
Visibly Pushdown Transducers for

Approximate Validation of Streaming XML

Alex Thomo, S. Venkatesh, and Ying Ying Ye

University of Victoria, Victoria, Canada
{thomo,venkat,fayye}@cs.uvic.ca

Abstract. Visibly Pushdown Languages (VPLs), recognized by Visibly
Pushdown Automata (VPAs), are a nicely behaved family of context-
free languages. It has been shown that VPAs are equivalent to Extended
Document Type Definitions (EDTDs), and thus, they provide means for
elegantly solving various problems on XML. Especially, it has been shown
that VPAs are the apt device for streaming XML.

One of the important problems about XML that can be addressed using
VPAs is the validation problem in which we need to decide whether an
XML document conforms to the specification given by an EDTD. In
this paper, we are interested in solving the approximate version of this
problem, which is to decide whether an XML document can be modified
by a tolerable number of edit operations to yield a valid one with respect
to a given EDTD.

For this, we define Visibly Pushdown Transducers (VPTs) that give us
the framework for solving this problem under two different semantics for
edit operations on XML. While the first semantics is a generalization of
edit operations on strings, the second semantics is new and motivated
by the special nature of XML documents. Usings VPTs, we give stream-
ing algorithms that solve the problem under both the semantics. These
algorithms use storage space that only depends on the size of the EDTD
and the number of tolerable errors. Furthermore, they can check approx-
imate validity of an incoming XML document in a single pass over the
document, using auxilliary stack space that is proportional to the depth
of the XML document.

1 Introduction

The Extensible Markup Language (XML) is the lingua franca for data and doc-
ument exchange on the Web and used in a variety of applications ranging from
collaborative commerce to medical databases. One of the most important prob-
lems on XML is the validation of documents against a schema specification
typically given by one of the popular schema languages, Document Type Def-
inition (DTD), XML Schema ([19]) or Relax NG ([8]). In many applications
for data and document exchange, the data is streaming in large quantities and
an on-line-one-pass processing and validation of XML using limited memory is
required.

Due to its importance, the XML validation problem has received a lot of at-
tention (cf. [18, 22, 4, 6, 5, 21]). One of the most recent developments on the prob-
lem is the use of Visibly Pushdown Automata (VPAs) for validating streaming
XML ([14]). In this work, it was shown that VPAs precisely capture the lan-
guages of XML documents induced by Extended Document Type Definitions
(EDTDs), introduced in [17]1.

EDTDs are essentially extended context free grammars enriched with types
and can model all three popular schema formalisms mentioned above: DTD,
XML Schema and Relax NG (see [17, 16]). After constructing a VPA for a given
EDTD, the XML validation problem reduces to the one of accepting or reject-
ing an XML formatted word with the constructed VPA. We note here that the
correspondence of VPAs to EDTDs is with respect to the word-encoded deriva-
tion trees of EDTDs rather than the set of words they generate. We remark
that, when one uses an EDTD as a specification for XML documents, it is its
language of derivation trees that is relevant; namely, for an XML document to
be valid, when viewed as a tree, it has to correspond to a derivation tree (after
applying typing) of the given EDTD.

VPAs, which as mentioned, precisely capture XML specifications given by
EDTDs, are in essence pushdown automata. Their push or pop mode can be
determined by looking at the input only (hence their name). VPAs recognize
Visibly Pushdown Languages (VPLs), which form a well-behaved and robust
family of context-free languages. VPLs enjoy useful closure properties and several
important problems for them are decidable. For example, VPLs are closed under
intersection and complement, and the containment problem is decidable.

In this paper, we introduce Visibly Pushdown Transducers (VPTs), which
preserve the VPL family under their transductions. That is, given a VPL L and a
VPT T , the transduction of L through T is again a VPL. We give constructions to
obtain transductions for VPLs, as well as to perform useful operations on VPTs.
Notably, VPTs give us a framework for solving the approximate validation of
XML, where the approximation is in the sense that an XML document might
not conform in its current form to a given EDTD but will do so after a few
edit operations. Formally, in this paper, we study the K-validation problem for
streaming XML:

Given an EDTD and a positive integer K, preprocess and store the
EDTD succinctly so that queries of the form “Does an XML document
fit the EDTD specification after at most K edit operations?” can be
answered efficiently.

Here, in line with the streaming XML model presented in [18], we distinguish
two phases, which we explicitly call: the preprocessing phase and the querying

phase. The preprocessing phase can be done offline and it has to be such as to

1 [17] calls this formalism specialized DTD as types specialize tags. Similarly with [16],
we use the term extended DTD to convey that this formalism is more powerful than
DTD.

facilitate the next phase of querying which in turn has to be done online and in
a single pass on the streaming XML.

In this paper, we study the approximate validation problem under two dif-
ferent semantics for edit operations on XML. The first semantics generalizes the
standard edit operations on strings to XML. These edit operations are the sub-
stitution of a symbol by another, deletion of a symbol, and insertion of a string.
In the context of XML, we generalize them by the substitution, deletion and
insertion of pairs of matching open and close tags.

In the preprocessing phase of our algorithm for the first semantics, we con-
struct VPTs for each of the three edit operations, and then superimpose them
to produce a combined VPT for all the operations. Then, we transduce the given
VPA through this VPT to get a new VPA. The preprocessing phase will store
this VPA as its final output. The size of the final VPA is O(KM) where M is the
size of the given VPA (or EDTD). Thus, our algorithm for the first semantics
uses storage space that only depends polynomially on the size of the EDTD and
the error parameter.

In the querying phase, we receive as input a streaming XML document and
check if this document is accepted or not by the VPA constructed in the pre-
processing phase. Our querying scheme checks membership in a single pass over
the XML document using time which depends only linearly on the size of the
document, and auxilliary space proportional to the depth (and not size) of the
document.

In the second part of the paper, we introduce another semantics for the edit
operations on XML. Under this second semantics, whenever we decide to perform
an edit operation with respect to an element, we apply the operation on all the
occurrences of the element. To see the usefulness of this semantics, consider the
following XML document

<collection>

<book> Book-One </book> ... <book> Book-One-Thousand </book>

</collection>

in which there are 1000 book elements. It is clear that if we change book to livre

we need to apply this all over the board for a total of 1000 times. Nevertheless,
in this example, this should semantically count as one change, not as 1000.
Our second semantics does exactly that; the “same fate” happens to all the
occurrences of an element and this has a cost of one. On the other hand, under
the first semantics, one would need 1000 edit operations to change all the book

elements to livre. Depending on the application, the user can select the first or
the second semantics.

Similarly to the first semantics, the preprocessing phase of our algorithm for
the new semantics constructs VPTs for each of the three edit operations and
glues these VPTs together through superimposition and union to construct a
combined VPT for all the operations under the second semantics. We store the
transduction of the given VPA through the VPT as the final output of this phase.
The edit VPT for the second semantics has a size of RO(K), where R is the size

of the underlying alphabet, and thus, the transduction of the given VPA can
have a size proportional to RO(K)M . We believe that this exponential penalty
in K is an artifact of the requirement that the queries be answered using only
one pass through the XML document.

As in the case of the first semantics, the querying scheme is in fact member-
ship testing which is done in a single pass over the XML document using time
proportional to its size and auxilliary stack space proportional to the depth of
the XML document.

We would like to remark that the three parameters - number of tolerable
errors, size of the EDTD and the depth of the XML document are typically small
in practice. Hence, our algorithms are viable for large and streaming XML.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. Section 3 reviews VPAs. In Section 4, we introduce VPTs, their trans-
ductions and operations on them. In Section 5 and 6, we present VPTs for edit
operations under the first and second semantics respectively. Finally, Section 8
concludes the paper.

2 Related Work

The XML validation problem has received a lot of attention in the last years (cf.
[18, 21, 14, 7, 20, 9, 4, 6, 5]).

The first three, [18, 21, 14], study the exact validation of XML in a streaming
context. In [14], it was argued that VPAs are the apt device for the validation
of streaming XML. Also, in the same work, it was shown that VPAs precisely
correspond to EDTDs. In fact, this result could also be established based on [17]
and [3]. Namely, [17] shows that the tree languages specified by EDTDs coincide
with the class of regular tree languages, while [3] shows that the latter coincide
with the VPL class.

The next three works, [7, 20, 9], consider variants of approximate XML vali-
dation, but in a non-streaming setting.

[7] presents a randomized methodology for validating and repairing XML
documents. The main difference from our work is that [7] considers edit distance
with moves and the error is relative rather than absolute. This means that the
bigger the document is the bigger the error is tolerated to be. We believe that
there are practical cases when an absolute tolerable error must be specified as
opposed to a relative one.2

The methodology of [7] can be adapted to work in a streaming context with
constant space for deciding the validity. However, reparing needs to build first
the XML tree and then perform two passes on the tree.

2 For example, suppose that there is a schema for XML documents about (people)
contact information. Now, following [7], if a contact XML file has a mailing address
and a phone number then we would tolerate more structural errors than for some
other contact file with only the mailing address. We believe that in this case, one
should use an absolute number of tolerable errors in order to not bias the tolerance
of validation towards the first file.

[20] presents an exact algorithm, for validating and repairing XML docu-
ments. Both [7] and [20] have a similar flavor in that both have a recursive nature
traversing the XML tree top-down and bottom-up, thus making two passes on
the document. In contrast, our (exact) algorithms do not build an XML tree,
and perform only a single pass on the document considered as a word. Also, our
algorithms can be easily adapted to succinctly produce all the possible repairs
for an XML document.

Regarding [9], it focuses on validating and repairing XML documents under a
set of integrity constraints. The general problem for [9] is undecidable, and thus,
it restricts the edit operations to either deletions or insertions only. All [7, 20,
9] consider simple DTDs only, while we consider VPAs which computationally
represent EDTDs which in turn can abstract DTD, XML Schema and Relax NG.

The other three works, [4, 6, 5], consider the incremental validation of XML,
which is validating documents after updates are being applied on them. The
challenge there is to not rescan the document from the scratch, but rather work
on the relevant (updated) part of the document. Also, the validation sought
is exact rather than approximate. Although these works consider operations
that edit (update) documents, the studied problem is very different from the
approximate validation of streaming XML.

In all [7, 20, 9, 4, 6, 5], the edit operations are variants of, or can be achieved
by, our edit operations under the first semantics. On the other hand, edit opera-
tions under our second semantics, although quite useful in practice, to the best
of our knowledge, have not been studied by any work.

Our treatment of approximate XML validation bears some similar flavor
with [10–12]. However, these works deal with regular languages only and re-
volve around a different problem, which is finding paths in graph databases that
approximately spell words in a given regular language.

3 Visibly Pushdown Automata

VPAs were introduced in [3] and are a special case of pushdown automata.
Thier alphabet is partitioned into three disjoint sets of call, return and local
symbols, and their push or pop behavior is determined by the consumed symbol.
Specifically, while scanning the input, when a call symbol is read, the automaton
pushes one stack symbol onto the stack; when a return symbol is read, the
automaton pops off the top of the stack; and when a local symbol is read, the
automaton only moves its control state.

Formally, a visibly pushdown automaton (VPA) A is a 6-tuple (Q, (Σ, f), Γ ,
τ , q0, F), where

1. Q is a finite set of states.

2. – Σ is the alphabet partitioned into the (sub) alphabets Σc, Σl and Σr of
call, local and return symbols respectively.

– f is a one-to-one mapping Σc → Σr. We denote f(a), where a ∈ Σc, by
ā, which is in Σr.

3

3. Γ is a finite stack alphabet that (besides other symbols) contains a special
“bottom-of-the-stack” symbol ⊥.

4. q0 is the initial state.
5. F is the set of final states.
6. τ = τc ∪ τr ∪ τl ∪ τǫ is the transition relation and τc, τl, τr and τǫ are as

follows.
– τc ⊆ Q × Σc × Q × Γ

– τr ⊆ Q × Σr × Γ × Q

– τl ⊆ Q × Σl × Q

– τǫ ⊆ Q × {ǫ} × Q

When reasoning about XML structure and validity, the local symbols are not
important, and thus, for simplicity we will not mention local symbols in the rest
of the paper. So, for the above definition, we can consider Σ being partitioned
into Σc and Σr, and τ being partitioned into τc, τr and τǫ only.

Any transition involves two states (not necessarily distinct). We call the first
the origin state and the second the destination state.

Two transitions are called consecutive if the destination state of the first is
the same as the origin state of the second. This definition applies regardless of
whether the transitions involve a push or a pop.

A sequence of consecutive transitions is an accepting run if (a) the origin
state of the first transition is q0, (b) the destination state of the last transition
is in F and (c) when starting with an empty stack (⊥) and following all the
transitions in order, in the end, we get again an empty stack (⊥).

A word w is accepted by a VPA if there is an accepting run in the VPA which
spells w. A language L is a visibly pushdown language (VPL) if there exists a
VPA that accepts all and only the words in L. The VPL accepted by a VPA A

is denoted by L(A).

Example 1. Suppose that we want to build a VPA accepting XML documents
about book collections. Such documents will have a collection element nesting
any number of book elements in them. Each book element will nest a title element
and any number of author elements. A VPA accepting well-formed documents
of this structure is A = (Q, (Σ, f), Γ, τ, q0, F), where

Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8},

Σ = Σc ∪ Σr =

{collection, book, author, title} ∪ {collection, book, author, title},

f maps the Σc elements into their “bar”-ed counterparts in Σr,

Γ = {γc, γb, γa, γt} ∪ {⊥},

F = {q8},

3 When referring to arbitrary elements of Σr, we will use ā, b̄, . . . in order to emphasize
that these elements correspond to a, b, . . . elements of Σc.

τ = {(q0, collection, q1, γc), (q1, book, q2, γb), (q2, author, q3, γa),

(q3, author, γa, q4), (q4, author, q3, γa), (q4, title, q5, γt),

(q5, title, γt, q6), (q6, book, γb, q7), (q7, collection, γc, q8), (q7, ǫ, q1)}.

We show this VPA in Fig. 1.

ε

q
3

q
2

γaauthor,γbbook,
q

1 q
4

γaauthor,

γaauthor,

q5q6

γttitle,γbbook,γccollection,

q
0

γccollection,

γttitle,

q7
q

8

Fig. 1. Example of a VPA.

Processing a document with a VPA. As mentioned in the Introduction,
given a schema specification VPA A = (Q, (Σ, f), Γ , τ , q0, F), the (exact)
typechecking of an XML document (word) w amounts to accepting or rejecting
w using A.

Now, the question is whether this can be done using a non-deterministic
VPA A. Recall that the well-known procedure for deciding the membership of
a word w to a general context-free language, is grammar-based and takes |w|3

time, which is not appropriate for a streaming context.

On the other hand, as shown in [3], VPAs can be determinized, and thus
allow for a linear one-pass scanning of a given word. However, there is an expo-
nential penalty to pay for storing deterministic VPAs. Specifically, Theorem 2
in [3] shows that for a given non-deterministic VPA with M states there is an

equivalent deterministic VPA with O(2M2

) states and with stack alphabet of

size O(2M2

· |Σc|). Nevertheless, for processing a word w, we do not need the
whole deterministic VPA, but rather only the single transition sequence spelling
w in this automaton. Along the lines of Theorem 2 in [3], one can construct
this path on the fly. The amount of space needed is O(M2), while the time for
processing a symbol of w and finding for it the “next transition” in the sequence
of transitions is O((M2 + M) · |Σc|). In total, one needs only one pass on word
w, for a time O((M2 +M) · |Σc| · |w|), which depends only linearly on the length
of w.

4 Visibly Pushdown Transducers

A visibly pushdown transducer (VPT) T is a 7-tuple (P, (I, f), (O, g), Γ, τ, p0, F),
where

1. P is a finite set of states.

2. – I is the input alphabet partitioned into the (sub) alphabets Ic and Ir of
input call and return symbols.

– f is a one-to-one mapping Ic → Ir. We denote f(a), where a ∈ Ic, by ā.

3. – O is the output alphabet partitioned into the (sub) alphabets Oc and
Or of output call and return symbols respectively.

– g is a one-to-one mapping Oc → Or. We denote g(b), where b ∈ Oc, by b̄.

4. Γ is a finite stack alphabet that (besides other symbols) contains a special
“bottom-of-the-stack” symbol ⊥.

5. p0 is the initial state.

6. F is the set of final states.

7. τ = τc ∪ τr ∪ τǫ, where

– τc ⊆ (P ×Ic×Oc×P ×Γ)∪(P ×{ǫ}×Oc×P ×Γ)∪(P ×Ic×{ǫ}×P ×Γ)

– τr ⊆ (P ×Ir×Or×Γ ×P)∪(P ×{ǫ}×Or×Γ ×P)∪(P ×Ir×{ǫ}×Γ ×P)

– τǫ ⊆ P × {ǫ} × {ǫ} × P.

We define an accepting run for T similarly as for VPAs. Now, given a word
u ∈ I∗, we say that a word w ∈ O∗ is an output of T for u if there exists an
accepting run in T spelling u as input and w as output.4

A transducer T might produce more than one output for a given word u.
We denote the set of all outputs of T for u by T (u). For a language L ⊆ I∗, we
define the image of L through T as T (L) =

⋃

u∈L T (u).

If language L is a VPL, then we show that T (L) is a VPL as well. To show
this, let A = (Q, (ΣA, fA), Γ A, τA, q0, F

A) be a VPA accepting L, and
T = (P, (I, fT), (O, gT), Γ T , τT , p0, F

T) be a VPT as above, where I ⊇ ΣA and
fT is an extension of fA. Then, we present a construction to obtain a VPA B,
whose accepting language is T (L), showing thus that the image of L through T

is again a VPL.

The construction is a Cartesian product of A and T and similar in spirit to
the construction of [3] for showing the closure of VPLs under intersection.

Specifically, B = (R, (ΣB, gB), Γ B, τB, r0, F
B), where

1. R = Q × P ,

2. ΣB ⊆ O, and gB is a refinement of gT

3. Γ B ⊆ (Γ A ∪ †) × Γ T , where † is a special symbol not in Γ A and Γ T .

4. r0 = (q0, p0),

5. F B = F A × F T ,

4 In other words, we get u and w when concatenating the transitions’ input and output
components respectively.

6. τB = τB

c ∪ τB

r , where

τ
B

c = {(q, p), b, (q′, p′), (γA
, γ

T)) : (q, a, q
′
, γ

A) ∈ τ
A

c and (p, a, b, p
′
, γ

T) ∈ τ
T

c } ∪

{((q, p), ǫ, (q′, p′)) : (q, a, q
′
, γ

A) ∈ τ
A

c , a 6= ǫ and (p, a, ǫ, p
′
, γ

T) ∈ τ
T

c } ∪

{((q, p), b, (q, p′), (†, γT)) : q ∈ Q and (p, ǫ, b, p
′
, γ

T) ∈ τ
T

c }

τ
B

r = {((q, p), b̄, (γA
, γ

T), (q′, p′)) : (q, ā, γ
A
, q

′) ∈ τ
A

r and (p, ā, b̄, γ
T
, p

′) ∈ τ
T

r } ∪

{((q, p), ǫ, (q′, p′)) : (q, ā, γ
A
, q

′) ∈ τ
A

r , a 6= ǫ and (p, ā, ǫ, γ
T
, p

′) ∈ τ
T

r } ∪

{((q, p), b̄, (†, γT), (q, p′)) : q ∈ Q and (p, ǫ, b̄, γ
T
, p

′) ∈ τ
T

r }

Clearly, B is a VPA, and we can show that

Theorem 1. The language accepted by B is the image of L through T , i.e.

L(B) = T (L).

Proof. A VPT T can be considered as two VPAs; the input VPA ATI
and the

output output VPA ATO
. ATI

and ATO
can be obtained from T by ignoring

the output and input parts, respectively, of the transitions of T . ATI
and ATO

have the same structure; each transition path in ATI
has some corresponding

transition path in ATO
and vice versa.

Now, the construction of VPA B computes the Cartesian product of VPA A

with VPA ATI
, but instead of keeping the matched transitions, it replaces them

by the corresponding transitions in ATO
.

Thus, if B accepts a word w, it means that there exists a corresponding
word u accepted by A and ATI

, such that w ∈ T (u). As u ∈ L, we have that
T (u) ⊆ T (L) and w ∈ T (L).

On the other hand, for a word u in T (L), there exists some accepting tran-
sition path in the Cartesian product of A with ATI

. By the construction of B,
this accepting path induces an accepting path in B as well. Let w be the word
spelled out by such a path in B. We have that w ∈ L(B), and this concludes our
proof. ⊓⊔

Union of VPTs. In this paper, we will need to take the union of trans-
ducers. Formally given two VPTs T1 = (P1, (I, f), (O, g), Γ1, τ1, p01, F1) and
T2 = (P2, (I, f), (O, g), Γ2, τ2, p02, F2), their union VPT is

T = (P1 ∪ P2 ∪ {p0}, (I, f), (O, g), Γ1 ∪ Γ2, τ0 ∪ τ1 ∪ τ2, p0, F1 ∪ F2),

where p0 6∈ P1 ∪ P2, and τ0 = {(p0, ǫ, ǫ, p01), (p0, ǫ, ǫ, p02)}.

Superimposition of VPTs. Given two VPTs, T1 =(P,(I, f),(O, g),Γ1,τ1,p0,F)
and T2 = (P, (I, f), (O, g), Γ2, τ2, p0, F), which are the same except for the stack
alphabet and transition relation, their superimposition VPT is

T = (P, (I, f), (O, g), Γ1 ∪ Γ2, τ1 ∪ τ2, p0, F).

VPTs for edit operations. In the rest of the paper, we will work on buiding
transducers for preprocessing a given VPA specification A, transducing it into a
“wider” VPA B, which accepts all the words obtainable by applying at most K

edit operations on the words accepted by A. After such a preprocessing phase, the
querying phase amounts to accepting or rejecting the streaming XML document
considering it as a word.

5 VPTs for Edit Operations under the First Semantics

Since XML documents are nested, when we edit one call element, we also need
to edit the corresponding return element. Thus, we consider an (XML) edit
operation to consist of two single-symbol operations.

We want to build a visibly pushdown transducer, which given an input word
u produces as output all the words v obtainable by applying not more than a
certain number (say K) of edit operations on u. We define the edit operations
as substitutions, deletions, and insertions of call-return matches, and computa-
tionally represent them by using VPTs.

5.1 Substitution

A call-return match substitution replaces in an input word a call-return match
a, ā by another call-return match b, b̄.

For example, consider the XML document given in Fig. 2 [left]. By substi-
tuting <phone>, </phone> by <tel>, </tel>, we obtain the document shown in
Fig. 2 [right].

<contact> <contact>

<address> <address>

<str>...</str> <str>...</str>

<city>...</city> <city>...</city>

</address> </address>

<phone>...</phone> <tel>...</tel>

</contact> </contact>

Fig. 2. Illustration of substitution under the first semantics.

In the following, given a non-negative integer K, we build a VPT which for
any word u produces as output the set of all the words w obtainable from u

by applying at most K substitutions. We denote this transducer by T≤K
σ and

formally define it as a VPT with

– Q = {q0, q1, q2, . . . , q2K},
– I = O = Σ, Ic = Oc = Σc, Ir = Or = Σr and f = g,
– Γ = {γa : a ∈ Σc} ∪ {σab : a, b ∈ Σc, a 6= b, } ∪ {⊥},
– F = {q2i : 0 ≤ i ≤ K},
– τ = τc ∪ τr, where

τc = {(qi, a, a, qi, γa) : 0 ≤ i ≤ 2K and a ∈ Σc} ∪

{(qi, a, b, qi+1, σab) : 0 ≤ i ≤ 2K − 1, a, b ∈ Σc and a 6= b},

τr = {(qi, ā, ā, γa, qi) : 0 ≤ i ≤ 2K and ā ∈ Σr} ∪

{(qi, ā, b̄, σab, qi+1) : 1 ≤ i ≤ 2K − 1, ā, b̄ ∈ Σr and ā 6= b̄}.

4q
1

q
3

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

σ
σ

ab

ab

σ
σ

ba

ba

a|b,
a|b,

b|a,
b|a,

σ
σ

ab

ab

σ
σ

ba

ba

a|b,
a|b,

b|a,
b|a,

σ
σ

ab

ab

σ
σ

ba

ba

a|b,
a|b,

b|a,
b|a,a|b,σab b|a,σba

q
2

q
0

q

Fig. 3. VPT T≤2

σ .

For illustration, in Fig. 3, we show T≤2
σ , for alphabet {a, b} ∪ {ā, b̄}.

Intuitively, the transitions in the first set of τc and in the first set of τr leave
the consumed call and return symbols unchanged.

Regarding the transitions in the second set of τc, they substitute a call sym-
bol, say a, by another call symbol, say b. A substitution marking symbol σab is
pushed onto the stack. Symbol σab in the stack is crucial in determining which
occurrence of ā has to be replaced by b̄ using a transition in the second set of τr.

Finally, since we want to substitute 0, 1, . . . , K symbols, we need K + 1
different final states for the K + 1 different cases.

5.2 Deletion

A call-return match deletion removes in an input word a call-return match a, ā.
Deletion is a “structure flattening” operation.

For example, consider the XML document given in Fig. 4 [left]. By deleting
<address>, </address>, we (partially) flatten the document to the one shown
in Fig. 4 [right].

<contact> <contact>

<address> <str>...</str>

<str>...</str> <city>...</city>

<city>...</city> <phone>...</phone>

</address> </contact>

<phone>...</phone>

</contact>

Fig. 4. Illustration of deletion under the first semantics.

In the following, given a non-negative integer K, we build a VPT which for
any word u produces as output the set of all the words w obtainable from u by
applying at most K deletions. We denote this transducer by T

≤K
δ and formally

define it as a VPT with

– Q = {q0, q1, q2, . . . , q2K},

– I = O = Σ, Ic = Oc = Σc, Ir = Or = Σr and f = g,
– Γ = {γa : a ∈ Σc} ∪ {δa : a ∈ Σc} ∪ {⊥},
– F = {q2i : 0 ≤ i ≤ K},
– τ = τc ∪ τr, where

τc = {(qi, a, a, qi, γa) : 0 ≤ i ≤ 2K and a ∈ Σc} ∪

{(qi, a, ǫ, qi+1, δa) : 0 ≤ i ≤ 2K − 1, and a ∈ Σc},

τr = {(qi, ā, ā, γa, qi) : 0 ≤ i ≤ 2K and ā ∈ Σr} ∪

{(qi, ā, ǫ, δa, qi+1) : 1 ≤ i ≤ 2K − 1, and ā ∈ Σr}.

For illustration, in Fig. 5, we show T
≤2
δ , for alphabet {a, b} ∪ {ā, b̄}.

4q
1

q
3

ε,
ε,

δ
δ

a

a

a|
a| ε,

ε,
δ
δb

b

b|
b|

ε,
ε,

δ
δ

a

a

a|
a| ε,

ε,
δ
δb

b

b|
b|

ε,
ε,

δ
δ

a

a

a|
a| ε,

ε,
δ
δb

b

b|
b|ε, ε,δbδaa| b|

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

q
2

q
0

q

Fig. 5. VPT T
≤2

δ .

Similarly with the substitution, the transitions in the first set of τc and in
the first set of τr leave the consumed call and return symbols unchanged.

Regarding the transitions in the second set of τc, they delete a call symbol,
say a. A deletion marking symbol δa is pushed onto the stack. Symbol δa in the
stack is crucial in determining which occurrence of ā has to be deleted by using
a transition in the second set of τr.

Since we want to perform 0, 1, . . . , K deletions, we need K +1 different final
states for the K + 1 different cases.

5.3 Insertion

A call-return match insertion inserts in an input word a call symbol a and a
corresponding return symbol ā while maintaining the well-formedness of the
XML document. Thus, insertion is a “structure creation” operator.

For example, consider the XML document given in Fig. 6 [left]. By inserting
<address>, </address>, surrounding the street and city elements, we obtain
the document in Fig. 6 [right].

In the following, given a non-negative integer K, we build a VPT which for
any word u produces as output the set of all the words w obtainable from u by
applying at most K insertions. We denote this transducer by T≤K

η and formally
define it as a VPT with

– Q = {q0, q1, q2, . . . , q2K},

<contact> <contact>

<str>...</str> <address>

<city>...</city> <str>...</str>

<phone>...</phone> <city>...</city>

</contact> </address>

<phone>...</phone>

</contact>

Fig. 6. Illustration of insertion under the first semantics.

– I = O = Σ, Ic = Oc = Σc, Ir = Or = Σr and f = g,
– Γ = {γa : a ∈ Σc} ∪ {ηa : a ∈ Σc} ∪ {⊥},
– F = {q2i : 0 ≤ i ≤ K},
– τ = τc ∪ τr, where

τc = {(qi, a, a, qi, γa) : 0 ≤ i ≤ 2K and a ∈ Σc} ∪

{(qi, ǫ, a, qi+1, ηa) : 0 ≤ i ≤ 2K − 1, and a ∈ Σc},

τr = {(qi, ā, ā, γa, qi) : 0 ≤ i ≤ 2K and ā ∈ Σr} ∪

{(qi, ǫ, ā, ηa, qi+1) : 1 ≤ i ≤ 2K − 1, and ā ∈ Σr}.

For illustration, in Fig. 7, we show T≤2
η , for alphabet {a, b} ∪ {ā, b̄}.

/
q

3

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

q
1

a

a

a|a,
a,a| γ

γ bγ
bγ

b|b,
b|b,

η
η

b,
b, b

ba,ηa

a,ηaε
ε

ε
ε

/
/

/
/ η

η
b,
b, b

ba,ηa

a,ηaε
ε

ε
ε

/
/

/
/ η

η
b,
b, b

ba,ηa

a,ηaε
ε

ε
ε

/
/

/
/

q
2

q
0

q
4

ηb, ba,ηaε ε/

Fig. 7. VPT T≤2

η .

Again, the transitions in the first set of τc, and in the first set of τr leave the
consumed call and return (respectively) symbols unchanged.

Regarding the transitions in the second set of τc, they insert a call symbol,
say a. An insertion marking symbol ηa is inserted on the stack. Symbol ηa in
the stack is crucial in determining when to insert ā by using a transition in the
second set of τr.

5.4 A VPT for All Operations

Here, for a given a non-negative integer K, we want to construct a VPT which
for any word u produces as output the set of all the words w obtainable from u

by applying at most K edit operations, which can be substitutions, deletions or
insertions.

As can be observed above, sets Q, I, O and F are the same for all the trans-
ducers constructed so far. Notably, a VPT T≤K for at most K edit operations
can be simply obtained by superimposing T≤K

σ , T
≤K
δ and T≤K

η .

Transducer T≤K has 2K + 1 states and O(KR2) transitions, where R is the
size of the underlying alphabet.

Edit Distance. Edit operations transform a word into other words. For two
given words u and w we define the distance between u and w as the least number
of edit operations needed to transform u into w. We denote this distance by
d(u,w). It is easy to see that the distance defined using the edit operations
under the first semantics is metric.

Given, a VPL L and a non-negative integer K, we define

L(K) = {u : ∃w ∈ L and d(u,w) ≤ K}.

Now, we can show that for the above transducer T≤K

Theorem 2. T≤K(L) = L(K).

Proof. Basis step. For k = 0, we have L(k) = L(0) = L. On the other hand,
T≤0 is nothing but just a single state transducer with only self-loop transitions
which leave everything unchanged. Thus, T≤0(L) = L = L(0).
Induction step. Suppose that T≤k(L) = L(k) is true for non-negative k. We
want to show that T≤k+1(L) = L(k+1) is true as well.

Based on the construction of edit VPAs, we have that T≤k+1 is in fact T≤k

with two more additional states, q2k+1 and q2k+2. These two states allow T≤k+1

to optionally perform one more operation, which can be substitution, deletion
or insertion.

By the hypothesis, T≤k(L) = L(k) = {w : ∃w′ ∈ L and d(w,w′) ≤ k}. Now,
we have that, since T≤k+1 can perform one more operation,
T≤k+1(L) = {w : ∃w′ ∈ L and d(w,w′) ≤ k or d(w,w′) = k + 1} =
{w : ∃w′ ∈ L and d(w,w′) ≤ k + 1}. The latter is nothing but L(k+1), and this
completes the proof. ⊓⊔

From all the above, and the construction for the language transduction of a
VPT (in Section 4), we can show that

Theorem 3. Under the first semantics, the total time for the preprocessing

phase, and the space for storing the output of it, is O(KR2M).

Proof. This claim follows from the fact that transducer T≤K has 2K + 1 states
and O(KR2) transitions, and the transduction of the schema VPA with M states
is done through a Cartesian product, which will have in this case O(KM) states
and O(KR2M) transitions. The latter is thus an upper bound for the time and
space needed to compute and store the transduction of the schema VPA. This
is nothing but the time and space needed for the preprocessing phase. ⊓⊔

6 VPTs for Edit Operations under the Second Semantics

6.1 Substitution

Under the second semantics, a substitution replaces in an input word all the
call-return matches of a call-return pair (a, ā) by call-return matches of another
call-return pair (b, b̄).

Let alphabet Σ be {a1, . . . , aR}∪{ā1, . . . , āR}. Clearly, we can have R(R−1)
pairs of different call symbols (e.g. (a1, a2), etc). We can now construct substi-
tution transducers which are indexed by these pairs and perform accordingly
the substitution indicated by their index pair. For example, the substitution
transducer indexed by (a1, a2), denoted in short by T 1

σ:12, will substitute all
call-return matches of (a1, ā1) by call-return matches of (a2, ā2) in any word
provided as input. The supscript says that this transducer is of “order one,”
i.e. it substitutes only the call-return matches of one call-return pair. It is not
difficult to construct such transducers. Formally, T 1

σ:ij (for i 6= j) is defined as
a VPT with a single state q0 which is both initial and final, stack alphabet
Γ = {γk : k ∈ {1, . . . , r}\{i}} ∪ {σij} ∪ {⊥}, and transition relation

τc = {(q0, ak, ak, q0, γk) : k 6= i} ∪ {(q0, ai, aj , q0, σij)},

τr = {(q0, āk, āk, γk, q0) : k 6= i} ∪ {(q0, āi, āj , σij , q0)}.

Similarly, we can construct transducers of “order two,” which perform sub-
stitutions for the call-return matches of two call-return pairs. Such a trans-
ducer T 2

σ:ij,kl (for i 6= j, k and k 6= l) is defined again as a VPT with a sin-
gle state q0 which is both initial and final, stack alphabet Γ = {γm : m ∈
{1, . . . , r}\{i, k}} ∪ {σij , σkl} ∪ {⊥}, and transition relation

τc = {(q0, am, am, q0, γm) : m 6= i, k} ∪ {(q0, ai, aj , q0, σij), (q0, ak, al, q0, σkl)},

τr = {(q0, ām, ām, γm, q0) : m 6= i, k} ∪ {(q0, āi, āj , σij , q0), (q0, āk, āl, q0, σkl)}.

We can observe that, regardless of H, the number of transitions in these one-
state transducers is 2R. The transitions in each of the τc and τr sets are divided
into: “leave unchanged” transitions and “modify symbol” transitions.

In general, we can construct substitution transducers of any order up to the
size R of the alphabet. Let TH

σ be the union of all substitution transducers of

order H. Then, we construct transducer T≤K
σ =

⋃K
H=0 TH

σ (considering also T 0
σ

which leaves everything unchanged). Given a word u as input, T≤K
σ produces

as output the set of all words w obtainable from u by applying at most K

substitutions under the second semantics.
Now the question is: For a given H, how many transducers of order H can

be created? We show that

Theorem 4. Given a non-negative integer H ≤ R, the number of substitution

transducers of order H is CH
R · (R − 1)H .

Proof. For this, recall that a transducer of order H substitutes call-return mat-
ches of H call-return pairs. We have CH

R choices for these pairs. In each choice,
any chosen pair, say (ai, āi), can be substituted by any of the (R− 1) remaining
pairs (a1, ā1), . . . , (ai−1, āi−1), (ai+1, āi+1), . . . , (aR, āR). ⊓⊔

6.2 Deletion

A deletion removes from an input word all the call-return matches of a call-
return pair (a, ā). A deletion transducer of order H deletes all the call-return
matches of H call-return pairs, say (ai1 , āi1), . . . , (aiH

, āiH
), in an input word.

This transducer, denoted by TH
δ:i1,...,iH

, has a single state which is both initial

and final, stack alphabet {γj : j ∈ {1, . . . , R}\{i1, . . . , iH}}∪{δi1 , . . . , δiH
}∪{⊥}

and transition relation

τc = {(q0, aj , aj , q0, γj) : j 6= i1, . . . , iH} ∪ {(q0, ai1 , ǫ, q0, δi1), . . . , (q0, aiH
, ǫ, q0, δiH

)},

τr = {(q0, āj , āj , γj , q0) : j 6= i1, . . . , iH} ∪ {(q0, āi1 , ǫ, δi1 , q0), . . . , (q0, āiH
, ǫ, δiH

, q0)}.

We can observe that, regardless of H, the number of transitions in these one-
state transducers is 2R. Also, reasoning similarly as for the substitution, we can
show that

Theorem 5. Given a non-negative integer H ≤ R, the number of deletion trans-

ducers of order H is CH
R .

Proof. This follows from the fact that a deletion transducer of order H deletes
call-return matches of H call-return pairs, and we have CH

R choices for these
pairs. ⊓⊔

In general, we can construct deletion transducers of any order up to the size
R of the alphabet.

6.3 Insertion

An insertion operation under the second semantics non-deterministically inserts
in an input word any number of a single call symbol a balancing those insertions
by inserting in the right places the corresponding return symbol ā.

An insertion transducer of order H inserts call-return matches for H call-
return pairs, say (ai1 , āi1), . . . , (aiH

, āiH
), in an input word. This transducer,

denoted by TH
η:i1,...,iH

, has a single state which is both initial and final, stack
alphabet {γj : j ∈ {1, . . . , R}} ∪ {ηi1 , . . . , ηiH

} ∪ {⊥} and transition relation

τc = {(q0, aj , aj , q0, γj) : j ∈ {1, . . . , R}} ∪ {(q0, ǫ, ai1 , q0, ηi1), . . . , (q0, ǫ, aiH
, q0, ηiH

)},

τr = {(q0, āj , āj , γj , q0) : j ∈ {1, . . . , R}} ∪ {(q0, ǫ, āi1 , ηi1 , q0), . . . , (q0, ǫ, āiH
, ηiH

, q0)}.

We can observe that, the number of transitions in these one-state transducers
is 2(R + H). Also, as for the deletion, we have that

Theorem 6. Given a non-negative integer H ≤ R, the number of insertion

transducers of order H is CH
R .

Proof. This follows from the fact that an insertion transducer of order H inserts
call-return matches of H call-return pairs, and we have CH

R choices for these
pairs. ⊓⊔

In general, we can construct insertion transducers of any order up to the size
R of the alphabet.

6.4 A VPT for All Operations

We now can easily create edit transducers of order H, by superimposing substi-
tution, deletion and insertion transducers of orders H1, H2 and H3, such that
H1 + H2 + H3 = H.

Formally, let TH1

σ:i1j1,...,iH1
jH1

, TH2

δ:k1,...,kH2

and TH3

η:l1,...,lH3

be substitution, dele-

tion and insertion transducers. If {i1, . . . , iH1
}∩{k1, . . . , kH2

} = ∅, then we super-
impose these three transducers to obtain a transducer of order H = H1+H2+H3.
The condition {i1, . . . , iH1

} ∩ {k1, . . . , kH2
} = ∅ says that the call-return pairs

we substitute must be different from those we delete. This is because under the
second semantics of edit operations, all call-return matches of a call-return pair
have “the same fate.” If the transducer both substitutes and deletes the call-
return matches of a call-return pair, then we will have a situation where some of
these call-return matches have been substituted and some other ones have been
deleted.

Of course, in a superimposition, there does not need to be a transducer for
each kind of edit operation. For example, we can create a transducer of order H

by superimposing a substitution transducer and a deletion transducer of orders
H1 and H2 respectively, such that H = H1 + H2.

Now, based on the above as well as theorems 4, 5 and 6, we can state that

Theorem 7. Given a non-negative integer H ≤ R, the number of edit trans-

ducers of order H under the second semantics is O
(

R2H · H2
)

.

Proof. We can create an edit transducer of order H = H1 +H2 +H3 by selecting
for the superimposition one of CH1

R · (R − 1)H1 , CH2

R and CH3

R substitution,
deletion and insertion transducers respectively. Of course, one or two of H1, H2

and H3 might be zero.
Clearly, CH1

R · (R−1)H1 , CH2

R and CH3

R are bounded by RH1 · (R−1)H1 , RH2

and RH3 respectively. Thus, given H1, H2 and H3 we have RH1 ·(R−1)H1 ·RH2 ·
RH3 = RH · (R − 1)H1 , or O(R2H) edit transducers.

Now, the claimed upper bound follows from the above and the fact that we
have O(H2) possibilities of choosing H1, H2 and H3 such that H = H1+H2+H3.

⊓⊔

Let TH be the union of all edit transducers of order H. Then, we construct
transducer T≤K =

⋃K
H=0 TH . Given a word u as input, T≤K produces as output

the set of all words w obtainable from u by applying at most K edit operations
under the second semantics.

Based on Theorem 7 and the construction given for the union of transducers
in Section 4, we can state that

Theorem 8. Transducer T≤K has O
(

R2K · K3
)

states.

Proof. By the construction for the union of transducers, T≤K =
⋃K

H=0 TH

has O
(

ΣK
H=0R

2H · H2
)

states. This is subsumed by O
(

K · R2K · K2
)

, which

is O
(

R2K · K3
)

, i.e. the upper bound in our claim. ⊓⊔

Finally, by the fact that, in a superimposition, each of the three transducers
has O(R) transitions, we can state that

Theorem 9. Transducer T≤K has O
(

R2K+1 · K3
)

transitions.

Proof. Direct from the constructions for the superimposition and union of VPTs.
⊓⊔

Edit Distance. Similarly as for the first semantics, given words u and w, we
define the distance between words u and w as the least number of edit operations
(under the second semantics) needed to transform u into w. Here as well, it is
easy to see that this distance is metric.

Given, a VPL L and a non-negative integer K, we define L(K) as in Subsec-
tion 5.4, but considering instead the distance under the second semantics. Here
we can show that, similarly with Theorem 2, T≤K(L) = L(K).

From the above and theorems 8 and 9, we can state that

Theorem 10. Under the second semantics, the total time for the preprocessing

phase, and the space for storing the output of it, is O(R2K+1K3M).

Proof. This claim follows from the fact that transducer T≤K has O
(

R2K · K3
)

states, and the transduction of the schema VPA with M states is done through
a Cartesian product, which will have in this case O(R2K · K3 · M) states and
O(R ·R2K ·K3 ·M) transitions. The latter is thus an upper bound for the time
and space needed to compute and store the transduction of the schema VPA.
This is nothing but the time and space needed for the preprocessing phase under
the second semantics. ⊓⊔

We believe that this exponential penalty in K is an artifact of the requirement
that the queries be answered using only one pass through the XML document,
while using auxilliary storage space only bounded by the depth of the document.
If we were allowed to use auxilliary space polynomial in the size N of the docu-
ment, we believe that a cubic in N algorithm similar in spirit to [1] could possibly
be devised to use storage space only polynomial in K and M . However, such an
algorithm is useful only in a non-streaming context and when the document size
is not large. This is a topic for our future investigation.

We can also observe that the edit distance between any XML document and
a VPA in the second semantics is at most 2R, i.e. twice the size of the underlying
alphabet. This is because we can first delete all the call-return matches of the
document using at most R delete operations and then create a string in the
language of the VPA using at most R insert operations.

7 Repairs

Now, suppose that we are also interested in obtaining the set Lw,K of words
accepted by the original schema VPA A that can be transformed to match an
XML document w by applying on them at most K edit operations based on either
semantics. The words in Lw,K are the possible repairs of XML document w.

For computing Lw,K , we need to “enrich” the construction of the transduc-
tion to remember the lineage of its words. For this, instead of VPA B, we can
construct a VPT TB, which coincides with B when considering only the input of
its transitions. On the other hand, the output of its transitions “remembers” the
input of T ’s transitions that matched the A’s transitions. Formally, the transition
relation of TB is τB = τB

c ∪ τB

r , where

τ
B

c = {(q, p), b, a, (q′, p′), (γA
, γ

T)) : (q, a, q
′
, γ

A) ∈ τ
A

c and (p, a, b, p
′
, γ

T) ∈ τ
T

c } ∪

{((q, p), ǫ, a, (q′, p′)) : (q, a, q
′
, γ

A) ∈ τ
A

c , a 6= ǫ and (p, a, ǫ, p
′
, γ

T) ∈ τ
T

c } ∪

{((q, p), b, ǫ, (q, p′), (†, γT)) : q ∈ Q and (p, ǫ, b, p
′
, γ

T) ∈ τ
T

c }

τ
B

r = {((q, p), b̄, ā, (γA
, γ

T), (q′, p′)) : (q, ā, γ
A
, q

′) ∈ τ
A

r and (p, ā, b̄, γ
T
, p

′) ∈ τ
T

r } ∪

{((q, p), ǫ, ā, (q′, p′)) : (q, ā, γ
A
, q

′) ∈ τ
A

r , a 6= ǫ and (p, ā, ǫ, γ
T
, p

′) ∈ τ
T

r } ∪

{((q, p), b̄, ǫ, (†, γT), (q, p′)) : q ∈ Q and (p, ǫ, b̄, γ
T
, p

′) ∈ τ
T

r }.

Now, it can be easily seen that for a given document w, we have Lw,K = TB(w).

8 Concluding Remarks

In this work, we have investigated the problem of approximate XML validation,
an important problem in XML processing. Useful contributions of this paper in-
clude the introduction of VPTs and their application to building two algorithms
for checking approximate XML validity in the streaming model. We also believe
that the new semantics introduced in this paper is interesting in the context of
XML and merits further investigation.

References

1. Aho, V., A., Peterson, G., T. A Minimum Distance Error-Correcting Parser
for Context-Free Languages. SIAM J. Comput. 1(4): 1972, pp. 305–312.

2. Alur, R., Kumar. V., Madhusudan, P., and Viswanathan, M. Congruences
for Visibly Pushdown Languages. In Proc. 32nd International Colloquium of
Automata, Languages and Programming (ICALP) (Lisboa, Portugal, 11–15 July
2005), pp. 1102–1114.

3. Alur, R., and Madhusudan, P. Visibly Pushdown Languages. In Proc.
36th ACM Symp. on Theory of Computing (Chicago, Illinois, 13–15 June 2004),
pp. 202–211.

4. Balmin, A., Papakonstantinou, Y., and Vianu, V. Incremental Validation
of XML Documents. ACM Trans. Database Syst. 29(4): 2004, pp. 710–754.

5. Barbosa, D., Leighton, G., and Smith, A. Efficient Incremental Validation of
XML Documents After Composite Updates. In Proc. of 2nd Int. XML Database
Symp. (Seoul Korea, 10–11 September 2006), pp. 107–121.

6. Barbosa, D., Mendelzon, A. O., Libkin, L., Mignet, L., and Arenas, M.

Efficient Incremental Validation of XML Documents. In Proc. of 20th Int. Conf.
on Data Engineering (Boston, USA, 30 March–2 April 2004), pp. 671–682.

7. Boobna, U., and de Rougemont, M. Correctors for XML Data. In Proc. 2nd
International XML Database Symposium (Toronto, Canada, 29–30 August 2004),
pp. 97–111.

8. Clark, J., and M. Murata, M. RELAX NG Specification. OASIS, December
2001.

9. Flesca, S., Furfaro, F., Greco, S., and Zumpano, E. Querying and Repair-
ing Inconsistent XML Data. In Proc. 6th International Conference on Web Infor-
mation Systems Engineering (New York, USA, 20–22 November 2005), pp. 175–
188.

10. Grahne, G., and Thomo, A. Approximate Reasoning in Semistructured Data.
In Proc. of the 8th International Workshop on Knowledge Representation meets
Databases (Rome, Italy, 15 September 2001).

11. Grahne, G., and Thomo, A. Query Answering and Containment for Regular
Path Queries under Distortions. In Proc. of 3rd International Symposium on
Foundations of Information and Knowledge Systems (Wilhelmminenburg Castle,
Austria, 17–20 February 2004), pp. 98–115.

12. Grahne, G., and Thomo, A. Regular Path Queries under Approximate Seman-
tics. Ann. Math. Artif. Intell. 46(1-2): 2006, pp. 165–190.

13. Green, T. J., Gupta, A., Miklau, G., Onizuka, M., and Suciu, A. Pro-
cessing XML Streams with Deterministic Automata and Stream Indexes. ACM
Trans. Database Syst. 29(4): 2004, pp. 752–788.

14. Kumar, V., Madhusudan, P. and Viswanathan, M. Visibly Pushdown Au-
tomata for Streaming XML. In Proc. of Int. Conf. on World Wide Web (Alberta,
Canada, 8–12 May, 2007), pp. 1053–1062.

15. Neven, F. Automata Theory for XML Researchers. SIGMOD Record 31(3): 2002
pp. 39–46.

16. Martens, W., Neven, F., Schwentick, T., Bex, G., J. Expressiveness and
complexity of XML Schema. ACM Trans. Database Syst. 31(3): 2006, pp. 770–
813.

17. Papakonstantinou, Y., and Vianu, V. DTD Inference for Views of XML Data.
In Proc. 19th ACM Symp. on Principles of Database Systems (Dallas, Texas, 15–
17 May 2000), pp. 35–46.

18. Segoufin, L., and Vianu, V. Validating Streaming XML Documents. In Proc.
21st ACM Symp. on Principles of Database Systems (Madison, Wisconsin, 3–
5 June 2002), pp. 53–64.

19. Sperberg-McQueen, C., M., and Thomson, H. XML Schema 1.0.
http://www.w3.org/XML/Schema, 2005.

20. Staworko, S., and Chomicki, J. Validity-Sensitive Querying of XML Data-
bases. In Proc. of 2nd International Workshop on Database Technologies for
Handling XML Information on the Web, EDBT Workshops (Munich, Germany,
26–31 March 2006), pp. 164–177.

21. Segoufin, L., and Sirangelo, C. Constant-Memory Validation of Stream-
ing XML Documents Against DTDs. In Proc. 11th International Conference on
Database Theory (Barcelona, Spain, 10–12 January 2007), pp. 299–313.

22. Suciu, D. The XML Typechecking Problem. In SIGMOD record 31(1), 2002,
pp. 89–96.

