
Scalable APRIORI-Based Frequent Pattern Discovery

Sean Chester, Ian Sandler, Alex Thomo
University of Victoria

Victoria, Canada
schester@uvic.ca, iansandl@uvic.ca, thomo@cs.uvic.ca

Abstract—Frequent pattern discovery, the task of finding sets
of items that frequently occur together in a dataset, has been
at the core of the field of data mining for the past sixteen years.
In that time, the size of datasets has grown much faster than
has the ability of existing algorithms to handle those datasets.
Consequently, improvements are needed.

In this paper we take the classic algorithm for the problem,
A Priori, and by adding a vertical sort drastically improve its
performance characteristics when processing very large data
sets. We use the benchmark large dataset webdocs from the
FIMI 2004 conference to contrast our performance against
several state-of-the-art implementations and demonstrate both
equal efficiency with lower memory usage at all support
thresholds and also the ability to mine support thresholds as
yet unattempted in literature. We also indicate how this work
can be extended to achieve yet more impressive results.

Keywords-frequent pattern discovery; apriori; data mining;

I. I NTRODUCTION

The frequent pattern discovery problem of [1] is by now
well-known within the data mining community. Informally
speaking, the objective of it is to detect those items in a
dataset that commonly co-occur, preferably indicating with
what frequency. To achieve this, one fixes a threshold,s, and
then strives to output all those sets of items that co-occur at
leasts times. Consider the rows of Table I. If one sets the
threshold to bes = 2, then the sets{{}, {a}, {c}, {a, c}}
are frequent because the sets can be found in at least two
rows of the table.

To make this more precise, we consider a universe,U
(which is {a, b, c, d, e, f} in Table I). Then, adataset, D, is
defined to be a multiset of transactions and atransaction,
t, is defined to be a subset ofU .1 An itemsetis likewise
defined to be a subset ofU . The supportof an itemseti is

supp(i) = |{t ∈ D : i ⊆ t}|.

With these definitions, the objective of frequent itemset
mining is to determine, given a datasetD and a fixedsupport
threshold, 0 < s ≤ |D|, the set offrequent itemsets:{i :
supp(i) ≥ s}.

These frequent itemsets potentially imply new knowledge
about the dataset. The task, although simple to describe, is

1In the original definition of the problem, a transaction is defined to be
a 2-tuple, (tid, set), but we do not use the tids in this paper and so drop
them from the definition to simplify the ensuing discussion.

Table I
EXAMPLE OF A DATASET IN WHICH {a, c} IS FREQUENT, DESIGNED TO

ILLUSTRATE THE FREQUENT ITEMSET MINING PROBLEM

Transaction 0 a b c
Transaction 1 a d
Transaction 2 a c e f

quite difficult for two primary reasons:|D| is typically mas-
sive and the set of possible itemsets,|P(U)|, is exponential
in size, so the problem search space is likewise exponential.
In fact, given a fixed sizek, even determining if there exists a
set ofk items that co-occur in the datasets times is difficult:
it was demonstrated in [2] to be NP-complete. Here, we are
trying to discoverall frequent sets, regardless of size, which
is clearly at least as difficult (otherwise we could use the
output to determine if a frequent set of sizek exists). So, all
algorithms for this problem need to emphasise an effective
search space pruning strategy or other heuristics to address
the NP-completeness of the problem.

Since the introduction of the frequent itemset mining
task, numerous algorithms have been proposed for it. Two
stand out in literature because of their positive experimental
results.A Priori[3] is the oldest well-adopted algorithm, but
has fallen out of favour for the newer, more popular, and
more complexFPGrowthalgorithm of [4].

In this paper, we revert back toA Priori. With the novel
idea of introducingvertical sorting to the algorithm, we will
be able to contribute several new innovations that allow
us to mine support thresholds that are yet unattempted
in literature. But before explaining this sorting or those
innovations, first we review in Section II the work that
has been done prior to now. The new ideas are explained
in Section III and we give experimental results in Section
IV. Finally, in Section V we show how this work can be
extended.

II. BACKGROUND

A. The A Priori Algorithm

Shortly after the problem was introduced, Agrawal et
al. proposed theA Priori algorithm[3] to solve it efficiently.
The cleverness of their algorithm comes from an aggressive
search space pruning strategy. The property that permits this

has been coined theA Priori Principle and still forms the
basis of many of the algorithms that have been published.

If some sett contains some subsets, then it also contains
all subsets ofs. Considering this on a grander scale, ifs
is known to occur in, say,p transactions, then all subsets
of s occur in at leastp transactions, since they must occur
in those transactions in whichs occurs, even if no others.
Stating this alternatively gives theA Priori Principle:

supp(si) ≥ supp(si ∪ sj), for all sets si, sj

The algorithm proceeds in a step-wise fashion, consider-
ing first all itemsets with one item, then all itemsets with
two items, and so on. On the(k + 1)th step, three things
happen. First, frequent itemsets of sizek are merged together
to produce candidates of sizek + 1. Second, theA Priori
Principle is then applied to the candidates to determine
which of them are quite obviously infrequent. Finally, the
candidates which could not be pruned are compared against
D to explicitly ascertain their support count. The process is
then repeated for stepk + 1. The algorithm terminates as
soon as all candidates of a particular size are pruned.

It is commonplace to refer to these three happenings
as Candidate Generation, Candidate Pruning, andSupport
Counting, respectively. Because they occur in series, they
are often considered in literature independently of each
other. For the details of each, refer to [3]. We do provide
a detailed description of the candidate generation procedure
next because it is particularly relevant to our discussion in
Section III-B.

The (k − 1) × (k − 1) Candidate Generation Method:
How does one construct candidates of a particular size

from a set of frequent itemsets? Just taking the union of
arbitrary sets is not going to produce new sets with exactly
k + 1 elements. Although there are a number of ways to
choose sets to join, only one is used prominently and with
much success: the(k − 1)× (k − 1) method that we adopt.
Consider two itemsets of sizek. Their union will contain
preciselyk + 1 items exactly when they sharek − 1 items.
By imposing a lexicographical sort, one guarantees that each
candidate will be generated only once.

B. Recent Advances

Since the publication ofA Priori, many subsequent
ideas have been proposed. However, the majority of these
interest us very little because they do not address the
real issue of frequent itemset mining: scalability. Frequent
itemset mining is not a real-time system, so the precise speed
of execution is not especially important. What is importantis
the ability to process datasets that are otherwise simply too
large from which to extract meaningful patterns. As such,
we focus our discussion on those proposals that are designed
to address the issue of scalability.

Tries: As demonstrated in [5], the primary bottle-
neck of the classicalA Priori algorithm is in incrementing
counters for those candidates that are active in a particular
transaction. Storing candidates in a trie structure helps
immensely because the process of matching a candidate to a
transaction simultaneously accomplishes that of loading the
appropriate counter because it is stored in the leaf of the trie.
But even this approach is not fast enough. When comparing
nearly 1.7 million transactions to30 million candidates as
is done on the webdocs data set[6], the cost of everything
is significantly magnified. Every node in the trie requires
two pointer dereferences and a candidate may require a
traversal of as many nodes as items it contains. Having a
data structure that permits faster access is invaluable.

This approach breaks down on large datasets once the
data structure no longer fits in main memory. The depth
of the trie is equal to the length of the candidates. To fit
all nodes into main memory requires those candidate to
overlap quite substantially. When they do not, the effect
of the trie’s heavily pointer-based makeup is very poor
localisation and cache utilisation. So, traversing the structure
causes thrashing on cache and disk. A typical random disk
I/O takes about 10 milliseconds; a typical memory access
takes a small fraction of a microsecond, a ratio of at least
100,000:1. Consequently the efficiency of this structure is
quickly consumed by these costs.

FPGrowth: In [4], Han et al. introduce a quite novel
algorithm to solve the frequent itemset mining problem.
They adapt the idea of a trie to the set of transactions rather
than candidates. In so doing, they effectively compress the
datasetD with the hope that it will fit entirely in main
memory.

The data structure appears to eliminate the construction
of candidates entirely. Experimental results have demon-
strated consistently that it significantly outperformsA Priori.
However, once the trie no longer fits in memory it suffers
exactly the same consequences as in [5]. Even building the
trie becomes extremely costly, to the point that in [7] it is
remarked that the dominant percentage of execution time is
that of constructing the trie. Consequently, on truly large
datasets, theFPGrowthalgorithm fails even to initialise.

When first introduced, it was remarked that the algorithm
scales quite elegantly. Indeed, if one has already constructed
a trie, then the cost of mining it is roughly the same inde-
pendent of the support threshold (except that the recursion
produces more intermediate trees).

However, one must be careful here.FPGrowth has a
preprocessing step that prunes out all infrequent1-itemsets
prior to building the trie. Consequently, it does not scale
as claimed because as the support threshold is lowered, the
number of items pruned from the dataset decreases—and
each of these newly unpruned items needs appear in the
trie. So the trie needs to be reconstructed and it grows. How
much it grows is dependent on the distribution of the dataset

Figure 1. Size of webdocs dataset with noise (infrequent 1-itemsets)
removed, graphed under the number of frequent itemsets (output size)

and the amount by which the support threshold is reduced.
This growth can be several orders of magnitude for relatively
small decreases in support threshold.

To illustrate the significance of this growth, we show
in Figure 1 the size of the popular benchmark webdocs
dataset[6] after applying the preprocessing step. The sizeof
the trie is much closer related to this “effective file size”
than the size of the original dataset. This gives a better
representation of the true input size of the dataset for a given
support threshold. For contrast, the higher curve graphed
on the right axis is the number of frequent itemsets in the
output.

Furthermore, despite the claim thatFPGrowth does not
produce any candidates, Goethals demonstrates in [8] that it
can, in fact, be considered a candidate-based algorithm and
Dexters et al. later show that the probability of any particular
candidate being generated is actually higher inFPGrowth
than in the classicalA Priori algorithm[9].

Another general problem with theFPGrowth algorithm
is that it lacks the incremental behaviour ofA Priori,
something that builds fault tolerance into the algorithm.
Should a machine runningA Priori fail or shut down after
producing, say, its frequent5-itemsets, the algorithm can
be easily restarted from that point by beginning with the
construction of candidate6-itemsets, rather than starting
from the beginning. However, becauseFPGrowth operates
by means of recursion, there are very few points at which
the program can save state in anticipation of failure.

Consequently, despite its profound success to date, we
choose not to use theFPGrowth algorithm on very large
datasets with low support thresholds. Instead we have devel-
oped a variant of theA Priori algorithm that that uses much
less memory, preventing the problems with disk thrashing
and allowing us to efficiently generate results when other
algorithms fail.

III. V ERTICALLY SORTED A Priori

A. Overview of Improvements

We start as in classicalA Priori by counting the support
of every item in the dataset and sort them in decreasing
order of frequency. Next, we sort the datasethorizontally;
that is, we sort the items of each transaction least-frequent-
first.2 We generate the candidate itemsets such that they
are also horizontally sorted. But in addition to this, we
generate them such that entire candidates are sorted with
respect to each other. We call this avertical sort. When
itemsets are both horizontally and vertically sorted, we call
them fully sorted. As we show, generating sorted candidate
itemsets (for any sizek), both horizontally and vertically,
is computationally free and maintaining that sort order
for all subsequent candidate and frequent itemsets requires
careful implementation, but no cost in execution time. This
conceptually simple sorting idea has implications for every
subsequent part of the algorithm.

In particular, as we show, having transactions, candidates,
and frequent itemsets all adhering to the same sort order has
the following advantages:

• Generating candidates can be done very efficiently
• Indices on lists of candidates can be efficiently gener-

ated at the same time as are the candidates
• Groups of similar candidates can be compressed to-

gether and counted simultaneously
• Candidates can be compared to transactions in linear

time
• Better locality of data and cache-consciousness is

achieved

In addition to that, our particular choice of sort order (that
is, sorting the items least frequent first) allows us to with
minimal cost entirely skip the candidate pruning phase.

Each of these advantages is detailed more thoroughly in
the next sections.

B. Candidate Generation

Candidate generation is the important first step in each
iteration ofA Priori. Typically it has not been considered a
bottleneck in the algorithm and so most of the literature fo-
cuses on the support counting. However, it is worth pausing
on that for a moment. Modern processors usually manage
about thirty million useful instructions per second. In the
example of the webdocs dataset on a 10% support threshold,
comparing each frequent 6-itemset to each other involves
6*(55881*55880)/2 comparisons. Even if each comparison
can be done with just two operations, one still requires
about 10.5 minutes to generate these candidates prior even
to pruning. In comparison, we count the support of these

2Strictly speaking, an ordered collection is not a set, so we are slightly
abusing the set notation. When we indicate the union operation, for
example, we mean the union of the ordered collections such that the result
maintains the ordering.

Table II
EXAMPLE SET OF FREQUENT4-ITEMSETS

f0 6 5 3 2
f1 6 5 3 1
f2 6 5 3 0
f3 6 5 2 0
f4 6 5 1 0
f5 5 4 3 2
f6 5 4 3 0

candidates in roughly 36 minutes. So, it is worthwhile to
devote considerable attention to improving the efficiency of
candidate generation, too. Here we explain how.

Efficiently generating candidates: Let us consider
generating candidates of an arbitrarily chosen size,k + 1.
We will assume that the frequentk-itemsets are sorted both
horizontally and vertically. A small example ifk were four
is given in Table II.

As described in Section II-A, the(k − 1) × (k − 1)
technique generates candidate(k + 1)-itemsets by taking
the union of frequentk-itemsets. If the firstk − 1 elements
are identical for two distinct frequentk-itemsets,fi and
fj , we call themnear-equaland denote their near-equality
by fi

.
= fj . Then, classically, every frequent itemsetfi is

compared to everyfj and the candidatefi ∪ fj is generated
wheneverfi

.
= fj . However, even in our small example, we

must verify this relationship for
(

7

2

)

= 7 ∗ 8/2 = 28

pairs of frequentk-itemsets. Given the size of datasets that
we are interested in mining, this step is too slow because
the number of frequentk-itemsets is so large.

However, our method needs only ever compare one fre-
quent itemset,fi, to the one immediately following it,fi+1.
In the example of Table II, we improve from comparing
twenty-eight itemsets for near-equality to only comparing
seven. The ability to do this is entirely dependent on having
the frequent itemsets vertically sorted.

A crucial observation is that near-equality is transitive
because the equality of individual items is transitive. So,
if fi

.
= fi+1, . . . , fi+m−2

.
= fi+m−1 then we know that

(∀j, k) < m, fi+j
.
= fi+k.

Recall also that the frequentk-itemsets are fully sorted
(that is, both horizontally and vertically), so all those that are
near-equal appear contiguously. This sorting taken together
with the transitivity of near-equality is what our method
exploits. Consider the given example.

To begin, we set a pointer to the first frequent itemset,
f0 = {6, 5, 3, 2}. Then we check iff0

.
= f1, f1

.
= f2,

f2

.
= f3 and so on until the near-equality is no longer

satisfied. This occurs betweenf2 andf3 because they differ
on their 3rd items. Letm denote the number of itemsets

we determined to be near-equal,3 in this case. Then,
because near-equality is transitive, we can take the union
of every possible pair of them = 3 itemsets to produce
our candidates. In this case, we create the three candidates
{{6, 5, 3, 2, 1}, {6, 5, 3, 2, 0}, {6, 5, 3, 1, 0}} and in general
(

m
2

)

candidates will be produced.
Then, to continue, we set the pointer tof3 and proceed as

before. We see thatf3 is not near-equal tof4, so we have no
pairs to merge. The pointer is next set tof4 for which the
same can be said. We then set the pointer tof5 and verify
that f5

.
= f6.

Since there are no more frequent itemsets, we pairf5 and
f6 and the candidate generation is complete. The full set of
candidates that we generated is{{6, 5, 3, 2, 1}, {6, 5, 3, 2, 0},
{6, 5, 3, 1, 0}, {5, 4, 3, 2, 0}}.

In this way, we successfully generate all the candidates
with a single pass over the list of frequentk-itemsets
as opposed to the classical nested-loop approach. Strictly
speaking, it might seem that our processing of

(

m

2

)

candi-
dates effectively causes extra passes, but it can be shown
using theA Priori Principle that m is typically much less
than the number of frequent itemsets. At any rate, we
circumvent this as described in the next section.

Candidate compression: Since each group of
(

m
2

)

candidates share in common their firstk−1 items, we need
not repeat the information. As such, we can compress the
candidates into asuper-candidate.

We illustrate this by reusing the example of Table II on
page 4. Of those frequent4-itemsets, we discover thatf0,
f1, and f2 are near-equal. From them,c0 = {6, 5, 3, 2, 1},
c1 = {6, 5, 3, 2, 0}, c2 = {6, 5, 3, 1, 0} would be generated
as candidates. But instead considerc = f0 ∪ f1 ∪ f2.

Then, the2-tuple (k + m − 1, c) = (6, {6, 5, 3, 2, 1, 0})
encodes all the information we need to know about all the
candidates generated fromf0, f1, and f2. The first k − 1
items in the setc are common to all

(

m

2

)

candidates. We
call this 2-tuple asuper-candidate.

This new super-candidate still represents all
(

m
2

)

can-
didates, but takes up much less space in memory and
on disk. More importantly, however, we can now count
these candidates simultaneously. This is covered in detail
in section III-D.

Suppose we wanted to extract the individual candidates
from a super-candidate. Ideally this will not be done at all,
but it is necessary after support counting if at least one of
the candidates is frequent because the frequent candidates
need to form a list of uncompressed frequent itemsets.
Fortunately, this can be done quite easily.

The candidates in a super-candidatec = (cw, cs) all share
the same prefix: the firstk − 1 items ofcs. They all have a
suffix of size

(k + 1) − (k − 1) = 2

By iterating in a nested loop over the lastcw−k+1 items of

Table III
SAMPLE INDEX FOR CANDIDATE 5-ITEMSETS

Item Offset NumBytes

6 0 52
5 52 24
4 -1 -1
3 -1 -1
2 -1 -1
1 -1 -1
0 -1 -1

cs, we produce all possible suffices in sorted order. These,
each appended to the prefix, form the

(

cw−k+1

2

)

candidates
in c.

Indexing: There is another nice consequence of gen-
erating sorted candidates in a single pass: we can efficiently
build an index for retrieving them. In our implementation
and in the following example, we build this index on the
least frequent item of each candidate(k + 1)-itemset.

The structure is a simple two-dimensional array. Candi-
dates of a particular sizek+1 are stored in a sequential file,
and this array provides information about offsetting that file.
Because of the sort on the candidates, all those that begin
with each itemi appear contiguously. The exact location in
the file of the first such candidate is given by theith element
in the first row of the array. Theith element in the second
row of the array indicates how many bytes are consumed by
all (k + 1)-candidates that begin with itemi.

Consider again the example of Table II. The candidates
we generated, when stored sequentially as super candidates,
appear as below:

6653210565310554320

The first two super candidates have6 as their first item
and the third,5. This creates a boundary between the second
0 and the5 that succeeds it. The purpose of the indexing
structure is to keep track of where in the file that boundary is
and offer information that is useful for block-reading along
this boundary. Table III indicates how the structure would
look if each of these numbers consumed four bytes. (We
use−1 in an ith position as a sentinel to indicate that no
candidates begin with itemi.

Note that one could certainly index using thej least
frequent items of each candidate, for any fixedj < k + 1.
As j is chosen larger, the index becomes more precise but
consumes more memory.

We note here that the idea of building an index on the
candidates is not novel. In fact, this is precisely the idea
behind the tries of [4], [5], [10], [11]. However, the nature
of our indexing structure is very different: it does well in
three immediately evident ways. First, it is more likely to fit
into memory, because it only requires storing three numbers
for each item, rather than entire candidate sets. Second, it

partitions nicely along the same boundaries as the candidates
are sorted; so, if the structure is too large to fit in memory,
it can be easily divided into components that do. Third, it
is incredibly quick to build.

C. Candidate Pruning

When A Priori was first proposed in [3], its perfor-
mance was explained by its effective candidate generation.
What makes the candidate generation so effective is its
aggressive candidate pruning. We believe that this can be
omitted entirely while still producing nearly the same set of
candidates. Stated alternatively, after our particular method
of candidate generation, there is little value in running a
candidate pruning step.

In [9], the probability that a candidate is generated is
shown to be largely dependent on itsbest testset— that
is, the least frequent of its subsets. ClassicalA Priori has a
very effective candidate generation technique because ifany
itemsetc \ {ci} for 0 ≤ i ≤ k is infrequent the candidate
c = {c0, . . . , ck} is pruned from the search space. By theA
Priori Principle, the best testset is guaranteed to be included
among these. However, if one routinely picks the best testset
when first generating the candidate, then the pruning phase
is redundant.

In our method, on the other hand, we generate a candidate
from two particular subsets,fk = c \ {ck} and fk−1 =
c \ {ck−1}.

If either of these happen to be the best testset, then there
is little added value in a candidate pruning phase that checks
the otherk − 2 size k subsets ofc. Because of our least-
frequent-first sort order,f0 andf1 correspond exactly to the
subsets missing the most independently frequent items of all
those inc. We observed that usually eitherf0 or f1 is the
best testset. Let us consider why within the classic “beer
and diapers” context.

Using an LFF sort, we have some predictability about
the testsets that we use. We always try to extend a set
with the most frequent items, rather than with an arbitrary
choice. As such, we do not take some set of independently
frequent items, like{eggs, milk}, and append to it just
about everything. Instead, we start with more interesting
groups, like{beer, diapers}, and extend them with those
more frequent items which have occurred in conjunction
with the group. This is naturally going to be more successful,
because we have already ascertained the presence of the least
likely elements. So, rather than going about an expensive
candidate pruning procedure in which we examine every
possible testset in order to guarantee we find the best one, we
instead accept that there are a few (although not especially
many) extra candidates and move right along.

We are also not especially concerned about generating
a few extra candidates, because they will be indexed and
compressed and counted simultaneously with others, so if we

retain additional candidates, then we do not do very much
extra work to count them.

D. Support Counting

It was recognised quite early thatA Priori would suffer
a bottleneck in comparing the entire set of transactions to the
entire set of candidates for every iteration of the algorithm.
Consequently, mostA Priori-based research has focused
on trying to address this bottleneck. Certainly, we need to
address this bottleneck as well.

Index-Based Support Counting:Here, we exploit the
vertical sort of our candidates in conjunction with the index
we built when we generated them. To process a transaction
t = {t0, . . . , tw−1}, we consider each of thew − k first
items in t. For each such itemti we use the index to
retrieve the contiguous block of candidates whose first
element isti. Then, we compare the suffix oft, that is
{ti, ti+1, . . . , tw−1}, to each of those candidates.

Counting with Compressed Candidates: Recall from
section III-B that candidates can be compressed. This af-
fords appreciable performance gains. All the candidates
compressed into a super-candidatec = (cw, cs) share their
first k − 1 elements. So, for a transactiont, if the first
k − 1 items ofcs are not strictly a subset oft, then we can
immediately jump over

(

cw−k+1

2

)

candidates. None could
possibly be contained int.

Suppose instead that the firstk−1 items ofcs are strictly
a subset of a transactiont. How do we increment the support
counts of exactly those candidates inc which are contained
in t (no more, no fewer)? We illustrate this by example.
Let t = {6, 5, 4, 3, 2, 0} be the transaction and, as before,
c = (cw, cs) = (6, {6, 5, 3, 2, 1, 0}) be the super-candidate
andk + 1 = 5 be the size of the candidates. We lay out a
linear integer array,A, of size

(

cw − k + 1

2

)

=

(

3

2

)

= 3

in which we keep track of each candidate’s support count.
Some items ofcs are also int. Each has an index incs

and we keep all such indices abovek − 1. This gives us
c′ = {3, 5} (corresponding to the items3 and 0). We then
subtract these indices fromcw = 6, producingc′′ = {3, 1}.

Finally, we increment the support counts for each of the
(

|c′′|
2

)

candidates contained int.
To do so for elementsi and j in c′′ (with i > j), we

increment

A

[(

cw − k + 1

2

)

− 1 − x

]

wherex =
(

i

2

)

+ j − i.
In our example, the only choices fori and j are i = 3

andj = 1, so

x =

(

3

2

)

+ 1 − 3 = 1

and we only increment

A

[(

3

2

)

− 1 − x

]

= A[3 − 1 − 1] = A[1].

Reflecting on our super-candidate, it represented the can-
didates c0 = {6, 5, 3, 2, 1}, c1 = {6, 5, 3, 2, 0}, c2 =
{6, 5, 3, 1, 0}. Of these three, onlyc1 is contained int. The
only integer we incremented wasA[1]. Our mapping would
incrementA[0] for c0 andA[2] for c2.

This is how we consistently index our arrays, but certainly
any mapping from

{(i, j) : 0 < j < i ≤ cw − k + 1}

onto the interval
[

0,
(

cw−k+1

2

)

)

if applied consistently will
work. In fact, one need not even map to such a tight interval
if space is not a concern. We chose our mapping

(

cw − k + 1

2

)

− 1 −

((

i

2

)

+ j − i

)

because it has the nice property that order is maintained.

E. On Locality and Data Independence

It is fair to assume that any efficient and complete
solution to the frequent itemset mining problem on a general,
very large dataset is going to require data structures that do
not fit entirely in memory. Recent work in [7] onFP-Growth
accepts this inevitability and focuses on restructuring the
trie and reordering the input to anticipate heavy reliance on
a virtual memory-based solution. In particular, they aim to
reuse a block of data so much as possible before swapping it
out again. Our method naturally does this because it operates
in a sequential manner on prefaces of sorted lists. Work that
is to be done on a particular contiguous block of the structure
is entirely done before the next block is used, because the
algorithm proceeds in sorted order and the blocks are sorted.
Consequently, we fully process blocks of data before we
swap them out. Our method also performs well in terms of
cache utilisation because contiguous blocks of itemsets will
be highly similar given that they are fully sorted.

Perhaps of even more importance is the independence
of itemsets. The candidates of a particular size, so long as
their order is ultimately maintained in the output to the next
iteration, can be processed together in blocks in whatever
order desired. The lists of frequent itemsets can be similarly
grouped into blocks, so long as care is taken to ensure that
a block boundary occurs between two itemsetsfi andfi+1

only when they are not near-equal. The indices can also be
grouped into blocks with the additional advantage that this
can be done in a manner corresponding exactly to how the
candidates were grouped. As such, all of the data structures
can be partitioned quite easily, which lends itself quite nicely
to the prospects of parallelisation and fault tolerance.

IV. EXPERIMENTAL RESULTS

To test our ideas we created an implementation using
C.3 Only the performance on datasets that exceed memory
size are interesting because otherwise the problem is trivial
and most implementations perform well enough. The 1.5GB
of webdocs data[6] fits nicely into this category, being the
largest dataset commonly used throughout publications on
this problem. All other benchmark datasets are quite a lot
smaller and not relevant here. We could generate our own
large dataset against which to also run tests, but the value of
doing so is minimal. The data in the webdocs set comes from
a real domain and so is meaningful. Constructing a random
dataset will not necessarily portray the true performance
characteristics of the algorithms. At any rate, the other
implementations were designed with knowledge of webdocs,
so it is a fairer comparison. For these reasons, we used other
datasets only for the purpose of verifying the correctness of
our output.

On this dataset, we compare the performance of this
implementation against a wide selection of the best avail-
able implementations of various frequent itemset mining
algorithms. Those of [12] and of [13] are state-of-the-art
implementations of theA Priori algorithm which use a trie
structure to store candidates. An alternative algorithm was
implemented in [14] and exhibited the best performance on
this benchmark dataset at the renowned FIMI conference
of 2004.[15] That of [16] is the best availableFPGrowth
implementation. All of these implementations against which
we compare are written in C++ by experienced coders.
In order to maximally remove uncontrolled variability in
the comparisons the choice of programming language is
important. We chose C as a balance between programming
experience and the similarity of the language to C++. All
of the implementations were compiled on the same machine
with the same class of gnu compilers (gcc 4.1.2 and g++
4.1.2) set at the highest level of optimisation.

We test each implementation on webdocs with support
thresholds of20%, 15%, 10%, 7.5%, and5%. Reducing the
support threshold in this manner increases the size of the
problem as observed in Figure 1. All tests were run on a
Dual-Core Intel Xeon Processor 5140, 2.33 GHz/1333 MHz,
4MB L2 machine.

As can be seen in Figure 2, our implementation performs
at least as well asall of the aforementioned state-of-
the-art implementations on support thresholds below 15%.
Furthermore, no other implementation was able to process
as low a support threshold as was ours. The implementations
of [16] and of [14] were unable to complete within a
reasonable period of time at10%. The trie-basedA Priori
implementations could not compute the frequent itemsets at
5%. On the other hand, our implementation easily finished

3A repository containing the implementation has been setup as of July
2009 at http://webhome.csc.uvic.ca/∼schester/.

Figure 2. Relative Performance of Implementations on Webdocs Dataset

k < 9 at 5% before the tests were concluded.
To explain the difference, Figure 3 displays the memory

usage of our implementation and of [12] as measured by the
Unix top command. As the size of the dataset grows (or,
equivalently, the support threshold decreases), so too does
the size of the memory structures required. However, be-
cause our implementation uses explicit filehandling instead
of relying on virtual memory, the memory requirements
are effectively constant. Those of all the other algorithms
grow beyond the limits of memory and consequently cannot
initialise. Without the data structures, the programs must
obviously abort.

Through these experiments we have demonstrated that at
high support thresholds our implementation produces the
same results with the same performance as the best of the
state-of-the-art implementations. But as the support thresh-
old decreases, the other implementations exceed memory
and abort while the memory utilisation of our implementa-
tion remains relatively constant. As such, our performance
continues to follow a predictable trend and our programme
can successfully mine support thresholds that are impossibly
low for the other implementations.

V. CONCLUSION

Frequent itemset mining is an important problem within
the field of data mining. But, sixteen years of algorithmic
development has not produced an implementation that can

Figure 3. Memory Usage of Bodon and Chester implementationson
webdocs as Measured by Unixtop command during late stages of execution

mine sufficiently low support thresholds on even a modest-
sized benchmark dataset—never mind the gigabytes of data
in many real-world applications. By introducing a vertical
sort at the onset of the classicA Priori algorithm, significant
improvements can be made. Besides simply having better
localised data storage, the candidate generation can be done
more efficiently and an indexing structure can be built on the
candidates at the same time. Candidates can be compressed
to improve comparison times as well as data structure size.
The cumulative effect of these improvements is observable
in the implementation that we created.

Whereas other algorithms have been heavily optimised,
this work opens up many avenues for yet more pronounced
improvement. Given their independence, the data structures
used can be partitioned and parallelised quite easily with
minimal need for inter-process communication. Because our
algorithm’s memory footprint is so small we have sufficient
memory available to fully exploit multi-core architectures
without disk thrashing. We expect future results to show a
near-linear improvement with an increase in the number of
cores. Extending the index to more than one item to improve
its precision should also yield significant improvement.

The result of this research is that the frequent itemset
mining problem can now be extended to much lower support
thresholds (or, equivalently, larger effective file sizes)than
have even yet been considered. These improvements came
at no performance cost, as evidenced by the fact that our im-
plementation matched the state-of-the-art competitors while
consuming much less memory. Prior to this work, it has been
assumed that the performance ofA Priori is prohibitively
slow. This reestablishes it as the frontier algorithm.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining as-
sociation rules between sets of items in large databases,” in
Proc. of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993.
ACM Press, 1993, pp. 207–216.

[2] P. W. Purdom, D. V. Gucht, and D. P. Groth, “Average-
case performance of the apriori algorithm,”SIAM Journal on
Computing, vol. 33, no. 5, pp. 1223–1260, 2004.

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” inProc. of VLDB, 1994, pp. 487–499.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” inSIGMOD Conference. ACM, 2000,
pp. 1–12.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic
itemset counting and implication rules for market basket
data,” SIGMOD Rec., vol. 26, no. 2, pp. 255–264, 1997.

[6] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri, “Web-
docs: a real-life huge transactional dataset,” inFIMI , ser.
CEUR Workshop Proceedings, vol. 126, 2004.

[7] G. Buehrer, S. Parthasarathy, and A. Ghoting, “Out-of-core
frequent pattern mining on a commodity pc,” inKDD ’06:
Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. New York,
NY, USA: ACM, 2006, pp. 86–95.

[8] B. Goethals, “Efficient frequent pattern mining,” Ph.D.dis-
sertation, transnationale Universiteit Limburg, 2002.

[9] N. Dexters, P. W. Purdom, and D. Van Gucht, “A probability
analysis for candidate-based frequent itemset algorithms,” in
SAC ’06. New York, NY, USA: ACM, 2006, pp. 541–545.

[10] R. Srikant and R. Agrawal, “Mining sequential patterns:
Generalizations and performance improvements,” inProc. 5th
Int. Conf. Extending Database Technology (EDBT96), 1996,
pp. 3–17.

[11] C. Borgelt and R. Kruse, “Induction of association rules:
Apriori implementation,” inProceedings of the fifteenth con-
ference on computational statistics, 2002, pp. 395–400.

[12] F. Bodon, “A fast apriori implementation,” inProc. of the
IEEE ICDM Workshop on Frequent Itemset Mining Imple-
mentations (FIMI’03), ser. CEUR Workshop Proceedings,
vol. 90, Melbourne, Florida, USA, 19. November 2003.

[13] C. Borgelt, “Recursion pruning for the apriori algorithm,” in
FIMI , ser. CEUR Workshop Proceedings, vol. 126, 2004.

[14] C. Lucchese, S. Orlando, and R. Perego, “kdci: on using direct
count up to the third iteration,” inFIMI , ser. CEUR Workshop
Proceedings, vol. 126, 2004.

[15] FIMI ’04, Proc. of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, Brighton, UK, November 1,
2004, ser. CEUR Workshop Proceedings, vol. 126, 2004.

[16] G. Grahne and J. Zhu, “Efficiently using prefix-trees in
mining frequent itemsets,” inFIMI , ser. CEUR Workshop
Proceedings, vol. 126, 2003.

