
Practical Survey on MapReduce Subgraph
Enumeration Algorithms

Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

Abstract Subgraph enumeration is a basic task in many graph analyses. Therefore,
it is necessary to get this task done within a reasonable amount of time. However,
this objective is challenging when the input graph is very large, with millions of
nodes and edges. Known solutions are limited in terms of scalability. Distributed
computing is often proposed as a solution to improve scalability. However, it has to
be done carefully to reduce the overhead cost and to really benefit from the dis-
tributed solution. In this work we provide a comprehensive overview of several
Map-Reduce subgraph enumeration algorithms which currently represent the state
of the art. We identify and describe the main conceptual approaches, giving insight
on their advantages and limitations, and provide a summary of their similarities and
differences.

1 Introduction
Finding occurrences of particular subgraphs in a network/graph is a tool for ana-
lyzing and understanding such network. This analytical tool has many applications
in various fields, such as in biology [10, 14] chemistry [8, 21], social study [9, 4],
network classification [25], and more. Moreover, some applications require the enu-
meration of all subgraphs up to a certain degree. For example, Milenkovic and

Xiaozhou Liu
University of Victoria, Victoria, BC, Canada, e-mail: xiaozhou@uvic.ca

Yudi Santoso
University of Victoria, Victoria, BC, Canada,e-mail: santoso@uvic.ca

Venkatesh Srinivasan
University of Victoria, Victoria, BC, Canada,e-mail: srinivas@uvic.ca

Alex Thomo
University of Victoria, Victoria, BC, Canada,e-mail: thomo@uvic.ca

1

xiaozhou@uvic.ca
santoso@uvic.ca
srinivas@uvic.ca
thomo@uvic.ca

2 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

Przulj [14] used 2, 3, 4, and 5 node induced connected subgraphs (or graphlets)
to analyse Protein-Protein-Interaction (PPI) networks.

Subgraph enumeration problem is challenging when the size of the input graph
is large. This can be understood by analysing the complexity. The computational
complexity grows exponentially by the order of the subgraph to enumerate. Sup-
pose we want to find subgraphs of k nodes in a graph of n nodes, then there are(n

k

)
∝ n(n− 1) . . .(n− k + 1) possible combinations to examine. If n≫ k, this is

approximately nk. On the other hand, an order of magnitude increase in n would in-
crease the complexity by 10k. In practice, not all combinations need to be checked.
Nonetheless, it is generally true that the number of subgraphs grows rapidly with the
size of the graph, and for enumeration the algorithm needs to touch each subgraph.

Using a distributed platform is an obvious option to increase the computing
power, where we can add more compute nodes to get more done within a fixed
time budget. Known distributed solutions [5, 24, 16, 18] had limited scalability,
and were only designed to enumerate triangle subgraphs. The work of Park et al.
improved upon these previous solutions and was able to enumerate triangles from
graphs with billions edges [17]. The same authors, furthermore, generalized their
work to support arbitrary subgraph query [19]. As argued in [19], their proposed
method is superior to join-based methods of [1] and [11], because those can gen-
erate a large amount of intermediate data during the shuffle step. Liu et al. [13]
identified the redundant computational work in Park et al.’s proposal [19], and de-
vised a duplication-free distributed algorithm, enumerating quadrillions of 4-node
graphlets.

We consider in this survey only works that solve the problem of induced sub-
graphs. For example, if we discover a clique of 4 nodes, we only enumerate the
clique, but not any other 4-node subgraphs inside it. Small induced connected sub-
graphs, such as 4-cliques, are known as graphlets.

1.1 Contributions
We provide a practical review of several distributed algorithms for subgraph enu-
meration, focusing on the state-of-the-art works of [16, 18, 17, 19, 13]. We give a
structured retrospective reflection on the algorithms for computing exact subgraph
occurrences using the MapReduce paradigm 1. We also identify and describe the
main conceptual ideas, giving insight on their main advantages and possible limita-
tions. We provide a complete overview table that classifies the key characteristics of
the algorithms, highlighting their main similarities and differences.

1 Here we use the term MapReduce in a broad sense. The algorithms in this work can be imple-
mented in newer frameworks such as Apache Spark as well.

Practical Survey on MapReduce Subgraph Enumeration Algorithms 3

2 Preliminaries
In the following we give some important notions that we use in this paper.

Subgraph. A graph H(VH ,EH) is called a subgraph of G(VG,EG) if VH ⊆VG and
EH ⊆ EG.

Induced subgraph. A subgraph H(VH ,EH)⊆G(VG,EG) is an induced subgraph
if for every pair of nodes u,v ∈VH , edge (u,v) ∈ EH if and only if (u,v) ∈ EG.

Graphlet. A small induced connected subgraph. There are two types of 3-node
graphlets: wedge and triangle as shown in Fig. 1, and six types of 4-node
graphlets, shown in Fig. 2: 3-path, 3-star, rectangle, tailed-triangle, diamond and
4-clique.

Fig. 1: 3-node graphlets: a wedge and a triangle.

Fig. 2: 4-node graphlets: a 3-path, a 3-star, a rectangle or 4-cycle, a tailed-triangle,
a diamond, and a 4-clique.

Edge-orientation. Assigning directions to edges in an undirected graph G(V,E).
Given a function η which determines a total ordering of the nodes in V , an undi-
rected edge (u,v) = (v,u) is orientated by η , such that if η(u)< η(v), only (u,v)
is listed but not (v,u). Edge-orientation transforms the undirected graph into a
Directed Acyclic Graph (DAG).

Coloring. Applying a color function to each edge such that the entire graph can
be partitioned into many subgraphs. First, define a function θ which maps vertex
u ∈V to θ(u). Vertex u is said to have color θ(u). Edge (u,v) ∈ E is said to have
color (i = θ(u), j = θ(v)).

Edgeset. After coloring is applied to G(V,E), edges of the same color are grouped
together to form a subgraph, denoted by Ei j. Ei j contains all edges (u,v)∈E with
color (i, j).

Directed Edgeset. Edgeset of a directed graph, denoted by E∗i j, representing all

the edges of
−→
E of

−→
G (V,

−→
E), that originates from vertices of color i and points to

vertices of color j. For i ̸= j, E∗i j ∪E∗ji = Ei j; for i = j, E∗i j = Ei j.
Sub-problem. Refers to the union of (directed) edgesets of particular colors

where the distributed workers can discover all the subgraphs/graphlets in that
union independently. It is the fundamental enumeration task assigned to each
distributed worker.

4 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

Symmetrization. Refers to deriving graph Gsym(V,Esym) from the original graph
−→
G (V,

−→
E), where Esym =

−→
E ∪ {

−−→
(v,u)|∀

−−→
(u,v) ∈ −→E }. In other words, Gsym pos-

sesses the original edge as well as the reversed edge in
−→
G .

MapReduce. A de-facto programming scheme for distributed processing [7]. The
paradigm orchestrates the processing in three operations: Map, Shuffle and Re-
duce. Each operation facilitates its own duty, drastically reducing the complexity
of implementation.

3 Serial Graphlet Enumerations
The distributed algorithms of interests in this work are composed using MapReduce
paradigm, meaning all of them consist of a localized serial enumeration algorithm
with a partition scheme.

All of the distributed algorithms, except one, are employing some well-known se-
rialized triangle/subgraph enumeration such as CompactForward [12] and VF2 [6],
the introduction of which are omitted here. In this section we introduce a single
machine 4-node graphlet enumeration algorithm that was proposed recently, called
Simultaneous 4-node Graphlets Enumeration (S4GE) [23].

3.1 4-node Graphlet Enumeration

Algorithm 1 S4GE

Require: An oriented-by-degree, symmetrized graph
−→
G (V,

−→
E)

1: for all (−→u,v) ∈ −→E do
2: for all u′ ∈ N(u) and v′ ∈ N(v) do
3: if (u′ > u)∧ (v′ ≥ u) then
4: if u′ = v′ > v then
5: EXPLORETRIANGLE (u,v,u′)
6: if ((u′ < v′)∨ (v′ = u))∧ (u′ > v) then
7: EXPLOREWEDGETYPE1 (v,u,u′)
8: if (u′ > v′)∧ (v′ ̸= u) then
9: EXPLOREWEDGETYPE2 (u,v,v′)

Algorithm 2 EXPLORE TRIANGLE

Require: Triangle (u,v,w)3 with u < v < w; symmetrized neighbourhood N(u), N(v) and N(w).
1: N>u(u)≡ {z|z ∈ N(u),η(z)> η(u)}; N>u(v)≡ {z|z ∈ N(v),η(z)> η(u)}; N>u(w)≡ {z|z ∈ N(w),η(z)> η(u)}
2: for all z ∈ N>u(u)∩N>u(v)∩N>u(w) with z > w do
3: ENUMERATE4CLIQUE (u,v,w,z)
4: for all z in two sets and z > opposite vertex do
5: ENUMERATEDIAMOND (u,v,w,z)
6: for all z in one set only do
7: ENUMERATETAILEDTRIANGLE (u,v,w,z)

The algorithm first discovers triangles and wedges in a similar fashion as Compact-
Forward [12], then it proceeds to search for 4-node graphlets after the discovery of
triangles and wedges. That is, it first discovers triangles and wedges, and for each

Practical Survey on MapReduce Subgraph Enumeration Algorithms 5

triangle that it locates, it checks if this triangle is a part of any tailed triangles, di-
amonds and 4-cliques. Similarly, through wedges it checks for 3-paths, 3-stars and
rectangles. The checks are done by intersecting the neighbourhoods of the three
vertices of the triangles and wedges. The details can be found in [23]. S4GE has a
running time O(T3g +(|∆ |+ |∠|)dsym

max), where T3g is the time to enumerate wedges
and triangles, and dsym

max is the maximum degree of the symmetrized input graph.
The pseudo code of S4GE for discovering all the triangles and wedges is listed as
Algorithm 1; the pseudo code of S4GE for discovering all the six types of 4-node
graphlets are listed as Algorithms 2, 3, and 4.

Algorithm 3 EXPLORE WEDGE TYPE-1
Require: Wedge (v,u,w)1 with u < v < w; symmetrized neighbourhood N(u), N(v) and N(w).
1: N>u(u)≡ {z|z ∈ N(u),η(z)> η(u)}; N>u(v)≡ {z|z ∈ N(v),η(z)> η(u)}; N>u(w)≡ {z|z ∈ N(w),η(z)> η(u)}
2: for all z ∈ N>u(v)∩N>u(w) with z /∈ N>u(u) do
3: ENUMERATERECTANGLE (u,v,z,w)
4: for all z ∈ N>u(u) only do
5: if z > w then
6: ENUMERATE3STAR (u,v,w,z)
7: for all z ∈ N>u(v) only do
8: ENUMERATE3PATH (w,u,v,z)
9: for all z ∈ N>u(w) only do
10: ENUMERATE3PATH (v,u,w,z)

Algorithm 4 EXPLORE WEDGE TYPE-2
Require: Wedge (u,v,w)2 with u < v and u < w; symmetrized neighbourhood N(v) and N(w).
1: N>u(v)≡ {z|z ∈ N(v),η(z)> η(u)}; N>u(w)≡ {z|z ∈ N(w),η(z)> η(u)}
2: for all z ∈ N>u(v) only do
3: if z > w then
4: ENUMERATE3STAR (v,u,w,z)
5: for all z ∈ N>u(w) only do
6: if z ̸= v then
7: ENUMERATE3PATH (u,v,w,z)

4 Distributed Subgraph Enumeration

Park et al. [17] proposed three variants of distributed algorithms for triangle enu-
meration, and PTEBase is the base version. PTEBase partitions the undirected input
graph into edgesets which are stored on a distributed file system. It defines a set of
overlapping sub-problems such that each sub-problem can be solved independently.
Each sub-problem is assigned to a distributed worker, and the worker proceeds to
read the edgesets that are necessary to solve the sub-problem. PTECD improves on
PTEBase by using color-direction technique, which enable it to minimize the re-
dundant computations. Finally, PTESC improves on PTECD by minimizing network
traffic through a careful scheduling. However, with modern network technology and
internal network connections networking cost has been of a less concern. Later on,
Park et al. generalized PTE to support the enumeration of subgraphs of any order,
and called their solution PSE [19].

6 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

4.1 PTEBase

PTEBase defines three types of sub-problems: type-1 sub-problems, Si, that emits
triangles with all three vertices of the same colors; type-2 sub-problems, Si j, that
emitts triangles of two different colors; and type-3 sub-problems, Si jk, that emitts
triangles with three different colors. The triangles emitted from type-1 sub-problems
are called type-1 triangles, and similarly for type-2 and type 3 triangles.

PTEBase partitions the input graph into edgesets, Ei j for (i, j)∈ {0,1, . . . ,ρ−1}2.
For i = j there are

(
ρ

1

)
of such edgesets Eii, and

(
ρ

2

)
Ei j for i ̸= j. The Modulo

operation of ρ is used to color an edge. Each edge (u,v) belongs to the edgeset
E(u%ρ)(v%ρ).

PTEBase computes
(

ρ

2

)
type-2 sub-problems Si j, and

(
ρ

3

)
type-3 sub-problems,

Si jk. Type-1 sub-problems Si can be embedded into type-2 sub-problem Si j, hence
do not need to be computed separately. For example, with ρ = 4, the sub-problems
are: S0, S1, S2, S3, S01, S02, S03, S12, S13, S23, S012, S013, S023 and S123. However,
since solving S01 requires E00∪E01∪E11, S0 can also be solved along the process,
as S0 only requires E00. Notice that S0 can be embedded not only in S01, but also
in S02 and S03. To avoid duplicated embedding, type-1 triangles of color i is only
emitted when i+1 = j%ρ for a type-2 sub-problem Si j.

PTEBase employs CompactForward [12] algorithm as the local serial algorithm.
Because PTEBase partitions the input graph into O(ρ2) colored edgesets, each sub-
problem is expected to process a subgraph of size O(m/ρ2), where m is the number
of edges in the graph, and each distributed worker is expected to do O((m/ρ2)1.5) =
O(m1.5/ρ3) amount of work. Summing over all O(ρ3) sub-problems, PTEBase does
O(m1.5) amount of work overall, which is the same amount of work as applying
CompactForward [12] on a single machine. The network read for PTEBase is O(ρm),
since each of the O(ρ3) sub-problems needs to read O(m/ρ2) amount of data.

The pseudo code of PTEBase is given as Algorithm 5:

Algorithm 5 PTEBase

Require: An undirected graph G(V,E); the number of colors ρ

1: Construct
−→
G (V,

−→
E) by applying edge-orientation to G(V,E)

2: Partition
−→
E into edge sets Ei j using ρ colors

3: Generate all sub-problems {S} for the given ρ

4: for all sub-problem SCs ∈ {S} do ▷ Distributed-for
5: E ′← Ei j from distributed storage.
6: COMPACTFORWARD (E ′)

4.2 PTECD

Park et al. [17] improve on PTEBase by introducing PTECD, color-direction. With-
out loss of generality, consider a type-3 sub-problem Si jk. If we only care about
enumerating all the triangles (u,v,w) with color (i, j,k), PTEBase does extra work
when intersecting

−→
N (u) and

−→
N (v). CompactForward algorithm used in PTEBase

considers all possible neighbouring vertices of u, from both E∗i j and E∗ik, and all pos-

Practical Survey on MapReduce Subgraph Enumeration Algorithms 7

sible neighbouring vertices of v, from both E∗ji and E∗jk. This is unnecessary since
for any triangle (u,v,w) with color (i, j,k), given vertices u and v with color i and
j respectively, we know that w must have color k, hence only need to intersect E∗ik
and E∗jk.

PTECD exploits this fact, and lists all six possible color-direction cases for any
type-3 sub-problem: for a type-3 sub-problem Si jk, an arbitrary edge

−−→
(u,v) of Com-

pactForward algorithm can have colors of {(i, j),(j, i),(i,k),(k, i),(j,k),(k, j)}, and
PTECD only needs to intersect

−→
N (u) and

−→
N (v) from edge sets {(E∗ik,E∗jk), (E∗jk,E∗ik),

(E∗i j,E
∗
k j), (E

∗
k j,E

∗
i j), (E

∗
ji,E

∗
ki), (E

∗
ki,E

∗
ji)} respectively. Similarly, PTECD lists all six

cases for any type-2 sub-problem as well.
Park et al. prove that by adapting PTECD, the total number of operations is re-

duced by a factor of 2− 2
ρ

compared to PTEBase.
The pseudo code of PTECD is given as Algorithm 6 and Algorithm 7:

Algorithm 6 PTECD

Require: An undirected graph G(V,E); the number of colors ρ

1: Construct
−→
G (V,

−→
E) by applying edge-orientation to G(V,E)

2: Partition
−→
E into directed edge sets E∗i j using ρ

3: Generate all sub-problems {S} given ρ

4: for all sub-problem ∈ {S} do ▷ Distributed-for
5: if sub-problem of type Si j then
6: Read E∗ii , E∗i j , E∗ji and E∗j j

7: if i+1 == j%ρ then
8: COMPACTFORWARDCD (E∗ii ,E

∗
ii ,E

∗
ii) ▷ Type-1

9: else
10: for all (p,q,r) ∈ {(i, i, j),(i, j, i),(j, i, i),(j, j, i),(j, i, j),(i, j, j)} do
11: COMPACTFORWARDCD (E∗pq,E

∗
pr ,E

∗
qr) ▷ Type-2

12: if sub-problem of type Si jk then
13: Read E∗i j , E∗ji, E∗ik , E∗ki, E∗jk and E∗k j

14: for all (p,q,r) ∈ {(i, j,k),(i,k, j),(j, i,k),(j,k, i),(k, i, j),(k, j, i)} do
15: COMPACTFORWARDCD (E∗pq,E

∗
pr ,E

∗
qr) ▷ Type-3

Algorithm 7 COMPACTFORWARDCD

Require: An edge-oriented edge set E∗i j , E∗ik and E∗jk
1: for all

−−→
(u,v) ∈ E∗i j do

2: for all w ∈ {−→N (u)|−→N (u) ∈ E∗ik}∩{
−→
N (v)|−→N (v) ∈ E∗jk} do

3: ENUMERATE (u,v,w)

4.3 PSE
Park et al. generalise PTEBase to support non-induced subgraph query of an arbi-
trary order, called PSE (Pre-partitioned subgraph Enumeration) [19]. PSE takes a
query subgraph Gq(Vq,Eq) of order k as input where k = |Vq|, and enumerates all
the matching subgraphs to Gq. PSE employs VF2 algorithm [6] as the local serial
algorithm for query graph matching.

8 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

PSE starts by defining ∑
k
l=1

(
ρ

l

)
sub-problems. For example, with ρ = 4 and k =

4, PSE first defines the following sub-problems: S0, S1, S2, S3, S01, S02, S03, S12, S13,
S23, S012, S013, S023, S123 and S0123.

PSE then makes the observations that solving all the sub-problems independently
introduces duplicated emissions. Some sub-problems can be grouped together to
reduce duplications. This can be shown by the following: continuing with the above
example, S012=E00∪E11∪E22∪E01∪E02∪E12, S01=E00∪E01∪E11 and S0=E00. It
is clear that S0 ⊂ S01 ⊂ S012. In other words, enumerating the subgraphs from S012
also enumerates all the subgraphs from S0 and S01.

To avoid duplicated emissions, PSE introduces sub-problem groups and the dom-
inant sub-problem of the sub-problem group. In the above example, S0, S01 and S012
forms a sub-problem group; and since enumerating S012 is sufficient to enumerate
all sub-problems of the group, S012 is the dominant sub-problem of the sub-problem
group. In PSE, each sub-problem group becomes the fundamental computing task
on each distributed worker; solving the dominant sub-problem of each sub-problem
group is equivalent to solving all the sub-problems under this group.

PSE carefully groups the sub-problems to ensure a balanced workload distribu-
tion, such that all the sub-problem groups have similar number of sub-problems
assigned. The process of generating such grouping can be described as:

1. Assign sub-problems Sc0,c1,...,cl where |{c0,c1, . . . ,cl}|= k and |{c0,c1, . . . ,cl}|=
k−1 to different groups. It is clear that these sub-problems can never dominate
each other, hence belong to their own group. These sub-problems are the prospec-
tive dominant sub-problems of their groups.

2. Assign the rest of the sub-problems to the groups created in Step 1. The assign-
ment is prioritized towards the group with the least number of sub-problems in
that group, while ensuring that the subproblem is covered by the dominat sub-
problem within that group. Ties are broken randomly.

3. Repeat Step 2 until all sub-problems are assigned.

The pseudo code of PSE is given in Algorithm 8:

Algorithm 8 PSE
Require: An undirected graph G(V,E); a query graph Gq(Vq,Eq); the number of colors ρ

1: Construct
−→
G (V,

−→
E) by applying edge-orientation to G(V,E)

2: Partition
−→
E into edgesets Ei j using ρ

3: Generate sub-problem groups {SGs}
4: for all sub-problem group SG ∈ {SGs} do ▷ Distributed-for
5: Select dominant sub-problem Sd from SG
6: E ′=READEDGESETS(d , |Vq|)
7: R = VF2(E ′ , Gq(Vq,Eq))
8: R′ = DE-DUPLICATE(R) ▷ PSE emits duplicates
9: Enumerate(R’)

Park et al. showed that PSE requires at most
(

ρ−1
k−2

)
|E| amount of network read,

for k-order subgraph query with input graph E.
PSE by Park et al., when published, was widely considered as the SotA of the

subgraph enumeration. However the scheme discovers duplicated subgraphs. To cor-
rect the enumerations, PSE post-filters the duplicated subgraphs from the final emis-

Practical Survey on MapReduce Subgraph Enumeration Algorithms 9

sion. This motivates Liu et al. [13] to derive a partitioning scheme that guarantees
duplication-free from the onset.

4.4 Distributed 4-node Graphlet Enumeration
Liu et al. introduced a partitioning scheme for S4GE algorithm, enabling it to be
deployed in a distributed setting [13]. The partitioning scheme is named as D4GE,
short for Distributed 4-node Graphlet Enumeration.

First, it is obvious that each enumerated subgraph can be mapped to only one
colored tuple - for example, when enumerating 4-node graphlets, any discovered
graphlet (u,v,w,z)4 has a particular 4-tuple (i, j,k, l) representation, where i = θ(u),
j = θ(v), k = θ(w), l = θ(z) and θ is the coloring function. The colored tuples are
called the color-assignments of the corresponding graphlet, denoted by Ki jkl : the
graphlet (u,v,w,z)4 with color (i, j,k, l) has color-assignment Ki jkl .

Next, linearity is asserted over the 4-node graphlets query, such that (u,v,w,z)4 is
emitted if and only if η(u)< η(v)< η(w)< η(z), where η is the edge-orientation
function. The linearity on the emitted 4-node graphlets also implies ordering on the
color-assignment of the graphlets: for an emitted graphlet (u,v,w,z)4 with η(u) <
η(v) < η(w) < η(z), its color-assignment Ki jkl must satisfy i ≺ j ≺ k ≺ l, where
i ≺ j means i precedes j. On the other hand, the ordering of the color-assignments
also imposes the linearity of the underlying graphlets: Ki jkl can only represent the
graphlets (u,v,w,z)4 with η(u) < η(v) < η(w) < η(z). Both the graphlets and the
color-assignments follow the same ordering in colors. Given the number of color ρ

for 4-node graphlet enumeration, there are ρ4 color-assignments.
While previous work employed the idea of color-direction to reduce the amount

of work (PT ECD), D4GE differentiates itself by the fact that D4GE exploits both
the linearity of the DAG and the color-assignment, along with the fact that the
color-assignment problem is essentially a combination problem. The unique rela-
tionship between any subgraph and its color-assignment guarantees the duplication-
free nature of D4GE. In addition, previous works explicitly list all the ordered color-
tuples in the algorithm, while D4GE utilizes combinations to generalize the color-
assignments. This works not only for k = 4, but also to any order k (with ρk color-
assignments).

The pseudo code of D4GE is given as Algorithms 9:

Algorithm 9 D4GE
Require: An undirected graph G(V,E); the number of colors ρ

1: Construct
−→
G (V,

−→
E) by applying edge-orientation to G(V,E)

2: Symmetrise
−→
G (V,

−→
E) into Gsym(V,Esym)

3: Partition Esym into directed edgeset E∗i j .
4: Generate sub-problems Si j ∪Si jk ∪Si jkl .
5: for all SCs ∈ Si j ∪Si jk ∪Si jkl do ▷ Distributed-for
6: Ks← Grouped color-assignments under SCs
7: Emap← Read directed edgesets from distributed storage.
8: for all Ki jkl ∈ Ks do
9: S4GECD (Emap, i jkl)

10 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

D4GE groups the color-assignments into sub-problems (line 6 of Algorithm 9).
Consider color-assignments K0001 and K0002. By definition K0001 requires knowl-
edge of E∗00 ∪E∗01 and K0002 requires knowledge of E∗00 ∪E∗02. If these two color-
assignments are computed on two different workers, the partitioned edgeset E∗00 is
then loaded twice. To address this, color-assignments Kpqrs are grouped into sub-
problems. Inherently Si jkl is used to denote a sub-problem. The color-assignments
are grouped by the following rule: Kpqrs belongs to sub-problem Si jkl if the sorted
and reduced form of {p,q,r,s} is {i, j,k, l}, where sorted means sorting {p,q,r,s}
in ascending order, and reduced means removing the duplicated colors from the
sequence {p,q,r,s}. In the example of K2010, the sorted and reduced form of
{2,0,1,0} is {0,1,2}. Therefore K2010 belongs to S012.

To fully cover all the color-assignments, D4GE generates
(

ρ

2

)
number of Si j,

(
ρ

3

)
number of Si jk and

(
ρ

4

)
number of Si jkl . Sub-problem Si jkl contains all the ordered

color-assignments Kpqrs where p,q,r,s∈{i, j,k, l}; sub-problem Si jk contains all the
ordered color-assignments Kpqrs where p,q,r,s ∈ {i, j,k}; sub-problem Si j contains
all the ordered color-assignments Kpqrs where p,q,r,s ∈ {i, j}. In the special case of
ordered color-assignments Kiiii (omitted Si) where all four colors are the same, we
attach Kiiii to sub-problem Si j where i+ 1 = j%ρ . Each sub-problem is computed
independently on a distributed worker.

Liu et al. in [13] proved that with the same serialized local algorithm S4GE,
D4GE requires no more than 2msym amount network read than PSE partitioning
scheme. Under the same condition, Liu et al. showed that PSE does
3
((

ρ−1
2

)
−ρ

)
dsym

max(|∆I |+ |∠I |)−6dsym
max(|∆II |+ |∠II |+ |∆III |+ |∠III) amount of ex-

tra work when enumerating all six types of 4-node graphlets. Liu et al. argued that
for real-world graphs, the number of wedges plus triangles is often a magnitude
greater than the number of the edges, and for a reasonable-sized cluster, ρ is often
set to a large value. Thus D4GE with S4GECD can often achieve greater performance
improvement. In the Experiment chapter, Liu et al. showed that D4GE/S4GECD
combo achieved a convincing 10-fold speedup compared against PSE/S4GE with
over eight different datasets, with almost perfect scalability up-to 256 distributed
workers. Lastly, Liu et al. proved D4GE/S4GECD combo’s capability by enumerat-
ing the indochina dataset ([2], [3]), emitting more than ten quadrillion (10×1015)
4-node graphlets, which is the first of its kind.

4.4.1 S4GECD

S4GE is modified accordingly so that it is able to enumerate all 4-node graphlets for
an ordered color-assignment Ki jkl . This modified version is called S4GECD.

Instead of enumerating on a complete graph, S4GECD now enumerates on a sub-
graph denoted by the color-assignment Ki jkl . The subgraph consists of a mapping
between the ordered color 2-tuples (i, j) and the corresponding directed edgesets
E∗i j. For an ordered color-assignment, there are

(4
2

)
= 6 such 2-tuples: (i, j), (i,k),

(i, l), (j,k), (j, l) and (k, l). (i, j), (i,k), (j,k) and the corresponding edgesets are
used to discover the wedge or triangle, and (i, l), (j, l), (k, l) and the correspond-

Practical Survey on MapReduce Subgraph Enumeration Algorithms 11

ing edgesets are used to discover the graphlet after the base wedge or triangle have
been discovered. S4GECD inherits the correctness from S4GE since the actual in-
tersection logic is untouched, whereas S4GECD solely focuses on a particular edge-
induced sub-set of the input graph, with all the edges pointing from color i to j,k, l,
from j to k, l and from k to l.

The pseudocode for S4GECD is given in Algorithm 10, with the details of the
explore-functions are given in Algorithms 11, 12 and 13 respectively.

Algorithm 10 S4GECD

Require: A mapping from the colors of directed edge set to the edge set Emap ≡ {(i, j) 7→ E∗i j}; ordered color-
assignment i jkl

1: E∗i j ≡ Emap[i j], E∗ik ≡ Emap[ik], E∗jk ≡ Emap[jk]
2: for all (u,v) ∈ E∗i j do
3: if η(u)< η(v) then
4: for u′ ∈ N(u)⊂ E∗ik and v′ ∈ N(v)⊂ E∗jk do
5: if (u′ > u)∧ (v′ > u) then
6: if u′ = v′ > v then
7: EXPLORETRIANGLECD (u,v,u′,Emap, i jkl)
8: if (u′ < v′)∧ (u′ > v) then
9: EXPLOREWEDGE-1CD (v,u,u′,Emap, i jkl)
10: if u′ > v′ then
11: EXPLOREWEDGE-2CD (u,v,v′,Emap, i jkl)

Algorithm 11 EXPLORETRIANGLECD

Require: Given triangle (v,u,w); Emap ≡ {(i, j) 7→ E∗i j}; color-assignment i jkl.
1: E∗il ≡ Emap[il], E∗jl ≡ Emap[jl], E∗kl ≡ Emap[kl]
2: N>u(u)≡ {z|z ∈ N(u)|E∗il ,η(z)> η(u)}
3: N>u(v)≡ {z|z ∈ N(v)|E∗jl ,η(z)> η(u)}

4: N>u(w)≡ {z|z ∈ N(w)|E∗kl
,η(z)> η(u)}

5: Rest follows Algorithm 2 line 2.

Algorithm 12 EXPLOREWEDGE-1CD

Require: Given wedge (v,u,w); Emap ≡ {(i, j) 7→ E∗i j}; color-assignment i jkl.
1: E∗il ≡ Emap[il], E∗jl ≡ Emap[jl], E∗kl ≡ Emap[kl]
2: N>u(u)≡ {z|z ∈ N(u)|E∗il ,η(z)> η(u)}
3: N>u(v)≡ {z|z ∈ N(v)|E∗jl ,η(z)> η(u)}

4: N>u(w)≡ {z|z ∈ N(w)|E∗kl
,η(z)> η(u)}

5: Rest follows Algorithm 3 line 2.

Algorithm 13 EXPLOREWEDGE-2CD

Require: Given wedge (v,u,w); Emap ≡ {(i, j) 7→ E∗i j}; ordered color-assignment i jkl.
1: E∗jl ≡ Emap[jl], E∗kl ≡ Emap[kl]
2: N>u(v)≡ {z|z ∈ N(v)|E∗jl ,η(z)> η(u)}

3: N>u(w)≡ {z|z ∈ N(w)|E∗kl
,η(z)> η(u)}

4: Rest follows Algorithm 4 line 2.

12 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

5 Summary
In this section we present to the audience a tabular overview of the characteristics
of the distributed algorithms studied in this paper. Some of the key characteristics
are listed in Table 1.

Table 1: Summary of the four mentioned subgraph enumeration algorithms. CW12
(Clueweb12), SD (SubDomain) and IC (Indochina) are referring to the largest
graphs that have ever been processed using the respective algorithms.

Characteristics PTEBase PTECD PSE D4GE

Runtime O(m3/2) O(m3/2) Query-dependent O((|∆ |+ |∠|)dsym
max)

NetworkRead O(ρm) O(ρm)
(

ρ−1
k−2

)
∗m [

(
ρ

2

)
−ρ +3− 2

ρ
]msym

Capability 3×1012(CW12) 3×1012(CW12) 0.27×1015(SD) 2.8×1015(IC)

Application Triangle Triangle QueryAnswering 4-node Graphlet

SotA N Y Y Y

All four distributed algorithms are within the same runtime class of their se-
rialized counterpart, namingly, the runtime of CompactForward for PTEBase and
PTECD, VF2 for PSE and S4GE for D4GE. In the case of PSE, because the runtime
complexity is dependent on the user-query, no exact expression is given by the au-
thors. While not proved directly, the authors of D4GE presented a high correlation
between the enumeration time against and the augmented runtime complexity. Over-
all the results are welcomed as none of the candidates incurs additional complexity
to the enumeration tasks that are already challenging.

The network read of all four algorithms increases with respect to the number of
colors ρ . This can be understood by the fact that all of the algorithms share the
same definition of sub-problems, and sub-problems have overlaps, and the amount
of overlaps can be parameterized by ρ . Without loss of generality, consider tri-color
sub-problems Si jk. Fixing the colors of i and j, there are precisely ρ number of
variations in third color k, meaning that if ρ increases, the number of tri-color sub-
problems also rises.

Next we summarize the maximum number of emitted subgraphs/graphlets and
the respective input graphs of the candidate algorithms. This is used to indicate the
capability of the candidate algorithms in their unique application. Both PTEBase
and PTECD are able to enumerate all triangles of the largest web-crawl graph
Clueweb122, emitting more than three trillions of triangles within 103 minutes with
120 workers. PSE, with the 4-clique query, is able to discover 0.27 quadrillions
of such subgraphs within 104 minutes with 120 workers, from the SubDomain3

dataset. D4GE enumerates an astronomical 3-quadrillions 4-node graphlets from
the Indochina4 dataset, requiring 672 workers and 7×103 minutes of runtime.

2 http://www.lemurproject.org/clueweb12/webgraph.php
3 http://webdatacommons.org/hyperlinkgraph/
4 http://law.di.unimi.it/webdata/indochina-2004/

Practical Survey on MapReduce Subgraph Enumeration Algorithms 13

We can conclude that all candidate algorithms in this work are extremely capable
and performant in their respective applications. PTEBase, although out-performed
by its successor PTECD, inspires the invention of PSE. D4GE, while requires more
computing power than the other candidates, is addressing an unprecedentedly chal-
lenging enumeration problem - that it enumerates all six-types of 4-node graphlets,
and the graphlets are induced subgraphs, which are harder to enumerate [13].

6 Conclusion
Over the past decade, subgraph enumeration has been exposed under increased fo-
cuses, especially since the introduction of networks motifs [15] as an important tool
for network analysis, as well as graphlets [20] which are now established measures
for network alignment [22].

In this survey we explored several existing MapReduce-based methods to solve
the subgraph enumeration problem of three different focuses: triangles, k-order sub-
graphs and 4-node graphlets. We presented the audiences with their main conceptual
approaches, gave insight on their advantages and limitations, and provided a sum-
mary of their similarities and differences.

The aim of this work was to describe some of the state-of-the-art MapReduce
algorithms, offering a thorough under-the-hood review. We restricted our focus in
the MapReduce community because of the tried-and-true nature of MapReduce; the
algorithms under this framework are often the most intuitive, practical and easy to
implement.

Last but not least, we provided more than two dozens of references allowing
further exploration of any aspects that might be of particular interest to the audience.

References

1. Foto N Afrati, Dimitris Fotakis, and Jeffrey D Ullman. Enumerating subgraph instances using
map-reduce. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages
62–73. IEEE, 2013.

2. Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation:
A multiresolution coordinate-free ordering for compressing social networks. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Ku-
mar, editors, Proceedings of the 20th international conference on World Wide Web, pages
587–596. ACM Press, 2011.

3. Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques.
In Proc. of the Thirteenth International World Wide Web Conference (WWW 2004), pages
595–601, Manhattan, USA, 2004. ACM Press.

4. Matthias Bröcheler, Andrea Pugliese, and Venkatramanan S Subrahmanian. Cosi: Cloud ori-
ented subgraph identification in massive social networks. In 2010 International Conference
on Advances in Social Networks Analysis and Mining, pages 248–255. IEEE, 2010.

5. Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineer-
ing, 11(4):29, 2009.

14 Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo

6. Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph iso-
morphism algorithm for matching large graphs. IEEE transactions on pattern analysis and
machine intelligence, 26(10):1367–1372, 2004.

7. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters,
2008.

8. Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. Frequent
substructure-based approaches for classifying chemical compounds. IEEE Transactions on
Knowledge and Data Engineering, 17(8):1036–1050, 2005.

9. Katherine Faust. A puzzle concerning triads in social networks: Graph constraints and the
triad census. Social Networks, 32(3):221–233, 2010.

10. Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. Mining co-
herent dense subgraphs across massive biological networks for functional discovery. Bioin-
formatics, 21(suppl 1):i213–i221, 2005.

11. Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enumeration in
mapreduce. Proceedings of the VLDB Endowment, 8(10):974–985, 2015.

12. Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theor. Comput. Sci., 407(1-3):458–473, 2008.

13. Xiaozhou Liu, Yudi Santoso, Alex Thomo, and Venkatesh Srinivasan. Distributed enumeration
of four node graphlets at quadrillion-scale. SSDBM 2021: 33rd International Conference on
Scientific and Statistical Database Management, pages 85–96, 2021.

14. Tijana Milenković and Nataša Pržulj. Uncovering biological network function via graphlet
degree signatures. Cancer informatics, 6, 2008.

15. Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

16. Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting trian-
gles in a very large graph. In 22nd ACM International Conference on Information and Knowl-
edge Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, pages
539–548, 2013.

17. Ha-Myung Park, Sung-Hyon Myaeng, and U Kang. Pte: Enumerating trillion triangles on
distributed systems. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1115–1124. ACM, 2016.

18. Ha-Myung Park, Francesco Silvestri, U. Kang, and Rasmus Pagh. Mapreduce triangle enumer-
ation with guarantees. In Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, CIKM 2014, Shanghai, China, November
3-7, 2014, pages 1739–1748, 2014.

19. Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng,
and U Kang. Enumerating trillion subgraphs on distributed systems. ACM Transactions on
Knowledge Discovery from Data (TKDD), 12(6):1–30, 2018.

20. Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinfor-
matics, 23(2):e177–e183, 2007.

21. Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chem-
ical informatics. Neural networks, 18(8):1093–1110, 2005.

22. Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David Aparicio, and Fernando Silva. A
survey on subgraph counting: Concepts, algorithms, and applications to network motifs and
graphlets. ACM computing surveys, 54(2):1–36, 2021.

23. Yudi Santoso, Venkatesh Srinivasan, and Alex Thomo. Efficient enumeration of four node
graphlets at trillion-scale. In 23rd EDBT, pages 439–442, 2020.

24. Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages
607–614, New York, NY, USA, 2011. ACM.

25. Serene WH Wong, Nick Cercone, and Igor Jurisica. Comparative network analysis via differ-
ential graphlet communities. Proteomics, 15(2-3):608–617, 2015.

	Practical Survey on MapReduce Subgraph Enumeration Algorithms
	Xiaozhou Liu, Yudi Santoso, Venkatesh Srinivasan, Alex Thomo
	Introduction
	Contributions

	Preliminaries
	Serial Graphlet Enumerations
	4-node Graphlet Enumeration

	Distributed Subgraph Enumeration
	PTEBase
	PTECD
	PSE
	Distributed 4-node Graphlet Enumeration

	Summary
	Conclusion
	References

