . . L . that f5 = fs.

candidates in roughly 36 mmute_s. So,_|t is worthvyhlle 10 gince there are no more frequent itemsets, we paand
devote considerable attention to improving the efficienty O f, and the candidate generation is complete. The full set of

candi_d_ate generation_, too. He_re we explain how. _ candidates that we generated {8, 5,3, 2,1}, {6, 5, 3, 2,0},
Efficiently generating candidates: Let us consider {6,5,3,1,0}, {5,4,3,2,0}}.
generating candidates of an arbitrarily chosen size 1. In this way, we successfully generate all the candidates

We will assume that the frequehtitemsets are sorted both \,iih 4 single pass over the list of frequehtitemsets

horizontally and vertically. A small example if were four 55 gpnosed to the classical nested-loop approach. Strictly
is given in Table II. _ speaking, it might seem that our processing(§f) candi-

As described in Section II-A, thek — 1) x (k — 1) gates effectively causes extra passes, but it can be shown
technique generates candidafe+ 1)-itemsets by taking sing theA Priori Principle that m is typically much less
the union of frequenk-itemsets. If the firsk — 1 elements inan the number of frequent itemsets. At any rate, we
are identical for two distinct frequent-itemsets, f; and jrcumvent this as described in the next section.
fj, we call themnear-equaland denote their near-equality ~andidate compression: ~ Since each group of’7)
by f; = f;. Then, classically, every frequent itemsgtis cangidates share in common their fikst 1 items, we need

compared to every; and the candidatg; U f; is generated ot repeat the information. As such, we can compress the
wheneverf; = f;. However, even in our small example, we .5n4idates into auper-candidate

must verify this relationship for We illustrate this by reusing the example of Table Il on
7 page 4. Of those frequedtitemsets, we discover thdh,
() =Tx8/2=128 f1, and f, are near-equal. From themy = {6,5,3,2,1},
¢ =16,5,3,2,0}, c2 = {6,5,3,1,0} would be generated
pairs of frequent:-itemsets. Given the size of datasets thatys candidates. But instead considet fo U f1 U fo.
we are interested in mining, this step is too slow because Then, the2-tuple (k +m — 1,¢) = (6,{6,5,3,2,1,0})

the number of frequent-itemsets is so large. encodes all the information we need to know about all the
However, our method ne_eds on_Iy ever compare one frecandidates generated froffa, 1, and fo. The firstk — 1
quent itemsetf;, to the one immediately following itf;+1. jtems in the set: are common to al(}') candidates. We

In the example of Table Il, we improve from comparing ca|| this 2-tuple asuper-candidate

twenty-eight itemsets for near-equality to only comparing This new super-candidate still represents @1) can-
seven. The ability to do this is entirely dependent on haVi”gjidates, but takes up much less space in memory and
the frequent itemsets vertically sorted. on disk. More importantly, however, we can now count
A crucial observation is that near-equality is transitivethese candidates simultaneously. This is covered in detail
because the equality of individual items is transitive. S0, section 111-D.
if fi = firr,-oo fitm—2 = fizm—1 then we know that gyppose we wanted to extract the individual candidates
(Vj, k) <m, fir; = five from a super-candidate. Ideally this will not be done at all,
Recall also that the frequertitemsets are fully sorted pyt it is necessary after support counting if at least one of
(that is, both horizontally and vertically), so all thosattare the candidates is frequent because the frequent candidates
near-equal appear contiguously. This sorting taken t@geth need to form a list of uncompressed frequent itemsets.
with the transitivity of near-equality is what our method Fortunately, this can be done quite easily.
exploits. Consider the given example. The candidates in a super-candidate (c.,, ¢;) all share
To begin, we set a pointer to the first frequent itemsetihe same prefix: the firgt — 1 items ofc,. They all have a
fo = {6,5,3,2}. Then we check iffy = f1, f1 = fa. suffix of size
fo = f3 and so on until the near-equality is no longer (k+1)—(k—1)=2
satisfied. This occurs betwegh and f5 because they differ
on their 37¢ items. Letm denote the number of itemsets By iterating in a nested loop over the lagt—k+ 1 items of

Table Il

SAMPLE INDEX FOR CANDIDATE 5-ITEMSETS partitions nicely along the same boundaries as the carsdidat

are sorted; so, if the structure is too large to fit in memory,
it can be easily divided into components that do. Third, it

It Offset _NumB o . g :

= = umBytes is incredibly quick to build.

6 0 52

i 512 214 C. Candidate Pruning

3 j j When A Priori was first proposed in [3], its perfor-

1 -1 -1 mance was explained by its effective candidate generation.
0 -1 1 What makes the candidate generation so effective is its

aggressive candidate pruning. We believe that this can be
omitted entirely while still producing nearly the same skt o

¢,, we produce all possible suffices in sorted order. TheseSandidates. Stated alternatively, after our particulathoe

each appended to the prefix, form tbcev—Qk-s—l) candidates ©f ca_ndldate g_eneratlon, there is little value in running a
candidate pruning step.

in c.
Indexing: There is another nice consequence of gen- In [9], the probability that a candidate is generated is
erating sorted candidates in a single pass: we can effigientShown to be largely dependent on liest testset— that
build an index for retrieving them. In our implementation IS, the least frequent of its subsets. Classfa?riori has a
and in the following example, we build this index on the Very effective candidate generation technique becauseyif
least frequent item of each candidafe+ 1)-itemset. itemsetc \ {c;} for 0 < < k is infrequent the candidate
The structure is a simple two-dimensional array. Candi< = {co; -+, cx} is pruned from the search space. By the
dates of a particular size+ 1 are stored in a sequential file, Priori Principle, the best testset is guaran_teed to be included
and this array provides information about offsetting that fi among these. However, if one routinely picks the best testse
Because of the sort on the candidates, all those that begiihen first generating the candidate, then the pruning phase
with each itemi appear contiguously. The exact location in IS redundant.
the file of the first such candidate is given by tHeelement In our method, on the other hand, we generate a candidate
in the first row of the array. Th&" element in the second from two particular subsetsfy, = c\ {cx} and fy—1 =
row of the array indicates how many bytes are consumed by\ {cr—1}-
all (k + 1)-candidates that begin with item If either of these happen to be the best testset, then there
Consider again the example of Table Il. The candidatess little added value in a candidate pruning phase that check
we generated, when stored sequentially as super candidatéie otherk — 2 size k subsets of. Because of our least-
appear as below: frequent-first sort orderf, and f; correspond exactly to the
subsets missing the most independently frequent itemd of al
6653210565310554320 those inc. We observed that usually eithgg or f; is the
The first two super candidates ha§eas their first item best testset. Let us consider why within the classic “beer
and the third5. This creates a boundary between the secon@nd diapers” context.
0 and the5 that succeeds it. The purpose of the indexing Using anLFF sort, we have some predictability about
structure is to keep track of where in the file that boundary ighe testsets that we use. We always try to extend a set
and offer information that is useful for block-reading ajon with the most frequent items, rather than with an arbitrary
this boundary. Table 11l indicates how the structure wouldchoice. As such, we do not take some set of independently
look if each of these numbers consumed four bytes. (Wdrequent items, like{eggs, milg, and append to it just
use—1 in anit" position as a sentinel to indicate that no about everything. Instead, we start with more interesting
candidates begin with item groups, like {beer, diapers and extend them with those
Note that one could certainly index using theleast more frequent items which have occurred in conjunction
frequent items of each candidate, for any fixeek k& + 1. with the group. This is naturally going to be more successful
As j is chosen larger, the index becomes more precise bltecause we have already ascertained the presence of the leas
consumes more memory. likely elements. So, rather than going about an expensive
We note here that the idea of building an index on thecandidate pruning procedure in which we examine every
candidates is not novel. In fact, this is precisely the idegpossible testset in order to guarantee we find the best one, we
behind the tries of [4], [5], [10], [11]. However, the nature instead accept that there are a few (although not especially
of our indexing structure is very different: it does well in many) extra candidates and move right along.
three immediately evident ways. First, it is more likely to fi We are also not especially concerned about generating
into memory, because it only requires storing three numbera few extra candidates, because they will be indexed and
for each item, rather than entire candidate sets. Second, @ompressed and counted simultaneously with others, so if we

retain additional candidates, then we do not do very muctand we only increment
extra work to count them.

3
. A —1—z| =A[3-1-1] = A[1].
D. Support Counting 2
It was recognised quite early thatPriori would suffer Reflecting on our super-candidate, it represented the can-
a bottleneck in comparing the entire set of transactionsdo t gidatesc, = {6,5,3,2,1}, ¢1 = {6,5,3,2,0}, ¢z =

entire set of candidates for every iteration of the alganith (5 5 3 1 0}. Of these three, only; is contained irt. The
Consequently, mosA Priori-based research has focused On'y integer we incremented Waﬁl] Our mapp|ng would
on trying to address this bottleneck. Certainly, we need tqncrementA[0] for ¢, and A[2] for cs.
address this bottleneck as well. This is how we consistently index our arrays, but certainly
Index-Based Support Countingtlere, we exploit the any mapping from
vertical sort of our candidates in conjunction with the ixde
we built when we generated them. To process a transaction {(4,j):0<j<i<cy—k+1}
t = {to,...,tw—1}, We consider each of the — & first
items in ¢t. For each such itent; we use the index to onto the intervaI[O, (Cw;’““)) if applied consistently will
retrieve the contiguous block of candidates whose firstvork. In fact, one need not even map to such a tight interval
element ist;. Then, we compare the suffix df that is if space is not a concern. We chose our mapping
{ti,ti+1,..-,tw—1}, to each of those candidates. ,
Counting with Compressed Candidates: Recall from (cw —k+ 1) 1 ((’) +j- ,)
section 11I-B that candidates can be compressed. This af- 2 2
fords appreciable performance gains. All the candidategecayse it has the nice property that order is maintained.
compressed into a super-candidate: (c,,, ¢s) share their
first k — 1 elements. So, for a transactian if the first g o Locality and Data Independence

k — 1 items ofc, are not strictly a subset @f then we can

immediately jump over(®>—*') candidates. None could It is fair to assume that any efficient and complete
possibly be contained it ? solution to the frequent itemset mining problem on a general

Suppose instead that the filst- 1 items ofc, arestrictly ~ VerY large dataset is going to require data structures that d
a subset of a transactienHow do we increment the support "ot fit entirely in memory. Recent work in [7] dfP-Growth
counts of exactly those candidatescinvhich are contained 2CCepts this inevitability and focuses on restructuring th
in ¢ (no more, no fewer)? We illustrate this by example.t”e_a”d reordering the input tp ant|C|pate_ heavy rellarl_ce 0
Let t = {6,5,4,3,2,0} be the transaction and, as before, & virtual memory-based solution. In pgrtlcular, they aim tol
¢ = (coscs) = (6,{6,5,3,2,1,0}) be the super-candidate "€Use a_block of data so much as possw_)le before swapping it
andk + 1 = 5 be the size of the candidates. We lay out a_out again. OL_Jr method naturally does this beca_use it operate
linear integer arrayA, of size in a sequential manner on prefaces of sorted lists. Work that
is to be done on a particular contiguous block of the strectur
(Cw —k+ 1) _ <3> —3 is entirely done before the next block is used, because the
2 2 algorithm proceeds in sorted order and the blocks are sorted
Consequently, we fully process blocks of data before we
swap them out. Our method also performs well in terms of
cache utilisation because contiguous blocks of itemsdts wi
be highly similar given that they are fully sorted.

in which we keep track of each candidate’s support count.
Some items ot are also int. Each has an index in,
and we keep all such indices aboke- 1. This gives us

' = {3,5} (corresponding to the itens and 0). We then i . :
¢ = 13,5} (P g) Perhaps of even more importance is the independence

subtract these indices from, = 6, producingc” = {3, 1}. . . _ ,
Finally, we increment the support counts for each of theof itemsets. The candidates of a particular size, so long as
(|c~|) candidates contained in their order is ultimately maintained in the output to the nex
2|‘o do so for elements and j in ¢ (with i > j), we iteration, can be processed together in blocks in whatever

order desired. The lists of frequent itemsets can be silyilar

nerement Co — k41 grouped into blocks, so long as care is taken to ensure that
A K 9) 1= x} a block boundary occurs between two itemsgtand f; 1
only when they are not near-equal. The indices can also be
wherez = (%) +j — . grouped into blocks with the additional advantage that this
In our example, the only choices ferandj arei = 3 can be done in a manner corresponding exactly to how the
andj =1, so candidates were grouped. As such, all of the data structures

(3 1—3-1 can be partitioned quite easily, which lends itself quiteehi
=9 tl=9= to the prospects of parallelisation and fault tolerance.

IV. EXPERIMENTAL RESULTS
, . . . Running Time on Webdocs
To test our ideas we created an implementation using

C.2 Only the performance on datasets that exceed memory —B— Chester —— Badon —— Borgelt ——— KOX! —— FRGrow th
size are interesting because otherwise the problem isltrivi

and most implementations perform well enough. The 1.5GB 1000000

of webdocs data[6] fits nicely into this category, being the

largest dataset commonly used throughout publications on

this problem. All other benchmark datasets are quite a lot 100000

smaller and not relevant here. We could generate our own
large dataset against which to also run tests, but the vdlue o
doing so is minimal. The data in the webdocs set comes from
a real domain and so is meaningful. Constructing a random
dataset will not necessarily portray the true performance
characteristics of the algorithms. At any rate, the other
implementations were designed with knowledge of webdocs,
so it is a fairer comparison. For these reasons, we used other
datasets only for the purpose of verifying the correctndss o
our output.

On this dataset, we compare the performance of this
implementation against a wide selection of the best avail- 000 5.00 10.00 15.00 2000 2500
able implementations of various frequent itemset mining Support Threshold (%)
algorithms. Those of [12] and of [13] are state-of-the-art
implementations of thé Priori algorithm which use a trie
structure to store candidates. An alternative algorithns wa
implemented in [14] and exhibited the best performance on
this benchmark dataset at the renowned FIMI conference
of 2004.[15] That of [16] is the best availabPGrowth & < 9 at 5% before the tests were concluded.
implementation. All of these implementations against whic ~ To explain the difference, Figure 3 displays the memory
we compare are written in C++ by experienced codersusage of our implementation and of [12] as measured by the
In order to maximally remove uncontrolled variability in Unix top command. As the size of the dataset grows (or,
the comparisons the choice of programming language igquivalently, the support threshold decreases), so tos doe
important. We chose C as a balance between programmirte size of the memory structures required. However, be-
experience and the similarity of the language to C++. Allcause our implementation uses explicit filehandling irstea
of the implementations were compiled on the same machinef relying on virtual memory, the memory requirements
with the same class of gnu compilers (gcc 4.1.2 and g+-are effectively constant. Those of all the other algorithms
4.1.2) set at the highest level of optimisation. grow beyond the limits of memory and consequently cannot

We test each implementation on webdocs with supporinitialise. Without the data structures, the programs must
thresholds 0R0%, 15%, 10%, 7.5%, and5%. Reducing the obviously abort.
support threshold in this manner increases the size of the Through these experiments we have demonstrated that at
problem as observed in Figure 1. All tests were run on &igh support thresholds our implementation produces the
Dual-Core Intel Xeon Processor 5140, 2.33 GHz/1333 MHzsame results with the same performance as the best of the
4MB L2 machine. state-of-the-art implementations. But as the supporistire

As can be seen in Figure 2, our implementation perform®ld decreases, the other implementations exceed memory
at least as well asall of the aforementioned state-of- and abort while the memory utilisation of our implementa-
the-art implementations on support thresholds below 15%tion remains relatively constant. As such, our performance
Furthermore, no other implementation was able to processontinues to follow a predictable trend and our programme
as low a support threshold as was ours. The implementatiorgn successfully mine support thresholds that are implgssib
of [16] and of [14] were unable to complete within a low for the other implementations.
reasonable period of time da0%. The trie-based\ Priori
implementations could not compute the frequent itemsets at V. CONCLUSION
5%. On the other hand, our implementation easily finished

10000
&

Running Time (s}

1000

Figure 2. Relative Performance of Implementations on Webddataset

Frequent itemset mining is an important problem within
3A repository containing the implementation has been setupfaluly the field of data mining. But, S'Xtee_n years of 6_\|gor|thm|C
2009 at http://webhome.csc.uvic.eachester/. development has not produced an implementation that can

Memory Usage on Webdocs
—&— Chester —>— Bodon

100
o

£ a0
T T
E &
£
50
S
> 400
g 3t
1i]
= 20
10
o
5 7B 10 15 20
Suppart Threshald (%)
Figure 3. Memory Usage of Bodon and Chester implementatmms

webdocs as Measured by Unidp command during late stages of execution

mine sufficiently low support thresholds on even a modest-

[1]

(2]

(3]

[4]

(5]

(6]

[7]

sized benchmark dataset—never mind the gigabytes of data

in many real-world applications. By introducing a vertical
sort at the onset of the clasdcPriori algorithm, significant

(8]

improvements can be made. Besides simply having better
localised data storage, the candidate generation can k& don

more efficiently and an indexing structure can be built on the

9]

candidates at the same time. Candidates can be compressed

to improve comparison times as well as data structure size.

The cumulative effect of these improvements is observabléL0]

in the implementation that we created.

Whereas other algorithms have been heavily optimised,
this work opens up many avenues for yet more pronounce
improvement. Given their independence, the data strustur
used can be partitioned and parallelised quite easily with
minimal need for inter-process communication. Because our
algorithm’s memory footprint is so small we have sufficient [12
memory available to fully exploit multi-core architectare
without disk thrashing. We expect future results to show a
near-linear improvement with an increase in the number of
cores. Extending the index to more than one item to imprové1

its precision should also yield significant improvement.

1

The result of this research is that the frequent itemsetl4]

mining problem can now be extended to much lower support

thresholds (or, equivalently, larger effective file sizégn

have even yet been considered. These improvements carfié®]
at no performance cost, as evidenced by the fact that our im-

plementation matched the state-of-the-art competitoritgewh

consuming much less memory. Prior to this work, it has beeni6]

assumed that the performance AfPriori is prohibitively
slow. This reestablishes it as the frontier algorithm.

REFERENCES

R. Agrawal, T. Imielinski, and A. N. Swami, “Mining as-
sociation rules between sets of items in large databases,” i
Proc. of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993
ACM Press, 1993, pp. 207-216.

P. W. Purdom, D. V. Gucht, and D. P. Groth, “Average-
case performance of the apriori algorithrBAM Journal on
Computing vol. 33, no. 5, pp. 1223-1260, 2004.

R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” ifProc. of VLDB 1994, pp. 487—-499.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns waitt
candidate generation,” iBIGMOD Conference ACM, 2000,
pp. 1-12.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic
itemset counting and implication rules for market basket
data,” SIGMOD Regc.vol. 26, no. 2, pp. 255-264, 1997.

C. Lucchese, S. Orlando, R. Perego, and F. Silvestri,i\We
docs: a real-life huge transactional dataset,”FiMI, ser.
CEUR Workshop Proceedings, vol. 126, 2004.

G. Buehrer, S. Parthasarathy, and A. Ghoting, “Out-afec
frequent pattern mining on a commodity pc,” KDD '06:
Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mininblew York,
NY, USA: ACM, 2006, pp. 86-95.

B. Goethals, “Efficient frequent pattern mining,” Ph.Bis-
sertation, transnationale Universiteit Limburg, 2002.

N. Dexters, P. W. Purdom, and D. Van Gucht, “A probability
analysis for candidate-based frequent itemset algorithims
SAC '06 New York, NY, USA: ACM, 2006, pp. 541-545.

R. Srikant and R. Agrawal, “Mining sequential patterns
Generalizations and performance improvementsPrioc. 5th
Int. Conf. Extending Database Technology (EDBTY6)96,
pp. 3-17.

C. Borgelt and R. Kruse, “Induction of association mile
Apriori implementation,” inProceedings of the fifteenth con-
ference on computational statistjc002, pp. 395-400.

] F. Bodon, “A fast apriori implementation,” ifProc. of the

IEEE ICDM Workshop on Frequent Itemset Mining Imple-
mentations (FIMI'03) ser. CEUR Workshop Proceedings,
vol. 90, Melbourne, Florida, USA, 19. November 2003.

3] C. Borgelt, “Recursion pruning for the apriori algdmit,” in

FIMI, ser. CEUR Workshop Proceedings, vol. 126, 2004.

C. Lucchese, S. Orlando, and R. Perego, “kdci: on usirertl
count up to the third iteration,” ifIMI, ser. CEUR Workshop
Proceedings, vol. 126, 2004.

FIMI '04, Proc. of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, Brighton, UK, November 1,
2004 ser. CEUR Workshop Proceedings, vol. 126, 2004.

G. Grahne and J. Zhu, “Efficiently using prefix-trees in
mining frequent itemsets,” iFIMI, ser. CEUR Workshop
Proceedings, vol. 126, 2003.

