
Springer Nature 2021 LATEX template

Four Node Graphlet and Triad Enumeration

on Distributed Platforms

Yudi Santoso1*, Xiaozhou Liu1, Venkatesh Srinivasan1

and Alex Thomo1

1Department of Computer Science, University of Victoria,
Victoria, BC, Canada.

*Corresponding author(s). E-mail(s): santoso@uvic.ca;
Contributing authors: superliuxz@gmail.com; srinivas@uvic.ca;

thomo@uvic.ca;

Abstract

Graphlet enumeration is a basic task in graph analysis with many appli-
cations. Thus it is important to be able to perform this task within a
reasonable amount of time. However, this objective is challenging when
the input graph is very large, with millions of nodes and edges. Known
solutions are limited in terms of the scale of the graph that they can pro-
cess. Distributed computing is often proposed as a solution to improve the
maximum scale. However, it has to be done carefully to reduce the over-
head cost and to really benefit from the distributed solution. We study
the enumeration of four-node graphlets in undirected graphs and triads in
directed graphs using a distributed platform. We propose an efficient dis-
tributed solution that significantly surpasses the existing solutions on the
scale and performance. With this method, we are able to process larger
graphs that have never been processed before and enumerate quadrillions
of graphlets using a modest cluster of machines. Our experimental results
show that our solution has a strong machine scalability close to one.

Keywords: distributed computing, graph mining, massive networks,
subgraph enumeration

1

Springer Nature 2021 LATEX template

2 Graphlet Enumeration

1 Introduction

Network or graph analytical methods have proven to be invaluable in data
analysis. Analysing a big network - with thousands or more nodes and edges,
however, is not a trivial task and a lot of studies have been done to improve
the methods. Here we focus on methods for enumerating small subgraphs in
a very large network. In real world networks, we often see small structures
inside them which act as the building blocks, defining the characteristics of
the networks. For example, in a social network, there are small sets of inter-
connected nodes, each set represents a group of friends. Therefore, finding these
small structures, or subgraphs, is an important component in graph analysis.

Indeed, many problems in network/graph analysis require enumeration
and/or counting of small subgraphs. Such problems can be found in various
fields: in biology [1, 2] chemistry [3, 4], social study [5, 6], network analysis
and classification [7], and more. Here we focus on graphlets, which are defined
as small induced subgraphs (See Section 3 for the definition.). Furthermore,
we are only interested in connected graphlets, hence throughout this paper
graphlet is defined as a small induced connected subgraph. Some applications
require the enumeration of all graphlets up to a certain order. For exam-
ple, Milenkovic and Przulj [2] used 2, 3, 4, and 5 node graphlets to analyse
Protein-Protein-Interaction (PPI) networks.

Graphlet enumeration problem is challenging when the input graph is very
large, with millions of nodes and edges. In fact, until the recent work [8] (for
a single machine), it was believed that subgraphs beyond three nodes are
difficult to enumerate and that an enumeration algorithm, which has to touch
each subgraph, cannot terminate in a reasonable time [9]. The computational
complexity grows exponentially on the order of subgraphs that we want to
enumerate. This can be understood combinatorially. Suppose we want to find
subgraphs of k nodes in a graph of n nodes, then there are

(
n
k

)
∝ n(n −

1) . . . (n − k + 1) possible combinations that we need to check. If n � k, this
is approximately nk. With a graph of a million nodes, each increment of the
subgraph order, k, would cost a million times more in the computation. On the
other hand, an order of magnitude increase in n would increase the complexity
by 10k. Of course, in practice, not all combinations need to be checked. Efficient
algorithms have been built by minimizing unnecessary checking. Nonetheless,
it is generally true that the number of subgraphs, and hence the enumeration
time, grows rapidly with the size of the graph.

From this perspective, triangle is a special case. It is small enough to enu-
merate and yet has an important role in graph analysis, including computing
the clustering coefficient [10] and truss decomposition [11]. The best known
(distributed) solution for triangle enumeration can process a graph of five
billion nodes [12]. Four-node subgraph enumeration is already challenging.
Known solutions are limited in term of the scale, or the size of the graph that
can be processed in a reasonable amount of time. Counting (either exact [9, 13]
or approximate [14, 15]) can do more, but we focus on enumeration, which
is a more challenging problem. Using a distributed platform, where the tasks

Springer Nature 2021 LATEX template

Graphlet Enumeration 3

are distributed to many machines in a cluster, is an obvious option to increase
the computing power. We can add more compute nodes to get more done
within a given time budget. Nevertheless, bringing a single machine solution
to a distributed platform has its own challenges. If this is not done properly,
we will get a poor scalability, where scalability is measured as performance
over cost [16]. A poor scalability would not justify the economical cost of the
distributed platform. Distributing a computational task to many machines
often entails redundant or duplicate computations. Therefore, we need to
optimize our distributed solution to minimize this redundancy.

Induced subgraphs are more difficult to enumerate than the non-induced
ones, because for induced subgraphs we need to check all possible connections
as well as non-connections among the nodes. Recently, an efficient algorithm
for four-node graphlets enumeration has been proposed in [8]. It has a run time
that is much better than O(ndk−1), where d is the maximum degree. Moreover,
it enumerates all types of four-node graphlets in a single run. This is different
from other solutions that do one type or pattern at a time. Nonetheless, it was
designed for a single machine, hence restricting its scalability. This motivates
us to search for methods to bring this algorithm onto a distributed platform,
such that the solution is optimal for this particular problem. We found that
the graph partitioning scheme of Park et al. [12, 17] is suitable for our purpose.

Motivated by the fact that many real world networks are directed graphs,
we also study distributed graphlet enumeration for directed graphs. Directed
graphs contain more detailed pictures of the networks. For example, by using
triads, which are three node directed graphlets with all three nodes con-
nected to each other, we can analyze transitivity more accurately [18]. Directed
clustering coefficient can be used as a measure of systemic risk in complex
banking networks [19]. Also, triad enumeration is an important element in
social network analysis [20].

For directed case, there are three possible links between a pair of nodes,
and because of this the number of subgraph types becomes numerous. For the
moment we restrict ourselves to triads. There are already seven types of triads
that we need to consider. We proposed a single machine solution for triad
enumeration in [21]. Here, we expand the study by including more datasets and
analyses, and bring the solution onto distributed platforms. We show that our
distributed solution for directed graphs can achieve strong machine scalability,
similar to the undirected case. We will then provide a road plan on how to
extend this solution to four nodes.

Our contributions are summarized as follows:

• We devise an efficient distributed algorithm for enumerating all induced
four-node graphlets on a single run. This includes optimizations that are
particular to this problem. We provide detailed analyses of this algorithm
to prove its correctness and efficiency.

• We build an implementation of our proposed solution in Spark available at
https://github.com/D4GE/D4GE.

https://github.com/D4GE/D4GE

Springer Nature 2021 LATEX template

4 Graphlet Enumeration

• We perform extensive experimentation with it on several massive graphs,
and we compare our code with the state of the art (SotA). The results show
that our solution has better performance compared to the SotA. We succeed
in processing a larger graph of a size that has never been processed before
in a reasonable amount of time, enumerating quadrillions of graphlets using
a modest cluster of machines 1.

• We also expand our solution to enumerate triads on a distributed plat-
form. We test our solution on several massive directed graphs, and show its
scalability through experimentation.

2 Related Work

Subgraph enumeration has received a lot of attention in the literature quite
recently. There are many papers on triangle enumeration, including [22] and
[23] which contains Compact-Forward algorithm - the most effective serial
algorithm for triangle enumeration. On higher order subgraphs, most papers
focus on the counting, such as [13, 24, 25], among others. Previous solutions
for the induced subgraph enumeration, such as FanMod [26] and Rage [27],
do not perform well on million-scale graphs. Cliques, or complete subgraphs,
are easier to enumerate, with the latest solution in [28].

Distributed solutions have been studied extensively in the last two decades.
For the triangle enumeration problem, partition-based solution was discussed
in [29], where some load-balancing problem was exposed. Park et al. proposed
a more efficient solution called PTE (Pre-partitioned Triangle Enumera-
tion) [12]. They later generalized PTE to enumerate query subgraphs of various
order, and called their solution PSE (Pre-partitioned Subgraph Enumera-
tion) [17]. It uses VF2 2 algorithm [30] as its serial enumeration algorithm.
We consider PSE as the state of the art for distributed solution of subgraph
enumeration problem.

There are several distributed methods/frameworks for graph process-
ing published in the literature, notably Arabesque [31] and its descendant
Fractal [32], DistGraph [33], GraphZero [34], G-Miner [35], G-thinker [36],
RADS [37] and DISC [38]. They are multipurpose graph applications that can
be used to enumerate subgraphs as well. They are query based, where the
users need to supply the subgraph finding algorithm. In general, they are more
suitable for non-induced subgraphs.

In [8], an algorithm to enumerate all induced four-node (as well as three-
node) graphlets in a single run on a single machine has been proposed. We
call it S4GE (Simultaneous Four-node Graphlet Enumeration). We use this
algorithm, with some modification, as the serial algorithm for our distributed
solution.

Triad census algorithm by Batagelj and Mrvar [39], which is employed in
Pajek, had been known as the standard algorithm to enumerate triads for

1By modest here we mean a cluster with less than one thousand machines.
2This is the name given by the authors of [30], and as far as we know is not an abbreviation.

Springer Nature 2021 LATEX template

Graphlet Enumeration 5

several years. Although this algorithm can perform triad enumeration in sub-
quadratic time, it is not fast enough for very large graphs with millions of
nodes and edges.

Chin et al. [40] developed a compact data structure that makes it easier to
parallelize the computation. The idea is to encode the link information using
2-bits for each node in the adjacency list. Suppose the nodes were labeled
by using 32-bit integers. The bits are shifted to the left by two, and the two
lowest bits are then used for the edge direction. Thus, only 30 bits can actually
be used to label the nodes. Parimalarangan et al. [41] took on this idea and
combined it with the most efficient algorithms known for triangle enumeration
on single machines [23]. In [21], we proposed a solution, FPTE (Four Pointers
Triad Enumeration), that computes the link information on the fly, and hence
frees two more bits to label the nodes. With this solution we were able to
process larger graphs, compared to [40] and [41]. Moreover, it was empirically
shown to be faster. Nevertheless, none of these solutions for directed graphs
are for distributed platform.

To the best of our knowledge, there is no distributed solution to enumerate
all the induced 4-node graphlets, or directed graphlets, that can scale to large
graphs using a modest cluster of machines.

3 Preliminaries

3.1 Graphs and Graphlets

Graph. A graph, denoted by G = (V,E), is an entity consisting of a set of
nodes/vertices, V , and a set of edges among the vertices, E. The number of
nodes, n = |V |, is known as the order of the graph, and the number of edges,
m = |E|, is known as the size of the graph. Here we assume that the graph
is simple, i.e., without any multi-edges or self-loops. The set of neighbouring
vertices of vertex u is denoted by N(u). The degree of vertex u is denoted by
d(u) = |N(u)|.
Subgraph. A graph H = (VH , EH) is a subgraph of G = (VG, EG) if VH ⊆ VG,

and EH ⊆ EG. In this case we write H ⊆ G.
Induced subgraph. A subgraph H = (VH , EH) ⊆ G = (VG, EG) is an induced

subgraph if for every pair of nodes u, v ∈ VH , edge uv ∈ EH if and only if
uv ∈ EG.
Edge-induced subgraph. An edge-induced subgraph is formed by choosing a

set of edges from the graph and include all and only end nodes of those edges.
Note that an edge-induced subgraph is not the same as an induced subgraph,

as an induced subgraph is a subgraph of chosen vertices while an edge-induced
subgraph is a subgraph of chosen edges. This is illustrated by the example
in Figure 1. As we will see below, induced subgraphs are related to graphlets
while edge-induced subgraphs are used for the partitioning.
Graphlets. A graphlet is an induced connected subgraph. There are two types

of three node graphlets: wedge and triangle as shown in Figure 2. There are

Springer Nature 2021 LATEX template

6 Graphlet Enumeration

1

2

3

4

5

6

7

(a)

1

2

3

6

(b)

1

2

5

6

7

(c)

Fig. 1 (a) A graph, (b) an induced subgraph (induced by vertex set {1, 2, 3, 6}) and (c) an
edge-induced subgraph (induced by edge set {1− 2, 2− 7, 5− 6}). Note that (c) is not an
induced subgraph of (a).

Fig. 2 Three node graphlets: a wedge and a triangle.

Fig. 3 Four node graphlets: a 3-path, a 3-star, a rectangle or 4-cycle, a tailed-triangle, a
diamond, and a 4-clique.

six types of four node graphlets, as shown in Figure 3. They are 3-path (or 4-
node-path), 3-star, rectangle (or 4-cycle), lollipop (or tailed-triangle), diamond
(or 4-chordal-cycle) and 4-clique.
Cliques. A complete graph is a graph in which every pair of nodes is connected

by an edge. In a complete graph of order n (denoted by Kn) the number of
edges is therefore n(n−1)/2. We may think of cliques as complete sub-graphs.
However, these terms are often interchanged in the literature. Thus, a triangle
is also a 3-clique, and a Kn is an n-clique.

3.2 Graph Partitions

For distributed computation we partition the graph using a coloring scheme
as in [12]. Here are the definitions used in this partition scheme.

Coloring. Coloring refers to a technique of applying a modulo function with
respect to a chosen number of colors, ρ, to each edge uv ∈ E. An edge uv has
“color” (i, j) where i = u%ρ, j = v%ρ and % is the mod operator. Edges with
the same color can be grouped together to form an edge-induced sub-graph.
Edge-orientation. Edge-orientation is a technique widely used in sub-graph

enumeration because following an orientation helps eliminating duplicate out-
puts and speeds up the enumeration. It assigns orientation to each edge in an
undirected graph by following a prescribed rule. A common rule is as follows.
First, define a function η that determines a total ordering of the nodes in V .

Springer Nature 2021 LATEX template

Graphlet Enumeration 7

An edge uv = vu is orientated by η, such that if η(u) < η(v), we list only
uv but not vu. This oriented edge is then denoted by (−→u, v). As is common in
practice, we use the degrees of the nodes to define the total ordering η, i.e., if
d(u) < d(v) then η(u) < η(v). If the degrees are equal we just use the node
labels to determine the order.
Directed acyclic graph. Using edge-orientation, the undirected input graph is

transformed into a directed acyclic graph (DAG), denoted by
−→
G(V,

−→
E). The

out-neighbouring vertices of vertex u is denoted by N+(u). The out-degree of
vertex u is denoted by d+(u) = |N+(u)|.
Edge set. An edge set Eij is an edge-induced sub-graph of the undirected

input graph formed by all edges with color (i, j). Note that orienting the edges
does not change the edge set.
Symmetrization. Symmetrization is the process of making all edges in a

directed graph bi-directional. As we will see below, symmetrization is needed
for our distributed solution.
Directed edge set. A directed edge set E∗ij is an edge-induced sub-graph of the

edge-oriented DAG, where each edge (−→u, v) of E∗ij points from color i to color
j. Directed edge set E∗ij is a subset of edge set Eij . For i 6= j, E∗ij ∪E∗ji = Eij .
For i = j, E∗ii = Eii.
Sub-problems. A sub-problem refers to the union of edge-sets of particular

colors, or more precisely the problem of finding the graphlets in that union-set.
For a k-order graphlet enumeration, we denote sub-problems by S{c0,c1,...,cl}
where |{c0, c1, ..., cl}| ∈ {1, 2, ...k} and cl ∈ {1, 2, ...ρ}. For example, for ρ = 3
and k = 3 (i.e., for triangles), the sub-problems are: S0, S1, S2, S01, S02, S12

and S012, where, Si = Eii, Sij = Eii ∪ Eij ∪ Ejj , and Sijk = Eij ∪ Eik ∪ Ejk.
Note that Si ⊂ Sij , but Sij 6⊂ Sijk.

4 Graphlets Enumeration

Compact-Forward [23] is known as the most effective serial algorithm for trian-
gle enumeration. It utilizes the DAG technique to optimize the efficiency. For a

given ordered-by-degree input DAG
−→
G(V,

−→
E), Compact-Forward enumerates

all triangles using O(|
−→
E |3/2) operations.

In our implementation, we use a variant of Compact-Forward where the
orientation task is done separately before the enumeration, in what we call
the graph preparation phase (Algorithm 1). The triangle enumeration part is
listed in Algorithm 2. If we input a graph that has already been prepared, then
lines 3 and 5 of Algorithm 2 are unnecessary because the graph preparation
basically provides us with a DAG.

Note that a DAG is effective because of the symmetrical property of tri-
angles. That is, if we have a triangle with nodes i, j and k, we can list the
triangle by any one of the six possible permutations of the nodes. Suppose,
i < j < k, then we only need to list the triangle as (i, j, k). Thus, by imposing
an ordering on the nodes through DAG we can follow the order and make sure
that we include all triangles without double counting.

Springer Nature 2021 LATEX template

8 Graphlet Enumeration

Algorithm 1 Graph-Prep

Require: An undirected graph G(V,E)
1: Sort V based on the degrees, in ascending order.
2: Relabel the vertices according to their new order.
3: Build adjacency list of the sorted and relabeled vertices.
4: Cut out the smaller neighbours (i.e., neighbours that are lower in the

ordering of the nodes) from each neighbour list.

Algorithm 2 Triangle Enumeration

Require: An undirected graph G(V,E) in an adjacency list representation
1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N(u) do
3: if v > u then
4: for all w ∈ N(u) ∩N(v) do
5: if w > v then
6: EnumerateTriangle (u, v, w)
7: end if
8: end for
9: end if

10: end for
11: end for

For this reason, enumerating wedges is actually more complicated than
enumerating triangles. Take an arbitrary wedge, the lowest node might either
be at the center or at one of the legs. This leads to two types of wedges, which
need to be enumerated differently.

4.1 Four Node Graphlet Enumeration

By observing Figure 3 we noticed that a tailed triangle contains one triangle,
while a diamond contains two triangles and a 4-clique contains four triangles.
The other three do not contain triangles but they contain wedges. This gave
us an idea to enumerate four node graphlets in a cascading manner, by first
searching for three node graphlets and then for each that is found, searching
for four node graphlets.

Our solution for a single machine has been described in detail in [8]. We call
it S4GE (Simultaneous 4-node Graphlet Enumeration) 3. For this, we extend
the Triangle Enumeration to include wedges as well. The pseudo code is listed
in Algorithm 3 4. There are two types of wedges: type 1 has the center as the
lowest node, type 2 has one leg as the lowest node. Here, ExploreTriangle,
ExploreWedgeType1, and ExploreWedgeType2 can be considered as
placeholders for listing the triangles and wedges.

3It was not named in the original paper.
4We have a correction in this algorithm from the original version, on lines 9 and 12, to enumerate

all wedges properly.

Springer Nature 2021 LATEX template

Graphlet Enumeration 9

Algorithm 3 Triangle and Wedge Enumeration

Require: An undirected graph G(V,E) in an adjacency list representation
1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N(u) do
3: if u < v then
4: for all u′ ∈ N(u) and v′ ∈ N(v) do
5: if (u′ > u) ∧ (v′ > u) then
6: if u′ = v′ > v then
7: EnumerateTriangle (u, v, u′)
8: end if
9: if ((u′ < v′) ∨ (v′ = u)) ∧ (u′ > v) then

10: EnumerateWedgeType1 (v, u, u′)
11: end if
12: if (u′ > v′) ∧ (v′ 6= u) then
13: EnumerateWedgeType2 (u, v, v′)
14: end if
15: end if
16: end for
17: end if
18: end for
19: end for

For four node graphlets, we extend the EnumerateTriangle and
EnumerateWedge functions to include calls to ExploreTriangle and
ExploreWedge, respectively. Whenever a triangle, (u, v, w), is found, the
ExploreTriangle function (Algorithm 4) is then called. This function
checks for the intersections among the neighbour sets of the three triangle
nodes, N(u), N(v) and N(w). If we find a z ∈ N(u) ∩ N(v) ∩ N(w), then
(u, v, w, z) is a four-clique. A node z that is in two of the three neighbour sets
gives us a diamond, while a z that is in only one of the three neighbour sets
gives us a tailed triangle. For 4-cliques, because of the symmetry we only need
to consider the sets of larger neighbours, i.e., z > u, v, w. For diamonds, we
can use the sets of neighbours larger than u. For the tailed triangles, however,
we need to include all of the neighbours. Due to this last case we lose some
of the advantage of the graph preprocessing. As a result, the runtime might
be much longer compared to the triangle enumeration time, depending on the
maximum degree.

For the wedges, we call two different functions depending on the type of
the wedge, either Algorithm 5 or 6. In this two functions we only need sets
of neighbours that are larger than u, but this is not done in a pre-processing.
Notice that in Algorithm 6 w can be smaller than v, which is the center of the
wedge.

Springer Nature 2021 LATEX template

10 Graphlet Enumeration

Algorithm 4 ExploreTriangle

Require: Given triangle (u, v, w)2, u < v < w: N(u), N(v), N(w).
1: Compute intersections among the three neighbour sets.
2: for all z ∈ N(u) ∩N(v) ∩N(w) with z > w do
3: Enumerate4Clique (u, v, w, z)8

4: end for
5: for all z in two sets and z > opposite node do
6: EnumerateDiamond (.)7

7: end for
8: for all z in one set only do
9: EnumerateTailedTriangle (.)6

10: end for

Algorithm 5 ExploreWedgeType-1

Require: Given wedge (v, u, w)1, u < v < w: N>u(u), N>u(v), N>u(w).
1: Compute intersections among the three neighbour sets.
2: for all z ∈ N>u(v) ∩N>u(w) with z /∈ N>u(u) do
3: EnumerateRectangle (u, v, z, w)5

4: end for
5: for all z ∈ N>u(u) only do
6: if z > w then
7: Enumerate3Star (u, v, w, z)4

8: end if
9: end for

10: for all z ∈ N>u(v) only do
11: Enumerate3Path (w, u, v, z)3

12: end for
13: for all z ∈ N>u(w) only do
14: Enumerate3Path (v, u, w, z)3

15: end for

Springer Nature 2021 LATEX template

Graphlet Enumeration 11

Algorithm 6 ExploreWedgeType-2

Require: Given wedge (u, v, w)1, u < v, u < w: N>u(u), N>u(v), N>u(w).
1: Compute intersections among the three neighbour sets.
2: for all z ∈ N>u(v) only do
3: if z > w then
4: Enumerate3Star (v, u, w, z)4

5: end if
6: end for
7: for all z ∈ N>u(w) only do
8: if z 6= v then
9: Enumerate3Path (u, v, w, z)3

10: end if
11: end for

The runtime of S4GE is bounded by O((N∆ +N∠) dmax + T3g), where N∆

(N∠) is the number of triangles (wedges), and T3g is the time to enumerate
triangles and wedges. This bound comes from the fact that for each triangle or
wedge the algorithm runs through the neighbor sets to check the intersections
with cost ≤ (d(u) + d(v) + d(w)). Note that in general (N∆ + N∠) . nd2

max,
with the upper value is satisfied by a regular graph. However, for all real
world networks that we have considered so far, we have (N∆ +N∠)� nd2

max.
Also, T3g � nd2

max using an efficient enumeration. Therefore, in practice, our
runtime is much less than the worst case bound of O(nd3

max).

4.2 Previous Distributed Enumeration

Park et al. [12] proposed a distributed solution for triangle enumeration
called PTE (Pre-partitioned Triangle Enumeration). PTE employs Compact-
Forward algorithm as the local serial algorithm. On each distributed worker,
PTE does O(m1.5/ρ3) amount of work. Summing over all O(ρ3) sub-problems,
PTE recovers O(m1.5) amount of work overall, which is the same asymptotic
behaviour as the Compact-Forward on a single machine. Note however, that
because of the distribution of the subproblems there are inherently some redun-
dant computations. Park et al. reduced the total number of operations by a
factor of 2− 2

ρ by employing color directions to minimize this redundancy.
Park et al. generalised PTE to support non-induced sub-graph query of an

arbitrary order, called PSE (Pre-partitioned Subgraph Enumeration) [17]. PSE
takes a query sub-graph Gq(Vq, Eq) of order k as input where k = |Vq|, and
enumerates all the sub-graphs matching Gq. PSE employs VF2 algorithm [30]
as the local serial algorithm for query graph matching. We stress that VF2
can only take one non-induced subgraph query at a time, in contrast to S4GE,
which enumerates all types of four-node induced connected subgraphs simul-
taneously. PSE starts by defining

∑k
l=1

(
ρ
l

)
sub-problems. For example, with

ρ = 4 and k = 4, PSE first defines the following sub-problems: S0, S1, S2,
S3, S01, S02, S03, S12, S13, S23, S012, S013, S023, S123 and S0123. Park et al.

Springer Nature 2021 LATEX template

12 Graphlet Enumeration

observed that solving the sub-problems independently introduces duplicate
emissions, and that some sub-problems can be grouped together to reduce the
duplication. For example, since S0 ⊂ S01 ⊂ S012, enumerating the sub-graphs
from S012 also enumerates all the sub-graphs from S0 and S01. PSE introduced
sub-problem group as the fundamental computing task on each distributed
worker. For example, {S012, S0, S1, S2}, is a valid sub-problem group, where
solving S012 is sufficient to solve for the entire group. Park et al. showed that
PSE requires at most

(
ρ−1
k−2

)
|E| amount of network read, for querying k-order

sub-graphs from an input graph of size |E|.
Note that PTE can only enumerate triangles, while PSE can enumerate

graphlets of any size (given the appropriate serial algorithm to do the task).
However, PSE is not fine-tuned for enumerating four-node graphlets using the
S4GE as the serial algorithm.

5 Proposed Methods

5.1 Generalized Color-Direction

PSE, while correctly enumerating all sub-graphs that match the query, dis-
covers certain sub-graphs more than once. Consider the following: if there is
a 4-node sub-graph (u, v, w, z) whose color is (0, 0, 1, 1), it can be discovered
from the group {S012, S0, S1, S2} as well as from the group {S013, S01, S03},
since the first group S012 reads edge sets E00∪E11∪E22∪E01∪E02∪E12, and
the second group S013 reads edge sets E00 ∪E11 ∪E33 ∪E01 ∪E03 ∪E13. Both
contains E00 ∪E01 ∪E11 where (u, v, w, z) of color (0, 0, 1, 1) would be found.

We observe that: (1) Given a 4-node graphlet and ρ colors, there are in total
ρ4 possible color assignments of the four vertices (denoted by Kijkl). (2) When
a 4-node graphlet (u, v, w, z) is emitted, it is imposed that the graphlet edges
are oriented following the ordering of the vertices: (−→u, v), (−−→u,w), (−→u, z), (−−→v, w),
(−→v, z) and (−−→w, z). Combining both observations, each color assignment Kijkl

can be used to represent the set of all possible 4-node graphlets (u, v, w, z)
of ordered colors (i, j, k, l), where the edges can only point from color i to
colors {j, k, l}, from color j to colors {k, l}, and from color k to color l. Any
4-node graphlet can have only one unique ordered color assignment. Each
ordered color assignment contains all the 4-node graphlets that meets the
criteria, and there is no overlap among different ordered color assignments.
Hence, enumerating from all ordered color assignments enumerates all the
4-node graphlets once and once only. The ordered color assignment can be
viewed as a directed version of a sub-problem. Unlike a sub-problem Sijkl that
requires the union of edge sets Eij ’s, a color assignment Kijkl requires the
union of directed edge sets E∗ij ’s. A color assignment Kijkl requires knowledge
of E∗ij ∪ E∗ik ∪ E∗il ∪ E∗jk ∪ E∗jl ∪ E∗kl. However, simply solving all the ordered
color assignments on distributed workers will incur unnecessary network read.
The color assignments therefore are grouped into sub-problems to reduce the
network read, with a strategy introduced below. Sub-problems become the
fundamental task assigned to each distributed worker.

Springer Nature 2021 LATEX template

Graphlet Enumeration 13

Algorithm 7 D4GE

Require: An undirected graph G(V,E); the number of colors ρ

1: Construct
−→
G(V,

−→
E) by applying edge-orientation to G(V,E)

2: Symmetrise
−→
G(V,

−→
E) into Gsym(V,Esym)

3: Partition Esym into directed edge sets E∗ij using ρ
4: Generate ordered color assignments and sub-problems {SCs 7→ {Kijkl}}
5: for all SCs, {Kijkl} do . Distributed-for
6: Emap ←ReadEdgeSetsCD (SCs, 4)
7: for all Kijkl ∈ {C0, C1, ...} do
8: S4GECD (Emap, ijkl)
9: end for

10: end for

We call our scheme, applied to four-node graphlets, as Distributed 4-node
Graphlet Enumeration (D4GE). The pseudo code of D4GE is given as Algo-
rithm 7 and Algorithm 8. We want to stress that while PTE employs the idea
of color-direction to reduce the amount of work performed, we exploit both
the linearity of the DAG and the color-direction, and are able to observe that
the color-assignment problem is essentially a combination problem, and the
unique relationship between any subgraph to its color assignment guarantees
the duplication-freeness of our algorithm. In addition, PTE explicitly lists all
the ordered color-tuples in the algorithm, while we use combinations to gen-
eralize color-assignment. This works not only for k = 4, but also to any order
k (with ρk color-assignments).

Algorithm 8 ReadEdgeSetsCD

Require: Sub-problem SCs with Cs = {c0, c1, ..., cl}; order of query graph k
1: Initialize empty map Emap ≡ {(i, j) 7→ E∗ij}
2: for all (i, j) ∈ Cs2 do
3: if i = j and |{c0, c1, ..., cl}| 6= k then
4: Emap[(i, i)]← E∗ii
5: else
6: Emap[(i, j)]← E∗ij
7: end if
8: end for
9: return Emap

D4GE takes a DAG as input and symmetrises it. Symmetrization is nec-
essary to ensure the correctness of S4GE to enumerate all the wedge-based
4-node graphlets. Consider the graph in Figure 4 with DAG adjacency list:
1: {4}, 2: {4}, 3: {4}, 4: {5,6}, 5: {6}, 6: ∅. If we apply S4GE algorithm on
this adjacency list, we will only find triangle (4, 5, 6) but will not discover
tailed-triangle (1,4,5,6), (2,4,5,6) and (3,4,5,6), as vertices 1, 2, 3 are not in the

Springer Nature 2021 LATEX template

14 Graphlet Enumeration

adjacency list of of vertex 4. With symmetrization, the adjacency list is now
1: {4}, 2: {4}, 3: {4}, 4: {1,2,3,5,6}, 5: {4,6}, 6: {4, 5}, and S4GE can now suc-
cessfully enumerate the three tailed-triangles, as vertices 1, 2 and 3 are added
into the neighbourhood of vertex 4.

1

2

3

4

5

6

Fig. 4 A graph illustrating the need for symmetrization.

Now, we introduce the grouping strategy to form sub-problems from
ordered color assignments. Consider color assignments K0001 and K0002. By
definition K0001 requires knowledge of E∗00∪E∗01 and K0002 requires knowledge
of E∗00 ∪ E∗02. If these two color assignments are computed on two different
workers, the partitioned edge-set E∗00 is then loaded twice. To address this,
color assignments Kpqrs are grouped into sub-problems. We use Sijkl to denote
a sub-problem. The color assignments are grouped by the following rule: Kpqrs

belongs to sub-problem Sijkl if the sorted and reduced form of {p, q, r, s} is
{i, j, k, l}, where sorted means {p, q, r, s} is sorted in ascending order, and
reduced means removing the duplicated colors from the sequence {p, q, r, s}.
For example, the sorted and reduced form of {2, 0, 1, 0} is {0, 1, 2}. Therefore
K2010 belongs to S012.

It is not hard to see that sub-problem Sijkl contains 4! = 24 color assign-
ments - precisely the number of permutations of the sequence {i, j, k, l}. To
fully cover all the color assignments, D4GE generates

(
ρ
2

)
number of Sij ,

(
ρ
3

)
number of Sijk and

(
ρ
4

)
number of Sijkl. Sub-problem Sijkl contains all the

ordered color assignments Kpqrs where p, q, r, s ∈ {i, j, k, l}; sub-problem Sijk
contains all the ordered color assignments Kpqrs where p, q, r, s ∈ {i, j, k}; sub-
problem Sij contains all the ordered color assignments Kpqrs where p, q, r, s ∈
{i, j}. In the special case of ordered color assignments Kiiii where all four
colors are the same, we omitted Si and instead attach Kiiii to sub-problem
Sij where i + 1 = j%ρ. Each sub-problem is computed independently on a
distributed worker.

For all ordered color assignments under sub-problem Sijkl, there are only
two possible relative orders of two arbitrary colors p and q: p precedes q or the
reverse, meaning for any p and q from {i, j, k, l}, E∗pq ∪ E∗qp = Epq is needed.
Hence overall, to fully enumerate Sijkl, Eij∪Eik∪Eil∪Ejk∪Ejl∪Ekl needs to
be read. Sub-problem Sijk can be treated as Siijk∪Sijjk∪Sijkk to reflect that
it requires Eii∪Eij∪Eik∪Ejj∪Ejk∪Ekk, and sub-problem Sij can be treated
as Siiij ∪Siijj ∪Sijjj to reflect that it requires Eii∪Eij ∪Ejj . Each of the sub-
problems and the associated ordered color assignments are sent to a distributed
worker; the worker iterates over all the ordered color assignments. For each
colored assignment the worker reads the directed edge sets from distributed

Springer Nature 2021 LATEX template

Graphlet Enumeration 15

storage, and enumerates the 4-node graphlets by applying the modified S4GE
algorithm.

Algorithm 9 S4GECD

Require: A mapping from the colors of directed edge set to the edge set
Emap ≡ {(i, j) 7→ E∗ij}; ordered color assignment ijkl

1: E∗ij ≡ Emap[ij], E∗ik ≡ Emap[ik], E∗jk ≡ Emap[jk]
2: for all (u, v) ∈ E∗ij do
3: if η(u) < η(v) then
4: for u′ ∈ N(u) ⊂ E∗ik and v′ ∈ N(v) ⊂ E∗jk do
5: if (u′ > u) ∧ (v′ > u) then
6: if u′ = v′ > v then
7: DExploreTriangle (u, v, u′, Emap, ijkl)
8: end if
9: if (u′ < v′) ∧ (u′ > v) then

10: DExploreWedge-1 (v, u, u′, Emap, ijkl)
11: end if
12: if u′ > v′ then
13: DExploreWedge-2 (u, v, v′, Emap, ijkl)
14: end if
15: end if
16: end for
17: end if
18: end for

5.2 S4GECD

S4GE is modified accordingly so that it is able to enumerate all 4-node
graphlets for an ordered color assignment ijkl, and we call this modified version
S4GECD. The pseudocode for S4GECD is given in Algorithm 9, and the details
of the explore-functions are given in Algorithms 10, 11, and 12 respectively.

Instead of enumerating on a complete graph, S4GECD now enumerates on
a sub-graph denoted by the color assignment ijkl. The sub-graph consists of
a mapping between the ordered color 2-tuples (i, j) and the corresponding
directed edge-sets E∗ij . For an ordered color assignment, there are

(
4
2

)
= 6 such

2-tuples: (i, j), (i, k), (i, l), (j, k), (j, l) and (k, l). (i, j), (i, k), (j, k) and the
corresponding edge-sets are used to discover the wedge or triangle, and (i, l),
(j, l), (k, l) and the corresponding edge-sets are used to discover the graphlet
after the base wedge or triangle have been discovered. S4GECD inherits the
correctness from S4GE since the actual intersection logic is untouched, whereas
S4GECD solely focuses on a particular edge-induced sub-set of the input graph,
with all the edges pointing from color i to j, k, l, from j to k, l and from k to l.

The modification of S4GE shows the expandability of D4GE partitioning
scheme. Since the intersection is not modified, the partitioning scheme can be

Springer Nature 2021 LATEX template

16 Graphlet Enumeration

Algorithm 10 DExploreTriangle

Require: Given triangle (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color
assignment ijkl.

1: N>u(u) ≡ {z | z ∈ N(u)|Emap[il] , η(z) > η(u)}
2: N>u(v) ≡ {z | z ∈ N(v)|Emap[jl] , η(z) > η(u)}
3: N>u(w) ≡ {z | z ∈ N(w)|Emap[kl] , η(z) > η(u)}
4: for all z ∈ N>u ∩N>u(v) ∩N>u(w) with z > w do
5: Enumerate4Clique (u, v, w, z)
6: end for
7: for all z in two sets and z > opposite node do
8: EnumerateDiamond (u, v, w, z)
9: end for

10: for all z in one set only do
11: EnumerateTailedTriangle (u, v, w, z)
12: end for

applied to different edge-based enumeration algorithms to suit different needs.
All it requires is to modify the input to accommodate a directed sub-set of the
input graph.

Algorithm 11 DExploreWedge-1

Require: Given wedge (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color
assignment ijkl.

1: N>u(u) ≡ {z | z ∈ N(u)|Emap[il] , η(z) > η(u)}
2: N>u(v) ≡ {z | z ∈ N(v)|Emap[jl] , η(z) > η(u)}
3: N>u(w) ≡ {z | z ∈ N(w)|Emap[kl] , η(z) > η(u)}
4: for all z ∈ N>u(v) ∩N>u(w) with z /∈ N>u(u) do
5: EnumerateRectangle (u, v, z, w)
6: end for
7: for all z ∈ N>u(u) only do
8: if z > w then
9: Enumerate3Star (u, v, w, z)

10: end if
11: end for
12: for all z ∈ N>u(v) only do
13: Enumerate3Path (w, u, v, z)
14: end for
15: for all z ∈ N>u(w) only do
16: Enumerate3Path (v, u, w, z)
17: end for

Springer Nature 2021 LATEX template

Graphlet Enumeration 17

Algorithm 12 DExploreWedge-2

Require: Given wedge (v, u, w); Emap ≡ {(i, j) 7→ E∗ij}; ordered color
assignment ijkl.

1: E∗jl ≡ Emap[jl], E∗kl ≡ Emap[kl]
2: N>u(v) ≡ {z | z ∈ N(v)|E∗

jl
, η(z) > η(u)}

3: N>u(w) ≡ {z | z ∈ N(w)|E∗
kl
, η(z) > η(u)}

4: for all z ∈ N>u(v) only do
5: if z > w then
6: Enumerate3Star (v, u, w, z)
7: end if
8: end for
9: for all z ∈ N>u(w) only do

10: if z 6= v then
11: Enumerate3Path (u, v, w, z)
12: end if
13: end for

5.3 Compact-Forward for 4-clique listing

Since PSE with VF2 only supports one query graph per run, for the purpose
of comparison we build an algorithm to enumerate 4-cliques. Furthermore,
we fit it to be used with the color direction scheme of D4GE. This algorithm,
called CF4CD, is given as Algorithm 13.

Algorithm 13 CF4CD

Require: An edge-oriented edge set E∗ij , E
∗
ik, E∗jk, E∗il, E

∗
jl, E

∗
kl

1: for all (−→u, v) ∈ E∗ij do
2: for all w ∈ {N+(u)|E∗

ik
∩ N+(v)|E∗

jk
} do

3: for all z ∈ {N+(u)|E∗
il
∩ N+(v)|E∗

jl
∩ N+(w)|E∗

kl
} do

4: Enumerate (u, v, w, z)
5: end for
6: end for
7: end for

Note that CF4 extends the idea of Compact-Forward algorithm from trian-
gles to four-cliques, hence the name CF4. The correctness of CF4CD is intuitive.
CF4CD does O(m2) work for a given graph.

5.4 Analysis

In this analysis, first we show that D4GE with S4GECD correctly enumerates
all the 4-node graphlets. D4GE works by generating all possible colored assign-
ments of all 4-node graphlets. Any 4-node graphlet must be found from one

Springer Nature 2021 LATEX template

18 Graphlet Enumeration

and only one of the colored assignments. D4GE then applies S4GECD algo-
rithm on each individual color assignment. Since S4GE correctly enumerates
all 4-node graphlets for any given graph, D4GE/S4GECD correctly enumerates
all 4-node graphlets for all color assignments of Gsym(V,Esym).

Second, we show that D4GE with S4GECD is expected to require no
more than 2msym amount of network read in addition to PSE, where msym

is the number of edges in Esym. For D4GE with S4GECD, the edge set Eii
is requested (ρ − 1) times (by sub-problems Sik), and

(
ρ−1

2

)
times (by sub-

problems Sikl), hence the amount of network read is
∑ρ−1

i=0 |Eii|
(
ρ
2

)
. The Eij

with i 6= j is requested once by sub-problems Sij ,
(
ρ−2

1

)
times by sub-problems

Sijk, and
(
ρ−2

2

)
times by sub-problems Sijkl. Thus, the amount of network

read is
∑ρ−1

i=0

∑ρ−1
j=i+1|Eij |

[
1 +

(
ρ−1

2

)]
. Combining both cases:

ρ−1∑
i=0

|Eii|
(
ρ

2

)
+

ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij |
[
1 +

(
ρ− 1

2

)]

=

(
ρ

2

)[ρ−1∑
i=0

|Eii|+
ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij |

]
− (ρ− 2)

ρ−1∑
i=0

ρ−1∑
j=i+1

|Eij |

≡
(
ρ

2

)
msym − (ρ− 2)msym

6=

(1)

If we assume the edges are distributed evenly, the expected size of msym
6= is

ρ2−ρ
ρ2 =1− 1

ρ of msym. Recall that, for k = 4, PSE requires
(
ρ−1

2

)
msym amount

of network read. Thus the difference to PSE is[(
ρ

2

)
− ρ+ 3− 2

ρ

]
msym −

(
ρ− 1

2

)
msym =

(
2− 2

ρ

)
msym (2)

which is less than 2msym.
Last, we show D4GE reduces the amount of work compared to PSE. For this

comparison we are using S4GECD as the localized algorithm. Since S4GECD

enumerates all 4-node graphlets by discovering the base triangle and wedges
first, we separate the work calculation into two parts: one being the amount
of work to discover all the base triangle and wedges, the other to discover the
fourth vertex.

Let us consider the first part. We can see that
∑

(u,v)∈Esym(dsym(u) +

dsym(v)) is the amount of work to intersect all pairs of edges for a symmetrised
graph. This sum is bounded by and can be estimated by 2msymdsym

max, where
dsym

max is the maximum degree of the symmetrised graph. Following the analysis
to derive expression 1, D4GE does

2

(
ρ

2

)
msym

= dsym
max + 2

[
1 +

(
ρ− 1

2

)]
msym
6= dsym

max (3)

Springer Nature 2021 LATEX template

Graphlet Enumeration 19

amount of work for discovering all the base triangles and wedges. For PSE,
each E∗ii is read

(
ρ−1

2

)
times; each E∗ij with i 6= j is read

(
ρ−2

1

)
+
(
ρ−2

2

)
=
(
ρ−1

2

)
times. So the total amount of work done by PSE to list all base triangles and
wedges is

2

(
ρ− 1

2

)
msym

= dsym
max + 2

(
ρ− 1

2

)
msym
6= dsym

max. (4)

Subtracting Expression 3 by Expression 4 yields

2

(
ρ− 1

1

)
msym

= dsym
max + 2msym

6= dsym
max

= 2(ρ− 2)msym
= dsym

max + 2msymdsym
max

(5)

recall that if we assume edges are distributed evenly, the expected value of
msym

= is 1
ρm

sym. Thus expression 5 can be simplified to

2(ρ− 2)msym
= dsym

max + 2msymdsym
max

= 2
ρ− 2

ρ
msymdsym

max + 2msymdsym
max

=

(
4− 4

ρ

)
msymdsym

max

(6)

Now consider the second part - the work required to locate the fourth
vertex after listing all the base shapes. Given a particular base triangle or
wedge (u, v, w), the amount of work by S4GECD to locate the 4th vertex z
through intersection is dsym(u)+dsym(v)+dsym(w). Similarly, this expression is
upper bounded by 3 dsym

max. Also for each graph dataset, the numbers of triangles
and wedges are fixed. D4GE/S4GECD enumerates each triangle and wedges ρ
times. This is required because given a triangle or wedge of color (i, j, k), the
4th vertex can have ρ different colors. All ρ colors are necessary to ensure that
all graphlets would be enumerated. Thus overall, D4GE with S4GECD does

3 ρ dsym
max(|∆|+ |∠|) (7)

amount of work.
As discussed briefly at the beginning of Section 5, PSE may discover a four-

node-graphlet in more than one subproblem group. The number of duplications
depend on the number of colors of the triangles and wedges. This, in turn,
determines the amount of work. We denote the uni-color triangles and wedges
by ∆I and ∠I , the bi-color ones by ∆II and ∠II , and the tri-color ones by

Springer Nature 2021 LATEX template

20 Graphlet Enumeration

∆III and ∠III . We can write

WPSE
I = (1 + a(ρ)) 3 dsym

max(|∆I |+ |∠I |)
WPSE
II = (1 + b(ρ)) 3 dsym

max(|∆II |+ |∠II |)
WPSE
III = (1 + c(ρ)) 3 dsym

max(|∆III |+ |∠III |)
(8)

where a(ρ), b(ρ), c(ρ) are positive functions of ρ representing the duplications
in the three types. Their exact values depend on the instance of the input
graph.

Expression 8 minus expression 7 yields

3 dsym
max (a(ρ) (|∆I |+ |∠I |) + b(ρ) (|∆II |+ |∠II |) + c(ρ) (|∆III |+ |∠III |)) (9)

which is the amount of extra work PSE/S4GE does compared to
D4GE/S4GECD for enumerating all the 4-node graphlets, after all the wedges
and triangles are discovered.

Now consider expressions 6 and 9. Expression 6 shows that the extra work
performed by D4GE with S4GECD to discover all base triangles and wedges
is sensitive to the size of the symmetrised graph, ie., the number of edges and
degrees; expression 9 shows that the extra work performed by PSE with S4GE
to list the 4th vertex, grows with respect to ρ and, is sensitive to the number
of triangles and wedges. Note that for real-world graphs, the number of wedges
plus triangles is often a magnitude greater than the number of the edges, and
for a reasonable-sized cluster, ρ is often set to a large value. As a result, D4GE
with S4GECD can often achieve greater performance improvement. This will
be confirmed in the experiments below.

6 Experiments

Our solution, D4GE, is implemented in Apache Spark 2.4.5 with Open-
JDK 1.8.0. We experimented with it on several large real world datasets.
The graph datasets were collected from http://law.di.unimi.it/datasets.php
in WebGraph format, except for the orkut dataset, and symmetrized
to get undirected graphs. The orkut dataset was retrieved from
https://snap.stanford.edu/data/com-Orkut.html. The statistics of the
symmetrized graphs are listed in Table 1.

For the smaller graphs, unless specifically stated otherwise, the experiments
were conducted using 30 Intel E5430 quad-core machines with 6 GB of RAM
each. This gives equivalently 120 distributed workers5 and 1.5 GB of RAM
per worker. For the three largest graphs, uk02, enwiki18 and indochina, we
employed a larger cluster on Compute Canada6 using 14 compute nodes, with
48 cores and 192 GB RAM per node. This configuration effectively gives us
672 workers with 4 GB RAM per worker, which can still be considered modest.

5Each worker is equivalent to a physical CPU core.
6https://docs.computecanada.ca/wiki/Cedar

http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/com-Orkut.html
https://docs.computecanada.ca/wiki/Cedar

Springer Nature 2021 LATEX template

Graphlet Enumeration 21

Table 1 The numbers of vertices n, edges m, wedges |∠|, and triangles |∆|, and the max
degree of the symmetrized graphs. The last three graphs are the largest and they require
more computing power than the others.

Dataset n m |∠| |∆| dsym
max

enron 69K 510K 40M 1M 1.6K

cnr 326K 5.6M 7.8B 21M 18K

amazon 735K 7M 38M 4.5M 1.1K

hollywood09 1.1M 114M 33B 4.9B 11K

dewiki 1.5M 33M 51B 89M 118K

hollywood11 2.2M 229M 100B 7.1B 13K

orkut 3M 234M 44B 628M 33K

ljournal 5.4M 100M 8.7B 441M 19K

uk02 18.5M 529M 188B 4.5B 195K

enwiki18 5.6M 235M 297B 378M 248K

indochina 7.4M 304M 392B 61B 256K

We compared the performance with the performance of the SotA, the PSE,
and the single machine solution S4GE. The single machine experiment was
conducted using a machine with dual Xeon E5-2620 processors and 128 GB
of RAM. The total number of threads in this machine is 24. We set our time
budget to be six days for each run.

6.1 The impact of ρ on performance

Let us first address the impact of ρ on the overall performance of our dis-
tributed algorithm. In a previous literature, Suri and Vassilvitskii [29] regarded
ρ as a trade off between the network read and the input size of each distributed
worker: a larger value of ρ increases the amount of network read, but also
decreases the input size as each task becomes smaller. Park et al. [12] on the
other hand adjusted ρ accordingly to the input graph size, to fully utilize the
amount of available memory for each worker.

We show that while ρ affects the amount of network read, a large ρ value
in practice can help with balancing the workload distribution, even when the
number of sub-problems over-saturates the number of workers. Also, with a
large enough ρ, the input size of each task shall never exceed the allocated
memory for each worker. We experimented with D4GE/S4GECD on three
different datasets and varying ρ = 8, 12, 16 and 20. The result is shown in
Figure 5.

When ρ = 8 there are
(

8
2

)
+
(

8
3

)
+
(

8
4

)
= 154 sub-problems, hence ρ = 8 is

the minimum value to saturate our cluster of 120 workers. Any ρ greater than
8 will over-saturate the cluster. Theoretically, we should not see any improve-
ment after ρ = 8, but in fact we do. This is because of better load balancing.
From ρ = 8 to 12, we observe improvement, consistently on various datasets.
This shows that ρ = 12, with almost 5 times more sub-problems than ρ = 8,

Springer Nature 2021 LATEX template

22 Graphlet Enumeration

10 15 20
0

500

1,000

1,500

ρ

R
u

n
n

in
g

T
im

e
(m

in
)

hw09
hw11

ljournal

Fig. 5 The enumeration time (minutes) of D4GE/S4GECD on several graphs, with varying
value of ρ. Higher ρ does not add much overhead; the lines flatten out rather than sloping
up perceptibly.

gives us a better workload distribution. However, the improvement diminishes
and the performance would eventually decrease as ρ gets higher. The overhead
of network read and Apache Spark framework itself could dwarf the computa-
tion when ρ is too large. We would like to note that the network read in our
experiment is through internal traffic - i.e., traffic between distributed workers
and distributed storage. Internal traffic is often free even on a commercial
platform, and the internal network connection can be order of magnitude
faster than an external one. Even though a large ρ value introduces more
network read, the performance penalty from the network read is negligible.

6.2 Machine scalability

We investigate the machine scalability of D4GE/S4GE by measuring the run-
ning time on hollywood09 and cnr dataset while varying the number of
distributed workers from 32 to 256. The results are presented in Figure 6.
D4GE/S4GE shows strong scalability: with slope -0.968 and -0.899 respec-
tively, which are very close to the perfect value -1. It means that the running
time decreases by 2−0.968 = 1.956 and 20.899 = 1.865 times, respectively, when
the number of machines is doubled. We emphasize that this is on-par with the
SotA Map-Reduce based algorithms [12] and [17].

6.3 S4GE vs D4GE/S4GECD

Here we compare the running time of D4GE/S4GECD to S4GE on a single
machine. For this experiment, for D4GE/S4GECD we used a cluster of 120
distributed workers, while for S4GE we used a machine with 24 threads. We
set ρ = 16 for the distributed runs. Our results are shown in Table 2. For
hollywood09, dewiki, hollywood11, and orkut using S4GE we abort the
runs because they are over our time budget of 6 days. Note that 6 days is
8640 minutes. We notice that workload imbalance has a big impact on the
S4GE runtime. Except for amazon, we see big speedup for all the datasets.
For amazon, the runtime is too short and the overhead for the distributed

Springer Nature 2021 LATEX template

Graphlet Enumeration 23

32 64 128 256

102

103

Number of distributed workers

R
u

n
n

in
g

T
im

e
(m

in
)

hw09: -0.968
cnr: -0.899

Fig. 6 Machine scalability of D4GE/S4GE on cnr and hollywood09. D4GE/S4GE show
very strong scalability with slope -0.899 and -0.968, which is very close to -1, the perfect
value.

computing is larger than the gain. The runtime of dewiki is longer than the
others because it has higher maximum degree.

Table 2 The enumeration time (minutes) of D4GE/S4GECD with ρ = 16, 120 workers,
against S4GE (single machine) with 24 threads.

Dataset S4GE D4GE/S4GECD Speedup

enron 1.28 0.18 7.1

cnr 2933 132 22.2

amazon 0.23 0.37 0.6

hollywood09 > 6 days 204 /

dewiki > 6 days 2328 /

hollywood11 > 6 days 864 /

orkut > 6 days 390 /

ljournal 1367 47 29

6.4 PSE/S4GE vs D4GE/S4GECD

Next, we modified PSE and replaced VF2 with S4GE in the PSE. We then
compared D4GE/S4GECD against PSE/S4GE. For this experiment we set ρ =
16 and use the same cluster configuration for both. The enumeration times
are listed in Table 3. We found that D4GE/S4GECD is more efficient for all of
the tested graphs, and D4GE/S4GECD is able to achieve up to 11x speedup,
which is on the cnr dataset.

A significant speedup is achieved on cnr, hollywood09, hollywood11,
orkut and ljournal. For dewiki, we can deduce that the speedup is > 3.7
(i.e., 8640/2328). For these datasets, the number of wedges plus triangles are
much greater than the number of edges, as can be seen in Table 1. According
to expressions 6 and 9, PSE’s performance is penalized by the number of

Springer Nature 2021 LATEX template

24 Graphlet Enumeration

triangles from type-1 sub-problems and wedges, whereas D4GE’s performance
is penalized no more than the number of edges from the symmetrised graph.
This gives advantage to D4GE/S4GECD compared to PSE/S4GE.

Table 3 The enumeration time (minutes) of D4GE/S4GECD against PSE/S4GE, with
ρ = 16, 120 workers.

Dataset PSE/S4GE D4GE/S4GECD Speedup

enron 0.55 0.18 3.1

cnr 1446 132 11.0

amazon 0.37 0.37 1.0

hollywood09 2190 204 10.7

dewiki > 6 days 2328 /

hollywood11 9186 864 10.6

orkut 3799 390 9.7

ljournal 432 47 9.2

6.5 PSE/VF2 vs D4GE/CF4CD

Lastly, we compare the performance of Park et al.’s PSE/VF2 implementation
on 4-clique query, against our D4GE/CF4CD. The results are shown in Table 4.
Comparing our D4GE/CF4CD suite against one of the state-of-the-art sub-
graph enumeration algorithm, up to 5.2 fold speedup is observed on small graph
such as amazon, and > 20 fold speedup on large graph such as hollywood09.

Table 4 Enumeration time (minutes) of D4GE/CF4CD against PSE/VF2, with ρ = 16

Dataset PSE/VF2 CDext/CF4CD Speedup

enron 0.7 0.15 4.7

cnr 1.1 0.33 3.3

amazon 1.3 0.25 5.2

hollywood09 324 16 20.3

dewiki 4.5 1.5 3.0

hollywood11 288 31 9.3

orkut 16 5.0 3.2

ljournal 11 2.5 4.4

We emphasize that the overall speedup of D4GE against PSE is also
because D4GE guarantees no duplication during the enumeration. We obtained
Park et al.’s PSE+VF2 implementation from https://datalab.snu.ac.kr/
pegasusn/download.php, version 3.0.1. We modify the source code to count

https://datalab.snu.ac.kr/pegasusn/download.php
https://datalab.snu.ac.kr/pegasusn/download.php

Springer Nature 2021 LATEX template

Graphlet Enumeration 25

the number of duplicated emissions. We list the percentages of duplicate emis-
sions from PSE/S4GE, PSE/CF, and PSE/VF2. For PSE/S4GE, we list the
median percentage of the duplications for all six types of 4-node graphlets, and
we query 4-clique against VF2. The results are presented in Table 5. We can
see that PSE partitioning scheme, when combined with S4GE algorithm, emits
around 300% of duplicates. The percentages are around 40% for PSE/CF4, and
lower for PSE/VF2. From this table, we might deduce that PSE was indeed
designed to work together with VF2, but not suited for S4GE.

Table 5 Duplicated emissions from PSE partitioning scheme with different local
algorithms.

Dataset S4GE CF4 VF2(K4)

enron 255% 36% 19%

cnr 245% 32% 14%

amazon 270% 36% 1.2%

hollywood09 379% 41% 29%

dewiki / 39% 25%

hollywood11 305% 41% 29%

orkut 246% 41% 29%

ljournal 309% 41% 26%

Comparing the second and the third column of Table 5 on duplicate emis-
sions, we can see that localized VF2 algorithm emits less duplicated 4-cliques
than CF4, when both are using the same PSE partitioning scheme. Yet, still
up to 29% of duplicates are emitted by VF2, from both hollywood and orkut
datasets.

The overall results show that D4GE/CF4CD has better performance than
PSE/VF2 for enumerating 4-cliques. However, we also acknowledge that,
PSE/VF2 might suffer from its generality in this particular comparison.
D4GE/CF4CD is tuned to enumerating 4-cliques only whereas VF2 is capable
of answering any k-order sub-graph query.

We also want to emphasize that the comparison here is aimed to show the
performance gain of D4GE over PSE; while D4GE/S4GECD can be revised
to query 4-cliques, it is designed for a bigger goal - enumerating all 4-node
graphlets.

6.6 The Output of D4GE/S4GECD

Here we summarize the results of our experiments with D4GE/S4GECD. We
list the counts of graphlets in Tables 6 and 7.

For the largest datasets, uk02, enwiki18 and indochina, we employed
a larger cluster of 672 workers with 4 GB RAM per worker. On this cluster,
we set ρ to 25, which gives us 15,250 sub-problems. The results are shown

Springer Nature 2021 LATEX template

26 Graphlet Enumeration

Table 6 The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120 workers.

Graphlets enron cnr amazon hw09

3-path 2.51B 6.12B 372M 21.4T

3-star 8.04B 41.4T 610M 16.7T

4-cycle 21.6M 37.9B 2.69M 168B

tailed-triangle 583M 79.4B 92.3M 8.87T

diamond 46.1M 43.0B 13.1M 635B

4-clique 5M 160M 4.19M 1.39T

Running Time (min) 0.18 132 0.37 204

Table 7 The outputs of D4GE/S4GECD with ρ = 16, on a cluster of 120 workers.

Graphlets dewiki hw11 orkut ljournal

3-path 10.4T 104T 18.6T 1.81T

3-star 661T 92.8T 97.8T 8.85T

4-cycle 13.1B 643B 70.1B 8.55B

tailed-triangle 993B 26.8T 1.51T 190B

diamond 11.9B 1.88T 47.8B 27B

4-clique 158M 728B 3.22B 16.1B

Running Time (min) 2328 864 390 47

in Table 8. D4GE/S4GECD was able to complete uk02 in about 30 hours,
enwiki18 in 82 hours and indochina in 124 hours, enumerating more than 2,
7.5 and 10 quadrillion graphlets in total. We emphasize that, to the best of our
knowledge, there is no existing algorithm that can enumerate all the 4-node
graphlets in a dataset of this scale in a feasible amount of time. We estimate
that, for each, PSE/S4GE would take more than 7 days to run using the same
cluster, which is impractical. Note that 1 day = 24 hours = 1440 minutes.

Table 8 The outputs of D4GE/S4GECD with ρ = 25, on a cluster of 672 workers.

Graphlets uk02 enwiki18 indochina

3-path 1.9T 66.2T 7.6T

3-star 1.97Q 7.4Q 10.01Q

4-cycle 238B 76B 617B

tailed-triangle 6.1T 5.1T 9.3T

diamond 1.8T 61.7B 3.3T

4-clique 157B 876M 99.3T

Running Time (min) 1800 4885 7416

Springer Nature 2021 LATEX template

Graphlet Enumeration 27

6.7 Discussion

It is common in the literature that performance or scalability is measured
against the size of the input graph, either by the number of vertices or more
commonly the number of edges. We would like to point out that in the context
of 4-node graphlet enumeration, using the S4GE algorithm, the number of
vertices or edges should not be the primary consideration when it comes to the
amount of computation. In [8] it was shown that S4GE algorithm is bounded
by T3g + (|∠| + |∆|)dsym

max, where T3g is the time to enumerate all the wedges
and triangles. As a consequence, a small graph such as dewiki can have a
much longer runtime than graphs of larger size, such as ljournal. As can be
seen in Table 3, ljournal, which is three times larger than the dewiki in size,
has a runtime that is only 2% of the dewiki’s. Notice that dewiki has a much
larger number of graphlets, in particular the 3-stars. We plot the enumeration
time of eight small-medium datasets against dsym

max(|∆|+ |∠|) in Figure 7. From
our experiments, the enumeration time demonstrates high correlation with
respect to dsym

max(|∆|+ |∠|). This shows that the total number of graphlets is the
important metric to measure the performance of an enumeration algorithm.
The correlation also shows that the D4GE performs as expected, i.e. it does
not distort the single machine solution expectation.

1010 1011 1012 1013 1014 1015 1016

10−1

100

101

102

103

enron

cnr

amazon

hw09

dewiki
hw11

orkut

ljournal

dsymmax(|∆|+ |∠|)

R
u

n
n

in
g

T
im

e
(m

in
)

R2 = 0.979

Fig. 7 Strong correlation between the enumeration time and dsymmax(|∆|+ |∠|) on the small-
medium datasets.

We have stated from the beginning that graphlets are induced connected
subgraphs. Some papers in the literature focus on enumerating non-induced
subgraphs instead. We should point out that we can get the non-induced sub-
graphs from the induced subgraphs, or vice versa, since they are correlated.
However, getting the non-induced from the induced is easier than the other
way around. Given a set of four vertices, the induced subgraph for this ver-
tices (there is only one) contains all the non-induced subgraphs. On the other
hand, we need to find the largest non-induced subgraph to get the induced

Springer Nature 2021 LATEX template

28 Graphlet Enumeration

subgraph. The counts are related by

N = M I (10)

where N is the vector for the non-induced counts (3-path, 3-star, square, tailed
triangle, diamond, 4-clique, in this order), and I is for the induced one. The
matrix M is

M =


1 0 4 2 6 12
0 1 0 1 2 4
0 0 1 0 1 3
0 0 0 1 4 12
0 0 0 0 1 6
0 0 0 0 0 1

 (11)

Another question that the readers might ask is why enumerate all types of
4-node graphlets in a single run? Why not just one type at a time, like many
other solutions? Our answer is that we can turn off any pattern that we do not
want in the S4GE, and do some optimization for each. However, if we need all
types of the graphlets, for a complete analysis, it will be more efficient to do
all at once rather than do them one by one. Notice that due to its design, the
running time of S4GE is less than the sum of the times for enumerating the
six graphlet types individually.

7 Directed Case

So far we have been focusing our study on undirected graphs. However, many
real world networks are directed. Let us now turn our attention to graphlets in
directed graphs. In a directed graph each edge has a direction. Edges connected
to a node u can be classified in two types: edges to u and edges from u.
Accordingly, we have outgoing neighbours of u, N+(u), and ingoing neighbours
of u, N−(u), for the neighbouring nodes of u. The out-degree of u is d+(u) =
|N+(u)|, and the in-degree of u is d−(u) = |N−(u)|. Note that N+(u) and
N−(u) may overlap, because for a pair of nodes u and v we may have both
u → v and u ← v edges. We call the connection between two nodes a link.
There are three types of links between nodes u and v: from u to v, from v to
u, and bidirectional. We encode the links by using two binary digits as shown
in Table 9.

Table 9 Link encoding using two binary digits.

Link Value Binary

0 00

1 01

2 10

3 11

Springer Nature 2021 LATEX template

Graphlet Enumeration 29

A triad is a subgraph of three nodes in a directed graph [39, 42]. When each
pair of the nodes is connected we have a closely connected triad. Here, since
we restrict our study to only closely connected triads, we will simply call them
as triads. Other authors use the term triangles [43, 44], but we do not want to
confuse them with the undirected triangles, or the directed triangles as defined
in [21, 45]. There are seven types of triads, as shown in Figure 8. Enumerating
triads means listing the edges (or links) as well as the nodes inside every
triad. Thus, triad enumeration is more complex than triangle enumeration.
Nonetheless, we have shown that it is possible to devise an efficient algorithm
that, when combined with a compression framework such as WebGraph [46], is
able to enumerate triads on a graph with a billion nodes and billions of edges
using a single commodity machine [21].

Type 1 Type 2 Type 3 Type 4

Type 5 Type 6 Type 7

Fig. 8 Seven types of triads.

7.1 Triad Enumeration

Our serial algorithm for triad enumeration is listed in Algorithm 14. The
algorithm requires both a directed graph and its transpose graph as input.
The transpose of a directed graph G = (V,E) is another directed graph
GT = (V,ET), where ET is the same set of edges as E but with each edge is
reversed. The key idea here is that the ingoing neighbours of node u in G are
the outgoing neighbours of u in GT , i.e., N−(u) ≡ N−G (u) = N+

GT (u). There-
fore, we can consider only the outgoing adjacency lists from each G and GT in
the computation. That is, we find N+(u) from G and N−(u) from GT . To find
the triads, this algorithm employs four pointers, one on each of N+(u), N−(u),
N+(v), and N−(v). Therefore, we call it Four Pointers Triad Enumeration
(FPTE) algorithm.

The algorithm iterates over the first node u. This iteration can easily be
parallelized. For each u, it checks both N+(u) and N−(u) to find the neigh-
bours of u and their respective links. For each neighbour of u, v, it finds their
common neighbours using four pointers (Line 7). For each common neighbour,
w, it looks up the triad type based on the links among the three nodes (u, v, w).
The encodings are listed in Table 10. In line 10, enum() is a space holder for
an enumeration or listing function.

Springer Nature 2021 LATEX template

30 Graphlet Enumeration

Algorithm 14 FPTE

Require: A directed graph G = (V,E) and its transpose GT

Ensure: The number of each type of triads in G, ∆i

1: ∆1 ← 0, . . . , ∆7 ← 0
2: for all u ∈ V do . Parallelize
3: while there is next do
4: Find next neighbour in N+(u) and/or N−(u): v.
5: Code the link uv as e1: either 01, 10 or 11
6: while there is next do
7: Find next common neighbour of u and v: w.
8: Code the links vw as e2, and wu as e3.
9: Look up triad type i using e1, e2, e3.

10: enum(u, v, w, e1, e2, e3)
11: ∆i ← ∆i + 1
12: end while
13: end while
14: end for

Table 10 Triad types and binary encoding.

Triad Binary Code

Type 1 010101, 101010

Type 2 010110, 011001, 100101, 101001, 100110, 011010

Type 3 010111, 011101, 110101, 101011, 101110, 111010

Type 4 011011, 110110, 101101

Type 5 100111, 111001, 011110

Type 6 011111, 110111, 111101, 101111, 111011, 111110

Type 7 111111

The 4-pointers algorithm is an expansion of the 2-pointers algorithm com-
monly used for set intersections in the (undirected) triangle enumeration. The
flow of the 4-pointers algorithm is illustrated in Figure 9. At the start, each
pointer is set to the lowest member of each corresponding set. It checks on
the lowest pointer to see if there is another pointer at the same level, and if
the member is a common neighbour of u and v. If so, it then computes the
link type, and enumerates the triad. It then proceeds by moving the lowest
pointer(s) to the next neighbour. Thus, it searches for intersection between
(N+(u), N−(u)) and (N+(v), N−(v)).

As with triangle enumeration, preprocessing the input graph before the
enumeration is crucial in shortening the runtime. In this case, the preprocessing
needs to be done simultaneously so that any relabelling would be consistent
between the graph and its transpose. To get the greatest benefit, the sorting
is based on whichever has the bigger max degree. The pseudocode for this
preprocessing is listed in Algorithm 15.

Springer Nature 2021 LATEX template

Graphlet Enumeration 31

N+(u) N−(u) N+(v) N−(v)

Fig. 9 Four pointers

Algorithm 15 DiGraph-Prep

Require: An directed graph G(V,E) and its transpose GT (V,ET)
1: Check the maximum out-degrees of G and GT .
2: Sort V based on the out-degrees of either G or GT , whichever has the

higher maximum out-degree, in ascending order.
3: Relabel the vertices according to their new order.
4: Build adjacency list of the sorted and relabeled vertices.
5: Cut out the smaller out-neighbours from each neighbour list.

7.2 Triad Enumeration on Distributed Platform

While Algorithm 14 (FPTE) is already parallelized (line 2), its scalability is
limited to a single machine - shared memory model. In order for the FPTE
to enjoy the multi-machine - discrete memory computing clusters with much
higher degree of parallelism, we fit FPTE under the duplication-free partition
scheme that D4GE proposed earlier. To achieve this, we modified D4GE to
handle 3-node sub-graphs, and modified FPTE algorithm to work with directed
edgesets.

Because D4GE partitioning scheme operates independently of the serial
algorithm, there are only three minor changes required. First, the generated
sub-problems and color-assignments are reduced from size 4 down to size 3,
so the total number of sub-problems is now

(
ρ
2

)
+
(
ρ
3

)
. Second, there is no

need for symmetrization. Third, because FPTE operates on both G and GT ,
the partitioning are applied to both G and GT as well, and for each single
sub-problem, the directed edgesets of G and GT are loaded into memory. The
modified partitioning scheme is listed as Algorithm 16.

Springer Nature 2021 LATEX template

32 Graphlet Enumeration

Algorithm 16 D3GE

Require: A directed graph G(V,E) and its transpose GT (V,ET); the number
of colors ρ

1: Construct
−→
G(V,

−→
E) and

−→
GT (V,

−→
ET) by applying edge-orientation to

G(V,E) and GT (V,E)

2: Partition
−→
E and

−→
ET into directed edge sets E∗ij and ET∗ij using ρ

3: Generate ordered color assignments and sub-problems {SCs 7→ {Kijkl}}
4: for all SCs, {Kijkl} do . Distributed-for
5: Emap, E

T
map ←ReadEdgeSetsCD (SCs, 3)

6: for all Kijkl ∈ {C0, C1, ...} do
7: FPTECD (Emap, E

T
map, ijkl)

8: end for
9: end for

Modification to FPTE is also minimal. The modification here follows the
same fashion as migrating S4GE to S4GECD: instead of the entire graph G
and its transpose GT , modified FPTE enumerates over directed edgesets E∗pq
and ET∗pq given a color-assignment ijk. Specifically, given color-assignment ijk,

line 2 and 3 of FPTE (Algorithm 14) requires edgesets E∗ij and ET∗ij ; and

line 7 of FPTE requires edgesets E∗ik and ET∗ik for knowledge of (N+(u) and
N−(u)), and E∗jk and ET∗jk for knowledge of (N+(v) and N−(v)). The rest
of FPTE stays unmodified, as the edgesets solely supply the corresponding
neighbourhood information but do not alter the behavior of the algorithm.
We call this modified version of FPTE as FPTECD, and is summarized as
Algorithm 17.

7.3 Experiment

For the experiments, we used a Compute Canada cluster with 4 compute
nodes, each node with 32 cores and 128 GB RAM per node. This configuration
effectively gives us 128 workers with 4 GB RAM per worker. We set ρ to 12,
yielding us 286 sub-problems. For comparison, we also ran experiments on a
single machine. The configuration of the machine is of dual Intel Xeon E5620
CPUs, for a total of 16 threads, and 64 GB RAM. The datasets are listed in
Table 11. These are selected to cover the comparison against the ones already
in [21], plus five additional datasets of varying sizes.

The enumeration times are listed in Table 12. The last five graphs were
not listed in the FPTE paper. Even for the largest graph, twitter, with 42M
vertices and 1.5B edges, D3GE/FPTECD is able to enumerate all seven types
of triads within 8 minutes, delivering a very strong performance. With eight
times the parallelism, compared against the single machine FPTE, for cnr,
ljournal, uk05, dewiki, enwiki18 and uk02, the speedups are less than 4
fold. While the performance is still improved, these low speedups do not meet
the expectation. This is because the original FPTE, while limited on a single

Springer Nature 2021 LATEX template

Graphlet Enumeration 33

Algorithm 17 FPTECD

Require: Two mappings from the colors of directed edge set to the edge
set Emap ≡ {(i, j) 7→ E∗ij} and ETmap ≡ {(i, j) 7→ ET∗ij }; ordered color
assignment ijkl

Ensure: The number of each type of triads in Emap and ETmap, ∆i.
1: ∆1 ← 0, . . . , ∆7 ← 0
2: E∗ij ≡ Emap[ij], E∗ik ≡ Emap[ik], E∗jk ≡ Emap[jk]

3: ET∗ij ≡ ETmap[ij], ET∗ik ≡ ETmap[ik], ET∗jk ≡ ETmap[jk]

4: for all u ∈ E∗ij ∪ ET∗ij do
5: while there is next do
6: N+(u) ≡ E∗ij [u], N−(u) ≡ ET∗ij [u].
7: Find next neighbour in N+(u) and/or N−(u): v.
8: Code the link uv as e1: either 01, 10 or 11
9: while there is next do

10: N+(u) ≡ E∗ik[u], N−(u) ≡ ET∗ik [u].
11: N+(v) ≡ E∗jk[v], N−(v) ≡ ET∗jk [v].

12: Find next common neighbour of u and v: w, in (N+(u), N−(u))
and (N+(v), N−(v)).

13: Code the links vw as e2, and wu as e3.
14: Look up triad type i using e1, e2, e3.
15: enum(u, v, w, e1, e2, e3)
16: ∆i ← ∆i + 1
17: end while
18: end while
19: end for

machine, has the advantage of the shared-memory model, which makes the
computation efficient - no partitioning is required. D3GE exposes FPTE to a
cluster of workers, and this bears a cost. Because of the discrete-memory model
of the clusters, we have to pre-partition the input graph into overlapping
and independent sub-graphs (sub-problems) and let the workers solve each of
the sub-problems. The overlapping of the sub-graphs is necessary because in
the discrete-memory model, the workers cannot access each other’s memory
content. In other words, if D3GE/FPTECD and FPTE are given the same
number of workers/threads, D3GE/FPTECD inherently does more work per
worker, due to the overlap. Additionally, the overlapping portion grows with
respect to ρ, further discounting the distributed solution as compared to the
shared-memory model. However we would like to stress that this problem is
not particular to D3GE/FPTECD. All known partition schemes suffer from the
inevitable overlap. Note that this comparison here only shows the performance
improvement over the single machine, not the scalability. The true scalability
of D3GE will be discussed later.

On the other hand, D3GE/FPTECD is able to achieve a 27.4 speedup on
the arabic dataset, a 161.3 speedup on the indochina dataset, and a 116.7

Springer Nature 2021 LATEX template

34 Graphlet Enumeration

Table 11 The numbers of vertices n, edges m, maximum degree of the original graph
dmax and its transpose dTmax, and the effective maximum degrees after the preprocessing,
deff

max and dTeff
max, of the graph datasets.

Dataset n m dmax dTmax deff
max dTeff

max

cnr 326K 3.2M 2,716 18,235 1,336 81

dewiki 1.5M 36M 5,032 117,908 5,032 409

ljournal 5.4M 79M 2,469 19,409 1,257 397

enwiki18 5.6M 128M 7,948 247,628 7,620 311

indochina 7.4M 194M 6,985 256,425 6,870 6,821

uk02 18.5M 298M 2,450 194,942 2,288 942

arabic 22.7M 640M 9,905 575,618 6,646 3,126

uk05 39.5M 936M 5,213 1,776,852 5,213 584

twitter 41.7M 1.5B 2,997,469 770,155 2,896 5,745

Table 12 The enumeration time (seconds) of D3GE/FPTECD with ρ = 12 and 128
workers, against original FPTE with 16 threads on a single machine.

Dataset FPTE D3GE/FPTECD Speedup

cnr 3.0 2.2 1.36

ljournal 81 24.4 3.3

arabic 2961 107.9 27.4

uk05 796 207.1 3.8

dewiki 30.3 14.0 2.16

enwiki18 136.4 34.5 3.95

indochina 9,228.8 57.2 161.3

uk02 191.5 92.7 2.07

twitter 51,984.0 445.6 116.7

speedup on the twitter dataset. However, this is not because D3GE/FPTECD

works much faster on these datasets, but rather it reflects the poor performance
of FPTE. Upon inspecting the datasets in Table 11, we can see that these three
datasets have relatively large maximum effective degrees. FPTE suffers from
having to do all the work for the node with highest effective degree on a single
thread. This is similar to ‘the curse of last reducer problem’ as pointed out
by Suri and Vassilvitskii [29]. D3GE/FPTECD avoids this problem through a
partitioning scheme that leads to a better work-load balance.

Next, we experimented on the scalability of D3GE/FPTECD by plotting the
enumeration time over the arabic and uk02 datasets, using varying number
of distributed workers from 32 to 256. The results are shown in Figure 10.
Similar to Figure 6, FPTECD fitted under D3GE scales almost perfectly with
respect to the degree of parallism: the slopes are -0.894 and -0.866 respectively.
This means that every time the number of the distributed workers doubles, the

Springer Nature 2021 LATEX template

Graphlet Enumeration 35

enumeration time is reduced by factors of 20.894 = 1.858 and 20.866 = 1.822
respectively. We re-confirm that the scalability of our proposed distributed
partitioning scheme is on-par with the SotA Map-Reduce based ones [12] and
[17].

32 64 128 256

102

103

Number of distributed workers

R
u

n
n

in
g

T
im

e
(s

ec
)

arabic: -0.894
uk02: -0.866

Fig. 10 Scalability of D3GE/FPTECD on uk02 and arabic. D3GE/FPTECD again presents
very strong scalability with slope -0.866 and -0.894.

7.4 Extension to Four Node

Can we generalize S4GE to the directed case? That is, can we build a solution
to enumerate four node directed graphlets? First, let us see how these graphlets
look like. The underlying graphs for these graphlets would be the same as the
ones shown in Figure 3. It is just that now each edge is replaced by a directed
link with three possible types. Also, we need to check for any isomorphisms
to get the number of distinct types. Take the tailed-triangle for example. We
already know that there are seven types of triads. Now, there are three possible
tails, and therefore there are 21 distinct types of directed tailed triangles.

A similar approach to S4GE can be done here. That is, we can first compute
the three node directed graphlets, and then proceed by looking for any four
node directed graphlets that are attached to them. In this case, we would also
need to compute the directed wedges as well. The biggest challenge would be
the explosion of the number of types.

8 Conclusion

In this paper, we have presented D4GE scheme that brings 4-node graphlets
enumeration into the distributed platform. This scheme is able to suppress
duplicate computations, which are unavoidable with other schemes. We show
that, D4GE when combined with S4GE, requires at most 2msym more net-
work read compared to PSE/S4GE, and is able to reduce the amount of work
relative to PSE/S4GE for real world graphs, where the numbers of wedges
and triangles are order of magnitudes greater than the number of edges. We
experimented D4GE with S4GECD and CF4CD localized algorithms, and both

Springer Nature 2021 LATEX template

36 Graphlet Enumeration

combinations out-perform the state-of-the-art competitors by up to 11x. Last
but not least, D4GE/S4GECD is the only known algorithm capable of simul-
taneously enumerating all 4-node graphlets on dataset with almost 20 million
nodes and a half billion edges.

We have also presented a distributed platform solution for enumerating
three node directed graphlets, or triads, the D3GE. We empirically showed
that it has a very good scalability and much better performance, as compared
to the single machine solution, on graphs with high maximum degrees.

9 Acknowledgments

We thank the anonymous reviewers for their detailed comments that helped
us improve the presentation of this work substantially.

References

[1] Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense
subgraphs across massive biological networks for functional discovery.
Bioinformatics 21(suppl 1), 213–221 (2005)

[2] Milenković, T., Pržulj, N.: Uncovering biological network function via
graphlet degree signatures. Cancer informatics 6 (2008)

[3] Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent
substructure-based approaches for classifying chemical compounds. IEEE
Transactions on Knowledge and Data Engineering 17(8), 1036–1050
(2005)

[4] Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for
chemical informatics. Neural networks 18(8), 1093–1110 (2005)

[5] Faust, K.: A puzzle concerning triads in social networks: Graph con-
straints and the triad census. Social Networks 32(3), 221–233 (2010)

[6] Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: Cosi: Cloud oriented
subgraph identification in massive social networks. In: 2010 International
Conference on Advances in Social Networks Analysis and Mining, pp.
248–255 (2010). IEEE

[7] Wong, S.W., Cercone, N., Jurisica, I.: Comparative network analysis via
differential graphlet communities. Proteomics 15(2-3), 608–617 (2015)

[8] Santoso, Y., Srinivasan, V., Thomo, A.: Efficient enumeration of four node
graphlets at trillion-scale. In: 23rd EDBT, pp. 439–442 (2020)

[9] Pinar, A., Seshadhri, C., Vishal, V.: Escape: Efficiently counting all 5-
vertex subgraphs. In: Proceedings of the 26th International Conference on

Springer Nature 2021 LATEX template

Graphlet Enumeration 37

World Wide Web, pp. 1431–1440 (2017). International World Wide Web
Conferences Steering Committee

[10] Newman, M.E.: The structure and function of complex networks. SIAM
review 45(2), 167–256 (2003)

[11] Wang, J., Cheng, J.: Truss decomposition in massive networks. Proceed-
ings of the VLDB Endowment 5(9) (2012)

[12] Park, H.-M., Myaeng, S.-H., Kang, U.: Pte: Enumerating trillion trian-
gles on distributed systems. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
1115–1124 (2016)

[13] Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting.
Bioinformatics 30(4), 559–565 (2014)

[14] Rahman, M., Bhuiyan, M.A., Al Hasan, M.: Graft: An efficient graphlet
counting method for large graph analysis. IEEE Transactions on Knowl-
edge and Data Engineering 26(10), 2466–2478 (2014)

[15] Bressan, M., Leucci, S., Panconesi, A.: Motivo: fast motif counting via
succinct color coding and adaptive sampling. Proceedings of the VLDB
Endowment 12(11), 1651–1663 (2019)

[16] McSherry, F., Isard, M., Murray, D.G.: Scalability! but at what {COST}?
In: 15th Workshop on Hot Topics in Operating Systems (HotOS {XV})
(2015)

[17] Park, H.-M., Silvestri, F., Pagh, R., Chung, C.-W., Myaeng, S.-H.,
Kang, U.: Enumerating trillion subgraphs on distributed systems. ACM
Transactions on Knowledge Discovery from Data (TKDD) 12(6), 1–30
(2018)

[18] Batagelj, V., Zaveršnik, M.: Short cycle connectivity. Discrete Mathemat-
ics 307(3-5), 310–318 (2007)

[19] Tabak, B.M., Takami, M., Rocha, J.M., Cajueiro, D.O., Souza, S.R.:
Directed clustering coefficient as a measure of systemic risk in complex
banking networks. Physica A: Statistical Mechanics and its Applications
394, 211–216 (2014)

[20] Wasserman, S., Faust, K.: Social Network Analysis: Methods and Appli-
cations vol. 8. Cambridge University Press, ??? (1994)

[21] Santoso, Y., Srinivasan, V., Thomo, A., Chester, S.: Triad enumeration at
trillion-scale using a single commodity machine. In: 22nd EDBT (2019)

Springer Nature 2021 LATEX template

38 Graphlet Enumeration

[22] Schank, T., Wagner, D.: Finding, counting and listing all triangles in large
graphs, an experimental study. In: Experimental and Efficient Algorithms,
4th InternationalWorkshop, WEA 2005, Santorini Island, Greece, May
10-13, 2005, Proceedings, pp. 606–609 (2005). https://doi.org/10.1007/
11427186 54. https://doi.org/10.1007/11427186 54

[23] Latapy, M.: Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science 407(1-3), 458–473
(2008)

[24] Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet
counting for large networks. In: 2015 IEEE International Conference on
Data Mining, pp. 1–10 (2015). IEEE

[25] Bressan, M., Chierichetti, F., Kumar, R., Leucci, S., Panconesi, A.:
Counting graphlets: Space vs time. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp. 557–566
(2017). ACM

[26] Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection.
Bioinformatics 22(9), 1152–1153 (2006)

[27] Marcus, D., Shavitt, Y.: Rage–a rapid graphlet enumerator for large
networks. Computer Networks 56(2), 810–819 (2012)

[28] Danisch, M., Balalau, O., Sozio, M.: Listing k-cliques in sparse real-world
graphs. In: Proceedings of the 2018 World Wide Web Conference on
World Wide Web, pp. 589–598 (2018). International World Wide Web
Conferences Steering Committee

[29] Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last
reducer. In: Proceedings of the 20th International Conference on World
Wide Web. WWW ’11, pp. 607–614. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1963405.1963491

[30] Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomor-
phism algorithm for matching large graphs. IEEE transactions on pattern
analysis and machine intelligence 26(10), 1367–1372 (2004)

[31] Teixeira, C.H., Fonseca, A.J., Serafini, M., Siganos, G., Zaki, M.J.,
Aboulnaga, A.: Arabesque: a system for distributed graph mining. In:
Proceedings of the 25th Symposium on Operating Systems Principles, pp.
425–440 (2015). ACM

[32] Dias, V., Teixeira, C.H., Guedes, D., Meira, W., Parthasarathy, S.: Frac-
tal: A general-purpose graph pattern mining system. In: Proceedings of
the 2019 International Conference on Management of Data, pp. 1357–1374

https://doi.org/10.1007/11427186_54
https://doi.org/10.1007/11427186_54
https://doi.org/10.1007/11427186_54
https://doi.org/10.1145/1963405.1963491

Springer Nature 2021 LATEX template

Graphlet Enumeration 39

(2019)

[33] Talukder, N., Zaki, M.J.: A distributed approach for graph mining in
massive networks. Data Mining and Knowledge Discovery 30(5), 1024–
1052 (2016)

[34] Mawhirter, D., Reinehr, S., Holmes, C., Liu, T., Wu, B.: Graphzero:
Breaking symmetry for efficient graph mining. arXiv preprint
arXiv:1911.12877 (2019)

[35] Chen, H., Liu, M., Zhao, Y., Yan, X., Yan, D., Cheng, J.: G-miner:
an efficient task-oriented graph mining system. In: Proceedings of the
Thirteenth EuroSys Conference, pp. 1–12 (2018)

[36] Yan, D., Guo, G., Chowdhury, M.M.R., Özsu, M.T., Ku, W.-S., Lui,
J.C.: G-thinker: A distributed framework for mining subgraphs in a big
graph. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 1369–1380 (2020). IEEE

[37] Ren, X., Wang, J., Han, W.-S., Yu, J.X.: Fast and robust distributed
subgraph enumeration. arXiv preprint arXiv:1901.07747 (2019)

[38] Zhang, H., Yu, J.X., Zhang, Y., Zhao, K., Cheng, H.: Distributed subgraph
counting: a general approach. Proceedings of the VLDB Endowment
13(12), 2493–2507 (2020)

[39] Batagelj, V., Mrvar, A.: A subquadratic triad census algorithm for large
sparse networks with small maximum degree. Social networks 23(3), 237–
243 (2001)

[40] Chin Jr, G., Marquez, A., Choudhury, S., Feo, J.: Scalable triadic analy-
sis of large-scale graphs: Multi-core vs. multi-processor vs. multi-threaded
shared memory architectures. In: Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE 24th International
Symposium On, pp. 163–170 (2012). IEEE

[41] Parimalarangan, S., Slota, G.M., Madduri, K.: Fast parallel graph triad
census and triangle counting on shared-memory platforms. In: Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE
International, pp. 1500–1509 (2017). IEEE

[42] Davis, J.A., Leinhardt, S.: The structure of positive interpersonal relations
in small groups. Sociological Theories in Progress 2, 218–251 (1972)

[43] Seshadhri, C., Pinar, A., Kolda, T.G.: Fast triangle counting through
wedge sampling. In: Proceedings of the SIAM Conference on Data Mining,
vol. 4, p. 5 (2013)

Springer Nature 2021 LATEX template

40 Graphlet Enumeration

[44] Wang, P., Qi, Y., Sun, Y., Zhang, X., Tao, J., Guan, X.: Approximately
counting triangles in large graph streams including edge duplicates with
a fixed memory usage. Proceedings of the VLDB Endowment 11(2), 162–
175 (2017)

[45] Santoso, Y.: Triangle counting and listing in directed and undirected
graphs using single machines. Master’s thesis, University of Victoria
(2018)

[46] Boldi, P., Vigna, S.: The WebGraph framework I: Compression tech-
niques. In: Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), pp. 595–601. ACM Press, Manhattan, USA
(2004)

	Introduction
	Related Work
	Preliminaries
	Graphs and Graphlets
	Graph Partitions

	Graphlets Enumeration
	Four Node Graphlet Enumeration
	Previous Distributed Enumeration

	Proposed Methods
	Generalized Color-Direction
	S4GECD
	Compact-Forward for 4-clique listing
	Analysis

	Experiments
	The impact of on performance
	Machine scalability
	S4GE vs D4GE/S4GECD
	PSE/S4GE vs D4GE/S4GECD
	PSE/VF2 vs D4GE/CF4CD
	The Output of D4GE/S4GECD
	Discussion

	Directed Case
	Triad Enumeration
	Triad Enumeration on Distributed Platform
	Experiment
	Extension to Four Node

	Conclusion
	Acknowledgments

