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Abstract. In this paper we model schema evolution for XML by defin-
ing formal language operators on Visibly Pushdown Languages (VPLs).
Our goal is to provide a framework for efficient validation of streaming
XML in the realistic setting where the schemas of the exchanging parties
evolve and thus diverge from one another. We show that Visibly Push-
down Languages are closed under the defined language operators and
this enables us to expand the schemas (for XML) in order to account for
flexible or constrained evolution.

1 Introduction

The ubiquitous theme in the modern theory of software systems is that evolution
is unavoidable in real-world systems. The force of this fact is increasingly promi-
nent today when software systems have numerous online interconnections with
other systems and are more than ever under the user pressure for new changes
and enhancements. It is often noted that no system can survive without being
agile and open to change.

In this paper we propose ways to evolve schemas for XML in an online,
streaming setting. As XML is by now the omnipresent standard for representing
data and documents on the Web, there is a pressing need for having the ability to
smoothly adapt schemas for XML to deal with changes to business requirements,
and exchange standards.

One important use of schemas for XML is the validation of documents, which
is checking whether or not a document conforms to a given schema. Notably, the
validation is the basis of any application involving data-exchange between two
or more parties.

Now in a scenario where the schemas of the exchanging parties possibly di-
verge from each other due to various changing business requirements, we need to
expand the schemas making them more “tolerant” against incoming XML doc-
uments. To illustrate, suppose that there are parties exchanging patient records
such as for example:



<record>
<hospital> Victoria General </hospital>
<patient>
<name> Smith Brown </name>
<address> 353 Douglas Str

<phone> 250-234-5678 </phone>
</address>
<test> Complete blood count </test>

</patient>
</record>
Suppose now that some sending party decides to suppress sending addresses

containing the patient’s phone number, apparently for privacy reasons. What we
want is the system to adapt and continue to function in the face of this change.
Namely, the schemas of the receiving parties need to evolve and be tolerant
against the change. If we consider the XML documents as nested words (strings),
and the schemas as languages of such words, then what we need is to expand the
schemas with new words obtained from the original ones after deleting all the
subwords of the form <address>w1<phone>w2</phone>w3</address>, where
w1, w2, and w3 are properly nested words. Evidently, words <address>w1<phone>
w2</phone>w3</address> form a language, say D, and the problem becomes
that of “deleting D from a schema language L.” Similar arguments can also be
made for expanding schemas by “inserting a language I into a schema language
L.”

Interestingly, language deletions and insertions have been studied as opera-
tors for regular languages in representing biological computations (cf.[12, 6]). In
this paper, we investigate instead the deletion and insertion operators as means
for evolving languages of nested words capturing the common schema formalism
for XML.

We, also consider constrained variants of these language operators. Specif-
ically, we provide means for specifying that we want to allow an operation to
apply only at certain elements of the XML documents. For instance, in our ex-
ample, we could specify that the above deletion is allowed to take place only
inside the patient element and not anywhere else.
Schemas for XML. When it comes to XML schema specifications, the most
popular ones are Document Type Definition (DTD), XML Schema ([19]) and
Relax NG ([4]). Notably, all these schema formalisms can be captured by Ex-
tended Document Type Definitions (EDTDs) (cf. [14, 15, 17, 5]). It is well known
that the tree languages specified by EDTDs coincide with (unranked) regular
tree languages (cf. [5]).

In this paper, we will represent XML schemas by Visibly Pushdown Au-
tomata (VPAs) introduced in [1]. VPAs are in essence pushdown automata,
whose push or pop mode can be determined by looking at the input only (hence
their name). VPAs recognize Visibly Pushdown Languages (VPLs), which form
a well-behaved and robust family of context-free languages. VPLs enjoy useful
closure properties and several important problems for them are decidable. Fur-
thermore, VPLs have been shown to coincide with the class of (word-encoded)



regular tree languages, i.e. VPAs are equivalent in power with EDTDs. Recent
work [13] has also shown that EDTDs can be directly compiled into VPAs.

Now, the validation problem reduces to the problem of accepting or rejecting
the XML document (string) using a VPA built for the given schema. Notably, a
VPA accepts or rejects an XML document without building a tree representation
for it, and this is a clear advantage in a streaming setting, where transforming
and storing the XML into a tree representation is a luxury we do not have.

Another reason for preferring VPAs over tree automata for XML is that VPAs
are often more natural and exponentially more succinct than tree automata when
it comes to “semi-formally” specify documents using pattern-based conditions
on the global linear order of XML (cf. [2, 24]).

Also, considering the schemas for XML as word languages opens the way
for a natural extension of deletion and insertion operations, thus making the
schemas evolve in a similar spirit to biological computing artifacts.

We show that the deletion and insertion operations can be efficiently com-
puted for VPLs, and furthermore they can be combined with useful constraints
determining the scope of their applications.
Contributions. More specifically, our contributions in this paper are as follows.

1. We show that VPLs are closed under the language operations of deletion
and insertion. This is in contrast to Context-Free Languages which are not
closed under deletion, but only under insertion.

2. We introduce the extended operations of k-bounded deletion and insertion
which allow the deletion and insertion, respectively, of k words in parallel.
It is exactly these operations that are practical to use for evolving schemas
for XML documents containing (or need to contain) multiple occurrences
of words to be deleted (or inserted). For instance, a patient record might
contain not only his/her own address, but the also the doctor’s address, and
all these addresses might need to be deleted. We show that the VPLs are
closed under these extended operations as well.

3. We present an algorithm, which, given a schema VPL L, two sets D and
I of allowed language deletions and insertions, respectively, and a positive
integer k, produces a (succinctly represented) expanded language L′ by ap-
plying not more than k operations in parallel from D∪I on L. Language L′

contains all the possible “k-evolution” of L using operations from D∪I. The
difference from the k-bounded deletion and insertion is that now we allow
these operations to be intermixed together.

4. We enhance the deletion and insertion operations by constrains that specify
the allowed scope of the operations. We express these constraints by using
XPath expressions which select the XML elements of interest. We present
an algorithm which computes the “k-evolution” of a given schema VPL L
under this constrained setting. The challenge is to be able to first mark
non intrusively all the candidate spots for applying the operations, and then
apply them. This is because applying an operation could possibly change the
structure of the words and thus harm matching of the other constraints.



Organization. The rest of the paper is organized as follows. In Section 2 we
discuss related work. Section 3 reviews VPAs and VPTs (Visibly Pushdown
Transducers). In Section 4 we study the deletion operation for VPLs. The k-
bounded deletion for VPLs is also introduced there. In Section 5 we study the
insertion operation for VPLs. The k-bounded insertion for VPLs is also intro-
duced there. In Section 6 we present an algorithm for evolving a schema VPL
by applying at most k language operations in parallel. In Section 7 we intro-
duce constrained operations, and in Section 8 we present an algorithm to evolve
schema VPLs using such operations. Finally, Section 9 concludes the paper.

2 Related Work

The first to propose using pushdown automata for validating streaming XML are
Segufin and Vianu in [18]. The notion of auxiliary space for validating streaming
XML is also defined in this work. Auxiliary space is the stack space needed to
validate an XML document and is proportional to the depth of the document.

VPLs and their recognizing devices, VPAs, are introduced in [1]. In [13], it is
argued that VPAs are the apt device for the validation of streaming XML and
a direct construction is given for going from EDTDs to equivalent VPAs.

The problem of error-tolerant validation has been studied in several works
(cf. [3, 21, 7, 23]). These works use edit operations to modify the XML and pos-
sibly make it fit the schema. The difference of our work from these works is
that we consider language operations rather than edit operations on XML trees.
We note that performing edit operations might not correspond naturally to the
user intention of changing an XML document or schema. For example to delete
a complex address element we need several delete edit operations rather than
just one language operation as in our setting. The latter, we believe, corresponds
better to a user intention for deleting such an element in one-shot. Furthermore,
with our language operations, the user is given the opportunity to specify the
structure of the elements to be deleted or inserted, which as illustrated in the
Introduction, is useful in practice.

Using edit operations on regular languages is studied in [9–11]. They revolve
around the problem of finding paths in graph databases that approximately spell
words in a given regular language.

The language operations of deletion and insertion are studied in [12] for
regular and context free languages. As shown there, the regular languages are
closed under deletion and insertion while context free languages are not closed
under deletion, but closed under insertion.

Visibly Pushdown Transducers (VPTs) are introduced in [23] and [16]. The
latter showed that VPLs are closed under transductions of VPTs which refrain
from erasing open or close symbols. In this paper we will use this class of VPTs
for some auxiliary marking operations on VPLs.



3 Visibly Pushdown Automata and Transducers

3.1 Visibly Pushdown Automata

VPAs were introduced in [1] and are a special case of pushdown automata.
Their alphabet is partitioned into three disjoint sets of call, return and local
symbols, and their push or pop behavior is determined by the consumed symbol.
Specifically, while scanning the input, when a call symbol is read, the automaton
pushes one stack symbol onto the stack; when a return symbol is read, the
automaton pops off the top of the stack; and when a local symbol is read, the
automaton only moves its control state.

Formally, a visibly pushdown automaton (VPA) A is a 6-tuple (Q, (Σ, f), Γ ,
τ , q0, F ), where

1. Q is a finite set of states.
2. – Σ is the alphabet partitioned into the (sub) alphabets Σc, Σl and Σr of

call, local and return symbols respectively.
– f is a one-to-one mapping Σc → Σr. We denote f(a), where a ∈ Σc, by

ā, which is in Σr.1

3. Γ is a finite stack alphabet that (besides other symbols) contains a special
“bottom-of-the-stack” symbol ⊥.

4. q0 is the initial state.
5. F is the set of final states.
6. τ = τc ∪ τr ∪ τl ∪ τε is the transition relation and τc, τl, τr and τε are as

follows.
– τc ⊆ Q × Σc × Q × (Γ \ ⊥)
– τr ⊆ Q × Σr × Γ × Q
– τl ⊆ Q × Σl × Q
– τε ⊆ Q × {ε} × Q

We note that the ε-transitions do not affect the stack and they behave like
in an NFA. They can be easily removed by an ε-removal procedure similar to
the standard one for NFAs. However, we consider ε-transitions as they make
expressing certain constructions more convenient.

A run of VPA A on word w = x0 . . . xk−1 is a sequence ρ = (qi, σi), . . . , (qi+k,
σi+k), where qi+j ∈ Q, σi+j ∈ (Γ \ {⊥})∗ · {⊥}, and for every 0 ≤ j ≤ k− 1, the
following holds:

– If xj is a call symbol, then for some γ ∈ Γ , (qi+j , xj , qi+j+1, γ) ∈ τc and
σi+j+1 = γ · σi+j (Push γ).

– If xj is a return symbol, then for some γ ∈ Γ\{⊥}, (qi+j , xj , γ, qi+j+1) ∈ τr

and σi+j = γ · σi+j+1 (Pop γ).
– If xj is a local symbol, then (qi+j , xj , qi+j+1) ∈ τl and σi+j+1 = σi+j .

1 When referring to arbitrary elements of Σr, we will use ā, b̄, . . . in order to emphasize
that these elements correspond to a, b, . . . elements of Σc.



A run is accepting if qi = q0, qi+k ∈ F , and σi+k =⊥. A word w is accepted by
a VPA if there is an accepting run in the VPA which spells w. A language L is
a visibly pushdown language (VPL) if there exists a VPA that accepts all and
only the words in L. The VPL accepted by a VPA A is denoted by L(A).

When reasoning about XML structure and validity, the local symbols are
not important, and thus, we consider the languages of XML schemas as VPLs
on the alphabet Σc ∪ Σr. Furthermore, we note that here, we are asking for an
empty stack in the end of an accepting run because we are interested in VPLs
of properly nested words.

Example 1. Suppose that we want to build a VPA accepting XML documents
about movie collections. Such documents will have a collection element nesting
any number of movie elements in them. Each movie element will nest a title ele-
ment and any number of star elements. A VPA accepting well-formed documents
of this structure is A = (Q, (Σ, f), Γ, τ, q0, F ), where

Q = {q0, q1, q2, q3, q4, q5, q6, q7},
Σ = Σc ∪ Σr =

{collection,movie, title, star} ∪ {collection, movie, title, star},
f maps the Σc elements into their “bar”-ed counterparts in Σr,

Γ = {γc, γm, γt, γs} ∪ {⊥},
F = {q7},
τ = {(q0, collection, q1, γc), (q1, movie, q2, γm), (q2, title, q3, γt),

(q3, title, γt, q4), (q4, star, q5, γs), (q5, star, γs, q4),
(q4, movie, γm, q6), (q6, collection, γc, q7), (q6, ε, q1)}.

We show this VPA in Fig. 1.
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Fig. 1. Example of a VPA.

Processing a document with a VPA. As explained in [13], given a schema
specification VPA A = (Q, (Σ, f), Γ , τ , q0, F ), the (exact) validation of an XML
document (word) w amounts to accepting or rejecting w using A.



Intersection with Regular Languages. It can be shown that VPLs are closed
under the intersection with regular languages. The construction is similar to the
one showing closure of CFLs under intersection with regular languages. Formally
we have

Theorem 1. Let L be a VPL and R a regular language. Then, L∩R is a VPL.

Proof Sketch. Let A = (Q, (Σ, f), Γ, τA, q0, F ) be an ε-free VPA for L, and B =
(P,Σ, τB, p0, G) an ε-free NFA for R. Now, language L ∩ R is accepted by the
product VPA C = (Q × P, (Σ, f), Γ, τC, q0, F × G), where

τC = {((q, p), a, (q′, p′), γ) : (q, a, q′, γ) ∈ τA and (p, a, p′) ∈ τB} ∪
{((q, p), ā, γ, (q′, p′)) : (q, ā, γ, q′) ∈ τA and (p, a, p′) ∈ τB} ∪
{((q, p), l, (q′, p′)) : (q, l, q′) ∈ τA and (p, l, p′) ∈ τB}.

ut

The Language of All Properly Nested Words. In our constructions we
will often use the language of all properly nested words which we denote by PN .
All the VPLs of properly nested words are subsets of it. We consider the empty
word ε to also be in PN .

3.2 Visibly Pushdown Transducers

A visibly pushdown transducer (VPT) T is a 7-tuple (P, (I, f), (O, g), Γ, τ, p0, F ),
where

1. P is a finite set of states.
2. – I is the input alphabet partitioned into the (sub) alphabets Ic and Ir of

input call and return symbols.
– f is a one-to-one mapping Ic → Ir. We denote f(a), where a ∈ Ic, by ā.

3. – O is the output alphabet partitioned into the (sub) alphabets Oc and
Or of output call and return symbols respectively.

– g is a one-to-one mapping Oc → Or. We denote g(b), where b ∈ Oc, by b̄.
4. Γ is a finite stack alphabet that (besides other symbols) contains a special

“bottom-of-the-stack” symbol ⊥.
5. p0 is the initial state.
6. F is the set of final states.
7. τ = τc ∪ τr ∪ τε, where

– τc ⊆ P × Ic × Oc × P × Γ
– τr ⊆ P × Ir × Or × Γ × P
– τε ⊆ P × {ε} × {ε} × P.

We define an accepting run for T similarly as for VPAs. Now, given a word
u ∈ I∗, we say that a word w ∈ O∗ is an output of T for u if there exists an
accepting run in T spelling u as input and w as output.2

2 In other words, we get u and w when concatenating the transitions’ input and output
components respectively.



A transducer T might produce more than one output for a given word u.
We denote the set of all outputs of T for u by T (u). For a language L ⊆ I∗, we
define the image of L through T as T (L) =

∪
u∈L T (u).

We note that in our definition of VPTs we disallow transitions which trans-
duce a call or return symbol to ε. As [16] showed, VPLs are closed under the
transductions of such non-erasing VPTs.

4 Language Deletion

In this section we present the language operation of deletion and show that VPLs
are closed under this operation.

Let L and D be languages on Σ. The deletion of D from L, denoted by
L −→ D, removes from the words of L one occurrence of some word in D. For
example if L = {abcd, ab} and D = {bc, cd, a}, then L −→ D = {ad, ab, bcd, b}.

Formally, the deletion of D from L is defined as:

L −→ D = {w1w2 : w1vw2 ∈ L and v ∈ D}.

Kari (in [12]) showed that the regular languages are closed under deletion,
whereas context-free languages are not. We show here that VPLs are closed
under deletion.

Theorem 2. If L and D are VPLs over Σ, then L −→ D is a VPL as well.

Proof.
Construction. Let A = (Q, (Σ, f), Γ , τ , q0, F ), where Q = {q0, . . . , qn−1}, be a
VPA that accepts L. For every two states qi and qj in Q define the VPA

Aij = (Q, (Σ, f), Γ, τ, qi, {qj}),

which is the same as A, but with initial and final states being qi and qj , respec-
tively. The language L(Aij) (which we also denote by Lij) is a VPL for each
qi, qj ∈ Q. Consider now the VPA A′ = (Q, (Σ′, f), Γ, τ ′, q0, F ), with

1. Σ′ = Σ ∪ {†}, where † is a fresh local symbol,
2. τ ′

c = τc,
3. τ ′

r = τr, and
4. τ ′

l = {(qi, †, qj) : qi, qj ∈ Q and Lij ∩ D 6= ∅}.

We then define language L′ = L(A′) ∩ (Σ∗ · {†} · Σ∗). This intersection
extracts from L(A′) all the words marked by one †. Such words are derived from
the words of L containing some properly nested subword which is a word in D.

Now we obtain VPL L′′ by substituting ε for † in L′. This is achieved by
replacing the local † transitions, in the VPA for L′, by ε transitions. We have
that

Lemma 1. L −→ D = L′′.



Proof. “⊆”. Let w ∈ L −→ D. There exists u ∈ L, v ∈ D such that u = w1vw2

and w = w1w2. Hence, there exists an accepting run of A for u:

ρu = (q0, σ0), . . . , (qi, σi), . . . , (qj , σj), . . . , (qf , σf ),

where (q0, σ0), . . . , (qi, σi) is a sub-run for w1, (qi, σi), . . . , (qj , σj) is a sub-run for
v, (qj , σj), . . . , (qf , σf ) is a sub-run for w2, and qf ∈ F . As v ∈ D is a properly
nested word, we have that σi = σj .

Since v ∈ Lij ∩ D, the transition (qi, †, qj) exists in τ ′ and we have the
following run in A′:

ρ = (q0, σ0), . . . , (qi, σi), (qj , σj), . . . , (qf , σf ),

where the sub-run (qi, σi), (qj , σj) reads symbol † and σi = σj since † is a local
symbol. It is a key point that σi = σj in both of the sub-runs (qi, σi), . . . , (qj , σj)
for v and (qi, σi), (qj , σj) for †. Thus, w1†w2 ∈ L(A′) and also w1†w2 ∈ L′ =
L(A′) ∩ (Σ∗ · {†} · Σ∗). This proves that w = w1w2 ∈ L′′.

“⊇”. Let w ∈ L′′. As such, there exists a word w′ ∈ L′ = L(A′)∩(Σ∗.{†}.Σ∗)
which is of the form w1†w2, where w1, w2 ∈ Σ∗. For w′ there exists an accepting
run in A′:

ρw′ = (q0, σ0), . . . , (qi, σi), (qj , σj), . . . , (qf , σf ),

where (q0, σ0), . . . , (qi, σi) is a sub-run for w1, (qj , σj), . . . , (qf , σf ) is a sub-run
for w2, and (qi, σi), (qj , σj) is a sub-run for † with σi = σj (since † is a local
symbol). This run indicates the existence of transition (qi, †, qj) in A′, which
means Lij ∩ D 6= ∅. This also implies that there exists some properly nested
word v ∈ D corresponding to a run (qi, σi), . . . , (qj , σj) in automaton A with
σi = σj .

Since w′ contains only one † symbol, there is only one transition from τ ′ \ τ
that has been traversed in run ρw′ . Now it can be concluded that the following
accepting run exists for A:

ρ = (q0, σ0), . . . , (qi, σi), . . . , (qj , σj), . . . , (qf , σf ),

which indicates that w1vw2 ∈ L1. As v ∈ D, we have that w = w1w2 ∈
(w1vw2 −→ v) ⊆ (L −→ D),
i.e. w ∈ L −→ D. ut

Finally, the claim of the theorem follows from the above lemma and the fact
that the visibly pushdown languages are closed under intersection. ut

Based on the construction of the above theorem we have that

Theorem 3. Computing L −→ D can be done in PTIME.

k-Bounded Deletion. We can also define a variant of deletion which allows for
up to k deletions where k is a given positive integer. This is useful when we want
to evolve a given schema language L by allowing the words of a given language



D to be deleted (in parallel) from k-locations in the words of L rather than just
one.

Let L and D be languages on Σ. The k-bounded deletion of D from L is
defined as:

L
≤k−→ D = {w1w2 . . . wkwk+1 : w1v1w2 . . . wkvkwk+1 ∈ L and v1, . . . , vk ∈ D}.

Observe that L
≤k−→ D cannot be obtained by iterative applications of k single

deletions. For example, assume L = {abcc̄b̄ā} and D = {bb̄, cc̄}. The language
resulting from 2-bounded deletion of D from L is {abb̄ā}. On the other hand, by
applying 2 successive deletions of D from L we have (L −→ D) −→ D = {aā}.

We show now that VPLs are closed under the k-bounded deletion.

Theorem 4. If L and D are VPLs over Σ, then L
≤k−→ D is a VPL as well.

Proof sketch.
Construction. Let A = (Q, (Σ, f), Γ , τ , q0, F ), where Q = {q0, . . . , qn−1}, be a
VPA that accepts L. We build a VPA A′ as explained in the proof of Theorem 2.
Now we set

L′ = L(A′) ∩
∪

1≤h≤k

(Σ∗ · {†} · Σ∗)h.

This intersection extracts from L(A′) all the words marked by up to k †’s. Such
words are derived from the words of L containing properly nested subwords
which are words in D.

Now we obtain VPL L′′ by substituting symbols † in L′ by ε. This is achieved
by replacing the local † transitions, in the VPA for L′, by ε transitions. We can
show that

Lemma 2. L
≤k−→ D = L′′.

Based on this lemma the claim of the theorem follows. ut

Based on the construction of the above theorem we have that

Theorem 5. Computing L
≤k−→ D can be done in PTIME if k is constant.

On the other hand, if k is not constant, then the complexity is pseudo-polynomial
in k. This is because of the intersection with

∪
1≤h≤k(Σ∗ · {†} ·Σ∗)h in the proof

of Theorem 4.

5 Language Insertion

Before defining the insertion operation, we define the Insertion-for-Local-Symbol
(ILS) operation. Let # be a local symbol and L and I be VPLs on Σ# = Σ∪{#}
and Σ, respectively. The ILS of I into L is defined as:

L ←−# I = {w1vw2 : w1#w2 ∈ L and v ∈ I}.

Here, we show that VPLs are closed under the ILS operation.



Theorem 6. If L and I are VPLs over Σ# and Σ, respectively, then L ←−# I
is a VPL over Σ#.

Proof.
Construction. Let A = (Q, (Σ#, f), Γ , τ , q0, F ) and AI = (P, (Σ, f), Γ , τ I , p0,
F I) be VPA’s accepting L and I, respectively. Starting with A, we construct VPA
A′ by adding for each (local) transition (qi,#, qj) a fresh copy of AI connected
with qi and qj with the following new transitions,

{(qi, ¦, p0)} ∪ {(pf , ε, qj) : pf ∈ F I},

where ¦ is a new local symbol.
In essence, A′ will accept all the words accepted by A with an arbitrary

number of # replaced by the words of language {¦} · I. In order to have only
one # replacement, we construct

L′ = L(A′) ∩ (Σ∗
# · {¦} · Σ∗

#).

Then, we replace the single ¦ by ε in L′, achieved by changing the ( , ¦, ) tran-
sitions to ( , ε, ). Let L′′ be the language obtained in this way. Now, we show
that:

Lemma 3. L ←−# I = L′′.

Proof. Let A′′ be the VPA of L′′.
“⊆”. Let w ∈ L ←−# I. There exists u ∈ L, v ∈ I such that u = w1#w2 and

w = w1vw2. Hence, there exists an accepting run:

ρu = (q0, σ0), . . . , (qi, σi), (qj , σj), . . . , (qf , σf ),

in A for u, where (q0, σ0), . . . , (qi, σi) is a sub-run for w1, (qi, σi), (qj , σj) is a
sub-run for symbol #, (qj , σj), . . . , (qf , σf ) is a sub-run for w2, and qf ∈ F . As
# is a local symbol, we have that σi = σj .

According to the construction in Theorem 6, we now have some accepting
runs in A′′ of the form:

ρ = (q0, σ0), . . . , (qi, σi), (p0, σi+1), . . . , (pf , σj−1), (qj , σj), . . . , (qf , σf ),

where pf ∈ F I and so (p0, σi+1), . . . , (pf , σj−1) is a sub-run for some properly
nested word v ∈ I. Since this sub-run is an accepting run in VPL AI , we have
that σi+1 = σj−1. The (local) transitions (qi, ε, p0) and (pf , ε, qj) implies that
σi = σi+1 and σj−1 = σj , respectively. Therefore, we have that σi = σj in the
sub-run (qi, σi), (p0, σi+1), . . . , (pf , σj−1), (qj , σj) of ρ reading v. This is a key
point that shows the sub-run (qj , σj), . . . , (qf , σf ) in ρ can still read w2 after
reading v. Therefore, w1vw2 ∈ L′′.

“⊇”. Let w ∈ L′′. For w there exists an accepting run in A′′:

ρw = (q0, σ0), . . . , (qi, σi), (p0, σi+1), . . . , (pf , σj−1), (qj , σj), . . . , (qf , σf ),



where qf ∈ F and pf ∈ F I . The existence of sub-run (p0, σi+1), . . . , (pf , σj−1)
in ρw implies that w contains a subword, say v, belonging to I. Hence, w can
be written as w = w1vw2, where w1 and w2 correspond, respectively, to sub-
runs (q0, σ0), . . . , (qi, σi) and (qj , σj), . . . , (qf , σf ). Since (p0, σi+1), . . . , (pf , σj−1)
in ρw is an accepting run in AI , we have that σi+1 = σj−1. Regarding the ε
transitions (qi, ε, p0) and (pf , ε, qj) in A′, we conclude σi = σi+1, σj−1 = σj ,
and finally σi = σj . According to this equality and the way A′′ is built, there
exists a transition (qi,#, qj) in A, which indicates the existence of the following
accepting run in A:

ρ = (q0, σ0), . . . , (qi, σi), (qj , σj), . . . , (qf , σf ),

Hence, w1#w2 ∈ L. As v ∈ I, we have that w = w1vw2 ∈ (w1#w2 ←−# v) ⊆
(L ←−# I), i.e. w ∈ L ←−# I. ut

Finally, the claim of the theorem follows from the above lemma and the fact
that the visibly pushdown languages are closed under intersection. ut

5.1 Insertion

Let L and I be languages on Σ. The insertion of I into L, denoted by L ←− I,
inserts into the words of L some word in I. For example if L = {ab, cd} and
I = {eg}, then L ←− I = {egab, aegb, abeg, egcd, cegd, cdeg}.

Formally, the insertion of I into L is defined as

L ←− I = {w1vw2 : w1w2 ∈ L, and v ∈ I}.

Kari (in [12]) showed that the regular languages and context free languages are
closed under insertion. We show here that VPLs are closed under insertion, too.

Theorem 7. If L and I are VPLs over Σ, then L ←− I is a VPL as well.

Proof sketch.
Construction. Let A = (Q, (Σ, f), Γ , τ , q0, F ) be a VPA that accepts L. Consider
now the VPA A′ = (Q, (Σ′, f),Γ,τ ′,q0,F ), with

1. Σ′ = Σ ∪ {#}, where # is a fresh local symbol,
2. τ ′

c = τc,
3. τ ′

r = τr, and
4. τ ′

l = {(qi,#, qi) : qi ∈ Q}.

We then define language L′ = L(A′) ∩ (Σ∗ · {#} · Σ∗). This intersection
extracts from L(A′) all the words marked by only one #. It can be verified now
that

Lemma 4. L ←− I = L′ ←−# I.

Finally the claim of the theorem follows from the above lemma, Theorem 6,
and the fact that VPLs are closed under intersection. ut

Based on the constructions of theorems 7 and 6, we have that



Theorem 8. Computing L ←− I can be done in PTIME.

k-Bounded Insertion. We can also define a variant of insertion which allows
for up to k insertions where k is a given positive integer. This is useful when
we want to evolve a given schema language L by allowing the words of a given
language I to be inserted (in parallel) into k-locations in the words of L rather
than just one.

Before, we define the k-bounded ILS operation. Let L and I be languages on
Σ# and Σ, respectively.

The k-bounded ILS of I into L is defined as:

L
≤k←−# I = {w1v1w2 . . . wkvkwk+1 : w1#w2 . . . wk#wk+1 ∈ L and v1, . . . , vk ∈ I}.

It can be verified that VPLs are closed under the k-bounded ILS operation.
Namely, we have

Theorem 9. If L and I are VPLs over Σ# and Σ, respectively, then L
≤k←−# I

is a VPL over Σ#.

Now, let L and I be languages on Σ. The k-bounded insertion of I into L is
defined as:

L
≤k←− I = {w1v1w2 . . . wkvkwk+1 : w1w2 . . . wkwk+1 ∈ L and v1, . . . , vk ∈ I}.

We show here that VPLs are closed under the operation of k-bounded insertion.

Theorem 10. If L and I are VPLs over Σ, then L
≤k←− I is a VPL as well.

Proof sketch.
Construction. Let A = (Q, (Σ, f), Γ , τ , q0, F ), where Q = {q0, . . . , qn−1}, be a
VPA that accepts L. We build a VPA A′ as explained in the proof of Theorem 7.
Then we define language

L′ = L(A′) ∩
∪

1≤h≤k

(Σ∗ · {#} · Σ∗)h.

The above intersection extracts from L(A′) all the words marked by one up to
k #’s. It can be verified now that

Lemma 5. L
≤k←− I = L′ ≤k←−# I.

From this the claim of the theorem follows. ut

Based on theorems 10 and 9, we have that

Theorem 11. Computing L
≤k←− I can be done in PTIME if k is constant.

On the other hand, if k is not constant, then the complexity is pseudo-polynomial
in k. This is because of the intersection with

∪
1≤h≤k(Σ∗ ·{#}·Σ∗)h in the proof

of Theorem 10.



6 Transforming a VPL with Language Operations

In practice it is more useful to allow the schema transformation to be achieved
by a set of deletion and insertion operations. For example, we can define a set
D = {D1, . . . , Dm} and I = {I1, . . . , In} of allowed language deletions and in-
sertions, respectively. With slight abuse of notation we will consider D1, . . . , Dm

and I1, . . . , In to also denote their corresponding delete and insert operations,
respectively. What we would like now is to apply (in parallel) up to k operations
from D ∪ I on a given schema language L.

For this, given a VPA A for L, we extend the constructions described in the
constructions of theorems 2 and 7. Specifically, let VPA A = (Q, (Σ, f), Γ , τ ,
q0, F ) have the states numbered as in Theorem 2. Also, for every two states qi

and qj in Q define VPA Aij and its accepted language Lij as described in the
same theorem. We construct now the VPA A′ = (Q, (Σ′, f), Γ, τ ′, q0, F ), with

1. Σ′ = Σc ∪ Σr ∪ {†1, . . . , †m} ∪ {#1, . . . , #n}
2. τ ′

c = τc,
3. τ ′

r = τr, and
4. τ ′

l = {(qi, †x, qj) : qi, qj ∈ Q and Lij ∩ Dx 6= ∅, for 1 ≤ x ≤ m}∪
{(qi,#y, qi) : qi ∈ Q and 1 ≤ y ≤ n}.

VPA A′ will accept language L′ containing words with an arbitrary number
of special local symbols. Each †x represents a deletion corresponding to Dx, and
each #y represents an insertion corresponding to Iy. What we want, though, is
to extract only those words of L′, whose total number of the special symbols is
not more than k. For this we construct the following intersection

L′′ = L′ ∩
∪

1≤h≤k

(Σ∗ · {†1, . . . , †m,#1, . . . , #n} · Σ∗)h.

Language L′′ will contain all the words of L′ with not more than k special
symbols. Then, we obtain language L′′′ by replacing all the †x for 1 ≤ x ≤ m by
ε and performing n (one after the other) k-bounded ILS operations corresponding
to each of I1, . . . , In languages. It can be verified that

Theorem 12. L′′′ is the result of applying from one up to k operations from
D ∪ I on L.

Taking the union L ∪ L′′′ gives us the new expanded schema language.

Based on the above construction, we have that

Theorem 13. Computing L′′′ can be done in PTIME if k is constant.

On the other hand, if k is not constant, then the complexity is pseudo-polynomial
in k. This is because of the intersection with

∪
1≤h≤k(Σ∗·{†1, . . . , †m,#1, . . . , #n}·

Σ∗)h for obtaining L′′.



7 Constrained Deletions and Insertions

Often we do not like the deletions and insertions to be performed in unrestricted
places in the words of schemas for XML. Rather we would like them to apply
only at certain parts of the words. For instance, taking the example given in the
Introduction, one might want to apply operations only within a patient XML
element.

For this, we assume that there is a given set of constraining rules that specify
the conditions under which the operations can be applied on L.

We propose to express the conditions in the form of XPath expressions3. The
alphabet of the XPath expressions is the set of XML elements corresponding
to Σc (or Σr). Formally this alphabet is Σe = {ã : a ∈ Σc}. As the validation
problem considers the structure of XML only, we do not have data values in the
XPath expressions.

Definition 1 A deletion rule is a tuple (π,D), where π is an XPath expression,
and D is a VPL.

Such a rule implies that the words of nested language D can be deleted if they
correspond to elements reached by XPath expression π. Of course, such elements
need to further satisfy the structure imposed by D. An example of a deletion rule
is (/ã/b̃/c̃, PN). Using this rule we can delete all the c̃ elements that are children
of b̃ elements which in turn are children of ã elements. Surely, specifying D = PN
is a useful case in practice. However, we can further qualify the D language to
allow only the deletion of those c̃ elements which contain some particular child,
say an element d̃. In such a case, we set D = {c} ·PN · {d} ·PN · {d̄} ·PN · {c̄}.

We denote by D the set of deletion rules.

Definition 2 An insertion rule is a tuple (π, I), where π is an XPath expres-
sion, and I is a VPL.

Such a rule implies that the words of nested language I can only be inserted as
children of elements reached by XPath expression π. An example of an insertion
rule is (/ã/b̃, PN).

We denote by I the set of insertion rules.

As shown in [8, 22], a unary (Core) XPath query can be represented by a
VPA with a single output variable attached to some call transitions. The set of
query answers consists of all the elements whose call (open) symbol binds to the
variable during an accepting run.

Let π be an XPath expression and Aπ a VPA for it. Let τ ′
c be the subset

of the Aπ transitions with the output variable attached to them. It is easy to
identify with the help of the stack the corresponding return transitions, τ ′

r. Since
we are not interested in outputting the result of the XPath queries, but rather
just locate the elements of interest, we will assume that instead of having a

3 We consider in fact unary CoreXPath expressions.



variable attached to the transitions in τ ′
c, we have them simply marked by a dot

( ˙ ). Also, we will similarly assume the transitions in τ ′
r are marked as well.

We consider the alphabet of this VPA to be

(Σc ∪ Σ̇c) ∪ (Σr ∪ Σ̇r),

where Σ̇c and Σ̇r are copies of Σc and Σr, respectively, with the symbols being
marked by ( ˙ ).

When a rule is applied on a given word (XML document), we do not initially
perform deletion or insertion on the word, but only color the related symbols.
This is due to the fact that other rules can be further applied on the same
document, and the XPath expressions for those rules were written considering
the original version of that document in the given XML schema.

For example, suppose we have a set of deletion rules D = {(/ã/b̃, PN), (/ã,
{ãb̃})}, and a given word w = abb̄ācc̄. Both of these rules can be applied on w.
But if we apply the first rule and truly delete bb̄, then the second rule can no
longer be applied on the result word, which is w′ = aācc̄. On the other hand,
only coloring b and b̄, does not prevent the second rule from being applied on
the word.

In the following we construct coloring VPTs based on the VPAs for the given
rules. Then, we apply these VPTs on a schema language L.

7.1 Coloring VPTs for Deletion Rules

Let (πx, Dx) be a deletion rule in D. For each such rule we choose a distinct
red color, rx. In the following construction, we use alphabets Σc, Σr, Σrx

c , Σrx
r ,

where the last two are copies of the first two, respectively, having the symbols
colored in rx. For the sake of the discussion, we will consider the symbols of Σc,
Σr as being colored in black.

Using Aπx we construct the rx-coloring VPT T rx
πx

, which has exactly the same
states as Aπx , and transitions:

1. (q, a, a, p, γa) for (q, a, p, γa) in Aπx ,
2. (q, ā, ā, γa, p) for (q, ā, γa, p) in Aπx ,
3. (q, a, arx , p, γrx

a ) for (q, ȧ, p, γȧ) in Aπx ,
4. (q, ā, ārx , γrx

a , p) for (q, ˙̄a, γȧ, p) in Aπx .

Intuitively, the “un-marked” transitions of Aπx become “leave-unchanged”
transitions in T rx

πx
, whereas the “marked” transitions of Aπx become “black to

red” transitions in T rx
πx

.

7.2 Coloring VPTs for Insertion Rules

Let (πy, Iy) be an insertion rule in I. For each such rule we choose a distinct
green color, gy. In the following construction, we use alphabets Σc, Σr, Σ

gy
c , Σ

gy
r ,

where the last two are copies of the first two, respectively, having the symbols
colored in gy.



Using Aπy we construct the gy-coloring VPT T
gy
πy , which has exactly the same

states as Aπy , and transitions:

1. (q, a, a, p, γa) for (q, a, p, γa) in Aπy ,
2. (q, ā, ā, γa, p) for (q, ā, γa, p) in Aπy ,
3. (q, a, agy , p, γ

gy
a ) for (q, ȧ, p, γȧ) in Aπy ,

4. (q, ā, āgy , γ
gy
a , p) for (q, ˙̄a, γȧ, p) in Aπy .

Intuitively, the “un-marked” transitions of Aπy become “leave-unchanged” tran-
sitions in T

gy
πy , whereas the “marked” transitions of Aπx become “black to green”

transitions in T
gy
πy .

7.3 Color-Tolerant VPTs

Coloring VPTs presented in the two previous subsections can be applied only
on black (normal) words. When we want to apply a coloring VPT on a word
more than once or when we apply coloring VPTs for deletions and insertions
one after the other, the VPTs have to be applicable also to words which have
parts already colored. For example, suppose word w = abb̄ācdd̄c̄ has the bb̄ part
already colored in a red (being so ready for deletion). Word w might be needed
next to have dd̄ colored in a green color (to become ready for an insertion). In
order for a coloring VPT for insertion to be able to color dd̄ in green, it has to
be “color-tolerant” while reading the prefix abb̄āc of w.

Let Tπz be a coloring VPT for a deletion as described in Subsection 7.1.
Now we make Tπz color-tolerant by adding the following colored copies of its
transitions.

1. (q, arx , arx , p, γrx
a ) and (q, agy , agy , p, γ

gy
a ), for each transition (q, a, a, p, γa),

and for every color rx and gy.
2. (q, ārx , ārx , γrx

a , p) and (q, āgy , āgy , γ
gy
a , p), for each transition (q, ā, ā, γa, p),

and for every color rx and gy.
3. (q, arx , arz , p, γrz

a ) and (q, agy , arz , p, γrz
a ), for each transition (q, a, arz , p, γrz

a ),
and for every color rx 6= rz and gy.

4. (q, ārx , ārz , γrz
a , p) and (q, āgy , ārz , γrz

a , p), for each transition (q, ā, ārz , γrz
a , p),

and for every color rx 6= rz and gy.

Finally, we mention that color-tolerant VPTs for insertions can be con-
structed in a similar way. Specifically, wherever there is an rz superscript there
will be a gz one.

8 Transforming a VPL with Constrained Operations

Let D = {(π1, D1), . . . , (πm, Dm)} and I = {(π′
1, I1), . . . , (π′

n, In)} be the sets of
rules for the allowed deletions and insertions, respectively. What we want is to
apply up to k operations corresponding to the rules in D ∪ I on a given schema
language L.



We start by constructing coloring VPT for each of the rules in D ∪ I, as
described in subsections 7.1, 7.2, and 7.3. Next, we transduce L by iteratively
applying these VPTs one after the other (in no particular order) k times each.
The result of this multiple transduction will be a language that is the same as
L but with the words being colored to indicate the allowed places for deletions
and insertions. For simplicity let us continue to use L for this colored version of
the schema language.

Let A be a VPA for (the colored) L. Let Aij , and its accepted language Lij ,
be defined as in theorems 2 and 7. Also, let β be a transformation that uncolors
words and languages. This transformation can be easily realized by a VPT. Now
from A we build VPA A′ keeping the same states and transitions, but adding
the following transitions labeled by special local symbols.

{(qi, †x, qj) : β(Lij ∩ (Σrx
c · PN · Σrx

r )) ∩ Dx 6= ∅, for 1 ≤ x ≤ m} ∪
{(qj ,#y, qj) : there exists a transition ( , gy , qi, ) and Lij 6= ∅}.

The first set is for † transitions between the pairs of states connected by
properly nested words in Dx. The words of interest in Lij are those with a first
and last symbol colored in red (rx). We determine these words by intersecting
with (Σrx

c ·PN ·Σrx
r ). Then, we apply the β transformation in order to uncolor

the resulting language and proceed with intersecting with Dx.
The second set indicates that if there is a call transition ( , gy , qi, ) colored

by gy (due to an insertion rule (π′
y, Iy)) in A, then in A′ we have a transition

labeled by #y added in all of the states qj reachable from qi such that Aij accepts
a non-empty properly nested language including the empty word.

VPA A′ will accept language L′ containing words with at most k special
symbols of each kind (†1, . . . , †m,#1, . . . , #n). Each †x represents a deletion
corresponding to Dx, and each #y represents an insertion corresponding to Iy.
What we want, though, is to extract only those words of L′, whose total number
of the special symbols is not more than k. For this we construct the following
intersection

L′′ = L′ ∩
∪

1≤h≤k

(Σ∗ · {†1, . . . , †m,#1, . . . , #n} · Σ∗)h.

Language L′′ will contain all the words of L′ with not more than k special
symbols. Then, we obtain language L′′′ by replacing all the †x for 1 ≤ x ≤ m by ε
and performing m (one after the other) k-bounded ILS operations corresponding
to each of I1, . . . , In languages. Based on all the above it can be verified that

Theorem 14. L′′′ is the result of applying from one up to k constrained opera-
tions from D ∪ I on L.

Taking the union L ∪ L′′′ gives us the new expanded schema language.
Finally, regarding the complexity we have that

Theorem 15. The colored L can be computed in O(δ(m+n)k) time, where δ is
an upper bound on the size of rule automata.



Proof Sketch. The claim follows from the fact that each coloring VPT is applied
k times, and we have n + m such VPTs. ut

We note that in practice, the numbers k, m, and n would typically be small.
On the other hand, after having a colored L, obtaining L′′′ is polynomial.

9 Concluding Remarks

In this paper we proposed modeling the schema evolution for XML by using
the language operations of deletion and insertion on VPLs. We showed that the
VPLs are well-behaved under these operations and presented constructions for
computing the result of the operations. Then, we introduced constrained opera-
tions which are arguably more useful in practice. In order to compute the results
of constrained operations we developed special techniques (such as VPA color-
ing) achieving a compatible application of a set of different operations. Based
on our techniques, the schema evolution operators can be applied in parallel
without harmful interaction.
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