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Abstract. MapReduce is a widely used parallel computing paradigm for
the big data realm on the scale of terabytes and higher. The introduction
of minimal MapReduce algorithms promised efficiency in load balancing
among participating machines by ensuring that partition skew (where
some machines end up processing a significantly larger fraction of the
input than other machines) is prevented. Despite minimal MapReduce
algorithms guarantee of load-balancing within constant multiplicative
factors, the constants are relatively large which severely diminishes the
theoretical appeal for true efficiency at scale.
We introduce the notion of strongly minimal MapReduce algorithms that
provide strong guarantees of parallelization up to a small additive factor
that diminishes with an increasing number of machines. We show that
a strongly minimal MapReduce algorithm exists for sorting; this leads
to strongly minimal algorithms for several fundamental database algo-
rithms and operations that crucially rely on sorting as a primitive. Our
techniques are general and apply beyond the analysis of strongly minimal
MapReduce algorithms; we show that given a sufficiently high, but still
realistic, sampling rate, the approximate partitions obtained from a par-
ticular sampling strategy are almost as good as the partitions produced
by an ideal partitioning.

Keywords: distributed sorting, minimal MapReduce algorithms, Sample-Partition
problem

1 Introduction

Data is being generated at an increasing pace that leads to an enormous volume
being created and stored each year. As a result, there has been a strong push
towards big data analytics as industry and governments around the world aim to
keep pace with the explosion of information. This has led database organizations
to build massive parallel computing platforms that rely upon huge numbers of
commodity machines. Among these platforms, MapReduce has emerged as the
popular choice after years of improvement and advancement.

At a high level, MapReduce algorithms instruct how these machines can
perform a given task collaboratively. Typically, the input data is distributed
across the machines and the algorithm executes in rounds made up of map and



reduce phases. The map phase prepares data to be exchanged to other machines
and the reduce phase has the machines perform isolated computations on its local
storage. Rounds proceed until the given task is complete after a reduce phase.
Ideally, MapReduce algorithms should aim for the minimization of space, CPU,
I/O, and network costs for each machine as well as even load balancing. Despite
these principles guiding the design of MapReduce algorithms, most previous
work has relied upon heuristic approaches or been driven by an experimental
performance basis where less emphasis is placed on enforcing rigorous constraints
on these performance metrics.

Tao et al. [24] introduced minimal MapReduce algorithms that promise ef-
ficiency in multiple aspects simultaneously. The notion of minimal MapReduce
algorithms bounds the storage space and the amount of information sent over
the network of each machine to be optimal up to a constant multiplicative factor.
In addition, a constraint is placed that the algorithm terminates in a constant
number of rounds and that the algorithm achieves a speedup of a factor t when
using t machines in parallel. One of the benefits of designing minimal algorithms
includes guaranteeing that partition skew (where some machines end up process-
ing a significantly larger fraction of the input than other machines) is prevented.
Tao et al. [24] conclude that TeraSort1, the state-of-the-art MapReduce sorting
algorithm, is load-balanced within constant multiplicative factors and thus satis-
fies their minimality definition. However, the multiplicative factor in the proof is
relatively large, up to 32; such a factor severely diminishes the theoretical appeal
due to a large imbalance in the workload of machines. Our work is motivated
by the question of whether the notion of minimal MapReduce algorithms can be
strengthened even further?

The main contributions of our work are as follows: (1) We propose a strength-
ening of the notion of minimality by introducing an additional requirement called
balanced partition that restricts the number of objects processed by each machine
to be evenly balanced up to an additive factor that diminishes with the number
of machines. We say such MapReduce algorithms are strongly minimal. (2) As
a core result, we prove that sorting, which is a backbone primitive for many
algorithms and operations in databases and beyond, has a strongly minimal al-
gorithm, i.e. the workload is evenly distributed across machines up to an additive
term rather than a multiplicative factor. This is important because in large data
centers of similar machines having an overloaded machine is a critical bottleneck
(referred to by practitioners as “the curse of the last reducer”, see [23]).

More specifically, we aim for a more accurate analysis of the performance
of TeraSort. We give a series of bounds which describes the trade-off between
the number of machines and the partition skew (hence the worst case maximum
workload on a single machine). We conclude that a larger number of available
machines allows for more even partitions. In particular, we show that as the

1 We use the name TeraSort in this paper to refer to the Sample-Partition-Sort
paradigm for distributed sorting. We would like to emphasize that the version in-
plemented in Hadoop (a popular MapReduce implementation), while following the
general paradigm, is not minimal (please see Section 3).



number of machines grows, the partition skew approaches its optimal value with
high probability.

Our techniques are general and apply beyond TeraSort; we show that given
a sufficiently high, but still realistic, sampling rate, the approximate partitions
obtained from a particular sampling strategy are almost as good as the par-
titions produced by an ideal partitioning. The sampling strategy we analyze,
self-sampling, has appealing probabilistic properties that we are able to leverage
through a more extensible probabilistic method that is capable of generating a
series of tight bounds for partition evenness. We use a new and refined analysis
technique by an interesting bucketing argument that allows overlapping buckets
in contrast to the non-overlapping scheme of [24].

1.1 Strongly Minimal MapReduce Algorithms

Instead of mappers and reducers, we refer to the workers as machines. To accom-
modate the statelessness of mappers and reducers, we assume that unmentioned
data in the algorithm is “carried forward” implicitly to the reducer with the
same index in the next round.

Let A be the input for the underlying problem, n be the number of objects
in A, and t be the number of machines in the network. Define m = n/t as the
number of objects per machine when A is evenly distributed across the machines.
Then, as defined in [24], a minimal MapReduce algorithm for a problem on A
has the following properties:

– Minimal footprint: each machine uses O(m) storage at all times.
– Bounded net-traffic: every machine sends and receives at most O(m) words

of information over the network in each round.
– Constant round: the algorithm terminates after a constant number of rounds.
– Optimal computation: the algorithm achieves a speedup of t when using t

machines in parallel. Precisely, each machine performs O(Tseq/t) work in
total over all rounds where Tseq is the time required by a fixed algorithm A
to solve the problem on a single machine.

Now, we introduce the notion of a strongly minimal MapReduce algorithm
which strengthens the minimality conditions above by adding an additional con-
dition that we refer to as balanced partition. A strongly minimal MapReduce
algorithm for a problem on A has the following property:

– Balanced partition: each machine processes m(1 + o(1)) objects.

Remark; Here, o(1) denotes a lower order term that is independent of the
input and goes to 0 as t grows. Note that strong minimality implies that, as t
grows, the number of objects processed by each machine approaches the opti-
mal value. As a consequence, the hidden constant in footprint and net-traffic in
strongly minimal MapReduce algorithms is substantially smaller than 32, typi-
cally close to 1.

In the following sections, we prove that TeraSort is strongly minimal by
showing that the balanced partition condition is satisfied using an interesting
bucketing argument.



2 Related Work

The existing investigation on MapReduce can be broadly classified into two cat-
egories: (1) a focus on improving the internal working of the framework, and
(2) developing novel MapReduce algorithms to solve interesting problems. On
the framework implementation side there has been a variety of work that typi-
cally focuses on performing well on a subset of the minimality conditions. These
range from specialized methods to rectify skewness [11, 14, 16] to optimizing the
network traffic by keeping relevant data at the same machine [6, 12]. On the algo-
rithms side, there has been extensive work dedicated to developing MapReduce
algorithms for important database problems [4, 1, 18, 19, 26], graph processing
[25, 23, 2, 13, 17], and statistical analysis [5, 21, 9, 7, 10].

Tao et al. [24] justify theoretically the good performance of TeraSort [20]
(the state-of-the-art MapReduce sorting algorithm) observed in practice which
inspired the new definition of minimal MapReduce algorithms. Their goal is
accomplished by specifying how to set a crucial parameter of TeraSort that
ensures minimality. Designing minimal algorithms is highly sought after since a
minimal algorithm excels on all the minimality conditions simultaneously. Often,
it is easy to perform well on certain aspects, while failing on others. Furthermore,
Tao et. al. [24] point out that even a minimal algorithm can benefit from clever
optimization at the system level, and the minimality property may considerably
simplify such optimizations. For instance, as the minimality requirements already
guarantee good load balancing in storage, computation, and communication,
there would be less skewness to deserve specialized optimization.

Studying the minimality of MapReduce algorithms is similar in goal to other
models of theoretical parallel computing. We give two such examples now. Karloff
et al. [13] put forth the notion of MRC, a class of MapReduce algorithms com-
putable by a MapReduce system characterized by a certain amount of resources.
Further, classMRCi runs in O(logi n) rounds andMRC is defined by the union
of MRCi over i. When the algorithm is randomized, it must output the correct
answer with probability at least 3/4. The deterministic subset ofMRC is called
DMRC. Note, not all algorithms in MRC are efficient; rather it only offers to
characterize them. One would expect efficient algorithms in MRC0 and MRC1
since they consist of constant rounds and logarithmic rounds, respectively. [13]
shows that a variety of problems have solutions in MRC0 and MRC1, such as
finding an MST in dense graphs, frequency moments, and undirected s-t con-
nectivity. Recent work following the MRC model include [3, 22, 15].

Massive, unordered, distributed (MUD) is a class of MapReduce algorithms
proposed by [8] to compute a distributed stream. The MUD algorithms consist
of three components: a local function, an aggregator, and post-processing. The
algorithm designer must ensure that the overall output is independent of the
order of application of the aggregator. A connection between MUD algorithms
and the MapReduce framework can be established where the local function can
be implemented by mappers, and the independence of the post-processing and
the order of application implies that we can divide and conquer the output of
the local function in a series of rounds. From this construction, it is easy to see



that MUD algorithms can be computed very efficiently in a MapReduce system
and mostly independent of the underlying computing capability.

3 Sorting with MapReduce

For sorting, the input is a set A of n objects drawn from an ordered domain.
Suppose that t machines store A and are indexed from 1 to t, namelyM1, ...,Mt.
A parallel algorithm that solves the sorting problem should terminate with all
the objects distributed across the t machines in a (total) sorted fashion. That is,
for each machineMi, the objects that end up inMi are in sorted order. Further,
this implies that all objects in Mi precede those in Mj for all 1 ≤ i < j ≤ t.

It is well known that sorting can be solved in O(n log n) time on a single
machine, while there has been a substantial amount of progress on sorting in
parallel. TeraSort is the state-of-the-art MapReduce algorithm for sorting and
the work of [24] proves that it is minimal when a crucial parameter of the algo-
rithm is set appropriately.

3.1 Sampling and Partitioning

Sampling and partitioning form the central idea behind TeraSort. TeraSort con-
ceptually consists of three steps: Sample, Partition, and Sort. First, the algorithm
extracts a random sample set from the input and then computes t partition ele-
ments from the sample. The partition elements, referred to as boundary elements,
divide A into t partitions. In the second round, each machine receives all the el-
ements from a distinct partition and sorts them locally using an apriori fixed
algorithm A. As the performance of TeraSort is sensitive to the quality of the
partition, it is worth examining potential sampling strategies. We describe two
such sampling strategies below.

In the current implementation of TeraSort included in Hadoop, the sample is
created by reading a elements in total from b locations which are evenly spread
across the input dataset. a and b are configurable by users. At each location, a

b
elements are read. No guarantee exists that such sampling scheme yields good
partitioning. In fact, there are bad cases for every a, b in which the partitions are
extremely unbalanced. When the sample comprises elements concentrated in a
few small ranges, it may lead to uneven buckets.

Tao et al. [24] discuss the strategy of self-sampling, where each element is
selected into the sample independently with the same probability. Self-sampling
is a good fit for the MapReduce framework as mappers are assumed to have no
other knowledge than the input item currently being processed. As we will show
later, self-sampling has very appealing probabilistic properties and it achieves
asymptotically optimal evenness with high probability. [24] also report the exper-
imental results of another strategy: sampling without replacement. The results
are promising and comparable to self-sampling: the unevenness remains low when
the sample size is no less than the expected size of self-sampling, regardless of
how much it exceeds the latter. However, there is no further investigation on



how the evenness is affected by the layout of the input dataset, nor is any bound
provided for all input layouts.

In this paper, we focus on analyzing TeraSort with self-sampling. However,
our techniques are general and apply beyond TeraSort; we show that given a
sufficiently high, but still realistic, sampling rate, the approximate partitions
obtained from self-sampling are almost as good as the partitions produced by
an ideal partitioning.

3.2 Even Partitions

In TeraSort, we use the notion of an ordered even t-partition which divides a set
as evenly as possible.

Definition 1 (ordered t-partition). An ordered t-partition divides an ordered
set of n elements into t partitions. Elements of partition i are smaller than those
of partition j for all i < j. The first element of every partition except for the
first one is called a t-partition element as they describe the partitions in full.

Definition 2 (ordered even t-partition). An ordered even t-partition is an
ordered t-partition in which the sizes of the partitions differ by at most 1.

An ordered even partition always exists for any dataset. In fact, we may
construct one in the following way. Let n = ts1 + s2 where s1 =

⌊
n
t

⌋
. The

indices of the partition elements are dj = dj−1 + (s1 + 1) for 1 ≤ j ≤ s2 and
dj = dj−1 + s1 for s2 ≤ j ≤ t with d0 = s1.

3.3 TeraSort

Recall, TeraSort consists of three steps: Sample, Partition, and Sort. First, the
algorithm extracts a random sample set from the input and then computes t par-
tition elements from the sample. The partition elements, referred to as boundary
elements, divide A into t partitions. In the second round, each machine receives
all the elements from a distinct partition and sorts them locally using a fixed
algorithm A. Importantly, the construction of the sample is crucial to efficiency
since the partition elements may be insufficiently scattered among the input lead-
ing to partition skew in the second round. On the other hand, while it usually
implies better partitioning, large samples could incur expensive overheads. We
measure the unevenness of the partitions in TeraSort as a ratio of the maximum
partition size to the optimal size m.

Tao et. al. [24] conclude that TeraSort is load-balanced within constant mul-
tiplicative factors and thus satisfies their minimality definition. However, the
multiplicative factor in the proof is relatively large (16 to 32). Moreover, the
proof itself does not extend to substantially smaller bounds. In this work, we
seek a more accurate description of the performance of TeraSort. We give a se-
ries of bounds which describes the trade-off between the number of machines
and the evenness of the partition (hence the worst case maximum workload on a



single machine). We conclude that a larger number of available machines allows
for more even partitions. In particular, we show that as t grows, the evenness
approaches exactly m with high probability.

Initially, the n elements are distributed evenly across the machines, each
storing m or m + 1 elements. Parameterized by ρ ∈ (0, 1], TeraSort runs as
follows:

Map 1
Each element is selected into the sample S with probability ρ.

Reduce 1
S is sent to M1. M1 uses A to compute an ordered even t-partition of S
made up of bi, i = 1, ..., t− 1. Each bi is a boundary element.

Map 2
(Assume that bi’s have been broadcast to all machines.) Element x is sent
to Mi if bi−1 ≤ x < bi, where b0 := −∞ and bn := +∞.

Reduce 2
On each machine, sort elements locally using A.

In [24], it was shown that TeraSort is minimal when ρ = 1
m lnnt using a

detailed analysis of the minimum footprint and bounded net-traffic conditions.
Note that the broadcast assumption in the algorithm may incur a network out-
flow of size O(t2) (or O(t) depending on the size of message) atM1, which would
make TeraSort non-minimal when t2 is no longer O(m). However, in practice the
broadcast can be implemented in Hadoop as M1 writing to a shared file which
is then read by all machines. This way, the broadcast cost is evenly distributed
among machines. This is an approach that [24] follows as well. Furthermore, [24]
shows in Section 3.3 that this is not a restrictive constraint because it can be
overcome by additional techniques. Finally, the experimental analysis provided
in [24] for pure TeraSort (their implementation of TeraSort with ρ = 1

m lnnt)
exhibits very even partitions. Specifically, it can be observed that the load bal-
ancing ratio does not exceed a factor of 2 across all the datasets considered.
Therefore, our results can be viewed as giving a sound theoretical explanation
for the experimental observations in [24].

In the following sections, we prove that TeraSort is strongly minimal by
showing that the balanced partition condition is satisfied, using an interesting
bucketing argument.

4 A New Proof of TeraSort’s Minimality

In this section we give a new proof of the results in [24] that prove the minimality
of TeraSort, but using a different and a more extensible probabilistic method that
is capable of proving that TeraSort is strongly minimal.



4.1 Probability Tools

Chernoff bounds restrict from above the tail probability of sums of independent
Bernoulli random variables. There are several forms/variants of Chernoff bounds
of similar restrictive power. In this work, we use the following form:

Pr

[
n∑
i=1

Xi > (1 + δ)µ

]
≤ exp

{
− δ2µ

δ + 2

}
, δ > 0

Pr

[
n∑
i=1

Xi < (1− δ)µ

]
≤ exp

{
−δ

2µ

2

}
, 0 < δ < 1

where the Xi’s are independent and Xi = 1, 0 with probability pi, 1 − pi
respectively. The mean is µ =

∑n
i=1 pi.

4.2 Minimality

The minimality of TeraSort is equivalent to the following claims.

Claim 1. In Map 1: |S| = O(m)

Claim 2. In Reduce 2: every machine ends up with O(m) elements

Claim 1 limits the size of the sample S and thus the amount of traffic that
machines send and receive in the first round. Claim 2 limits the machine sizes
and the network input in the second round, since the map phase of round 2
never violates minimality as long as every machine holds O(m) elements at the
beginning of the algorithm. In the following we show Claims 1 and 2 hold with
high probability (at least 1−O( 1

n )). It is straightforward to show Claim 1.

Lemma 1. Pr [|S| > knρ] ≤
(

1
nt

)t
when ρ ≥ 1

m lnnt and k ≥ 3.

Proof. |S| is the sum of n Bernoulli random variables of probability ρ; E [|S|] =
nρ. By Chernoff bounds, we have

Pr [|S| > knρ] ≤ exp
{
− (k−1)2

k+1 nρ
}

(1)

For the lemma to hold, we require that the exponent on the RHS be bounded

above by
(

1
nt

)t
. To show this, we take the minimal values satisfying the inequal-

ities given in the lemma statement: ρ = 1
m lnnt and k = 3. It is easy to verify

that under these parameter settings the RHS is exp
{
−n · tn lnnt

}
=
(

1
nt

)t
.

Theorem 1 (Claim 1). By setting ρ ≥ 1
m lnnt and assuming m ≥ t lnnt,

Claim 1 holds with probability 1−
(

1
nt

)t
.



Proof. By Lemma 1,

Pr [|S| > 3m] ≤ Pr [|S| > 3t lnnt] ≤ Pr [|S| > 3nρ] ≤
(

1

nt

)t
The event that Claim 1 holds is given by complement of the above. Therefore

the claim holds with high probability.

In reality, typically m � t, namely, the memory size of a machine is signifi-
cantly greater than the number of machines. More specifically, m is at the order
of at least 106 (this is using only a few megabytes per machine), while t is at
the order of 104 or lower. Therefore, m ≥ nρ = t ln(nt) is a (very) reasonable
assumption, which explains why TeraSort has excellent efficiency in practice.

Next, we present our approach to the proof of Claim 2 in the form of a few
interesting lemmas. First, we formulate a problem closely related to Claim 2.

Problem 1 (Sample-Partition). Let A denote a set of n elements from an ordered
universe; aj denotes the (j+1)-th smallest element in A. Construct a sample S ⊆
A by independently picking each element with probability ρ. Let b1, b2, ..., bt−1 ∈
S be the ordered even t-partition elements of S. Question: how evenly do the
bi’s partition A?

Problem 1 captures the probabilistic structure of TeraSort. Clearly, the set
of the elements on Mi in Reduce 2 is exactly A ∩ [bi−1, bi), independent of how
the input dataset is spread across machines at the outset. An answer to Problem
1 that the partitions are all O(m) in size proves Claim 2.

The approach of [24] is to suppose we have an ordered partition of A and
refer to every partition as a bucket. It is easy to observe that if every bucket con-
tains a boundary element, then the distance between any two adjacent boundary
elements is less than the sum of the sizes of the buckets in which they exist. This
observation will lead to Claim 2 if we additionally ensure that buckets are O(m)
in size.

We make a stronger observation: if we allow buckets to overlap with one
another, we have a promise of shorter distances between adjacent boundary
elements. Formally, consider an ordered even t-partition of A. Let d(i) be the
index in A of the i-th smallest partition element; and manually set d(0) := 1.
Our notion of a bucket is defined by the intervals Ij := [ad(j), ad(j)+lm). The
variable l ≥ 0 controls the length of the interval. The Ij ’s are well defined for
all j ≥ 0 with d(j) + lm ≤ n − 1. We cover the largest few elements with one
additional interval [an−lm, an]. Notice that the intervals form a cover of A if
l ≥ 1 and under this condition there can be at most t intervals.

Lemma 2. If every interval Ij has at least one boundary element, then no two
boundary elements are more than (l + 1)m away from each other.

Proof. We prove the contrapositive. Suppose that |[bi, bi+1]| > (l+1)m for some
i ∈ {1, t − 1}, then there exists an interval Ij ⊆ [bi, bi+1] which contains no
boundary element.



Consider we start at bi and walk towards larger elements in steps of size
(l + 1)m. Since |[bi, bi+1]| > (l + 1)m, we must have not met another boundary
elements yet. The interval after the one containing bi starts at most m away from
bi (due to the spacing of intervals), so its end cannot pass the current element.
Therefore, this interval contains no boundary element.

Now, we only need to put a ceiling on the probability that some interval
contains no boundary element to conclude Claim 2. This is shown in Lemmas 3
and 4. First, Lemma 3 considers a more generalized notion in which we consider
an arbitrary subset of A instead of the intervals of sequential elements considered
in the definition of buckets.

Lemma 3. Fix an arbitrary subset B(x) of size x of A. Then B(x)∩S denotes
the set of sampled elements in B(x). With ρ ≥ 1

m lnnt and l ≥ 7,

Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ 1

nt
+

(
1

nt

)t
(2)

Proof. Condition on the event |S| > 3nρ and decompose the probability as
follows,

Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ Pr

[
|B(lm) ∩ S| < |S|

t
and |S| ≤ 3nρ

]
+ Pr

[
|B(lm) ∩ S| < |S|

t
and |S| > 3nρ

]
≤ Pr

[
|B(lm) ∩ S| < 3nρ

t

]
+ Pr [|S| > 3nρ]

By Lemma 1 we can bound the second term in the last line above. Then, we
apply Chernoff bounds to the first term of the same line noting that E [|B(lm) ∩ S|] =
lm
n · nρ = lmρ. We show an upper bound on the RHS by taking the minimal

value satisfying the inequality given in the lemma statement: l = 7.

Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ exp

{
− (l − 3)2

2l
mρ

}
+

(
1

nt

)t
≤ 1

nt
+

(
1

nt

)t
This bound proves the lemma.

Now, we are ready to bound the probability that a bucket does not cover a
boundary element.

Lemma 4. For any 0 ≤ j ≤ t− 1,

Pr [Ij has no boundary element] ≤ O
(

1

n

)
(3)



Proof. In A, if a block of consecutive ordered elements contains no boundary

element, then it must contribute no more than
⌈
|S|
t

⌉
to the sample S (since a

boundary element is taken every
⌈
|S|
t

⌉
consecutive samples). Then, Lemma 3

gives us,

Pr [Ij has no boundary element] ≤ Pr

[
|B(lm) ∩ S| <

⌈
|S|
t

⌉]
= Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ 1

nt
+

(
1

nt

)t
By the union bound, with probability 1−O

(
1
n

)
every interval covers at least

one boundary element given l ≥ 7.

As a result, we have that no bucket can fall between two consecutive boundary
elements, hence every A∩ [bi−1, bi) can contain objects in at most 2 buckets. So,
by Lemma 2 and setting l ≥ 7 we have that Pr [|A ∩ [bi, bi+1]| ≥ 8m] ≤ O

(
1
n

)
.

Finally, we have the following theorem,

Theorem 2 (Claim 2). By setting ρ ≥ 1
m lnnt, Claim 2 holds with probability

at least 1−O
(
1
n

)
.

5 Proof of TeraSort’s Strong Minimality

A natural question is whether a fixed constant factor on m is the farthest we
could go with the tools in hand. In other words, can we achieve better guarantees
of evenness? Towards this goal, we consider the problem of Sample-Partition as
a simple, generic routine potentially used for a variety of problems and so it is
worthwhile in pushing the bound further.

Our new analysis is based on a re-examination of the proof of Lemmas 3 and
4. We focus on tighter bounds in Claim 2 (the evenness of partition), though as
shown later the choice of parameters also ensures Claim 1.

Please note that in the statement of the following theorem, k and l are free
parameters, for which we will later choose appropriate values that will satisfy
conditions (4).

Theorem 3. Given t and ρ ≥ 1
m lnnt, for any choice of k and l satisfying the

constraints below, 
(k − 1)2(t− l) ≥ (k + 1)
((t− 1)l − (t− l)k)2 ≥ 2l
(t− 1)l > (t− l)k
k, t > 1, l > 0

(4)



we have,

Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ 2

nt
(5)

Proof. Let Yj be the indicator random variable representing whether element
aj ∈ A is sampled into S. LetW (x) denote the sum of x independentBernoulli(ρ)
random variables. Note, we require that there is no dependency between the ran-
dom variables underlying two W (·) expressions.

Pr

[
|B(lm) ∩ S| < |S|

t

]
= Pr

 ∑
j:aj∈B(lm)

Yj <
1

t

n−1∑
j=0

Yj


= Pr

(t− 1)
∑

j:aj∈B(lm)

Yj <
∑

j:aj /∈B(lm)

Yj


= Pr [(t− 1)W (lm) < W (n− lm)] (6)

To establish an upper bound on (6), we use the same decoupling technique
as in Lemma 3 again. Let,

W1 = W (lm)

W2 = W (n− lm)

we have,

Pr [(t− 1)W (lm) < W (n− lm)] ≤ Pr

[
W1 <

W2

t− 1
, W2 ≤ k(n− lm)ρ

]
+ Pr

[
W1 <

W2

t− 1
, W2 > k(n− lm)ρ

]
≤ Pr

[
W1 <

k(n− lm)ρ

t− 1

]
+ Pr [W2 > k(n− lm)ρ]

By Chernoff bounds, given k > 1 and (t− 1)l > (t− l)k, we get

Pr [W2 > k(n− lm)ρ] ≤ exp

{
− (k − 1)2

k + 1
(t− l)mρ

}
(7)

Pr

[
W1 <

k(n− lm)ρ

t− 1

]
≤ exp

{
− lmρ

2

(
1− (t− l)k

(t− 1)l

)2
}

(8)

Next, we can bound the probability of each of W1 and W2 independently. We
make the initial observation that ρ ≥ 1

m lnnt implies mρ ≥ lnnt.

First, using the observation above, the RHS of (7)

exp

{
− (k − 1)2

k + 1
(t− l)mρ

}
≤ exp

{
− (k − 1)2

k + 1
(t− l) lnnt

}
(9)



Therefore, the probability that W2 > k(n− lm)ρ is less than 1
nt exactly when

(k−1)2
k+1 (t− l) ≥ 1, or (k− 1)2(t− l) ≥ (k+ 1). The resulting inequality yields the

second set of constraints from (4).

Second, again using the observation above, the RHS of (8)

exp

{
− lmρ

2

(
1− (t− l)k

(t− 1)l

)2
}
≤ exp

{
− l

2

(
1− (t− l)k

(t− 1)l

)2

lnnt

}
(10)

Therefore, the probability that W1 <
k(n−lm)ρ

t−1 is less than 1
nt exactly when

l
2

(
1− (t−l)k

(t−1)l

)2
≥ 1, or ((t− 1)l− (t− l)k)2 ≥ 2l. The resulting inequality yields

the third set of constraints from (4). Finally, we enforce the sanity conditions
given in the third inequality from (4) to ensure that the RHS of (8) remains
positive.

We remark that although Theorem 3 focuses on Claim 2, the system of
equations given by (4) also ensures that Claim 1 holds, because (k − 1)2(t −
l) ≥ (k + 1) is a stronger condition than that required for Claim 1 to hold:
(k − 1)2t ≥ (k + 1) (see Eq. 1).

Theorem 3 describes a family of bounds for (l+ 1)m given admissible values
for l, t and k. The choices of l and t dictates the trade-off between the evenness
and number of partitions. For a fixed k, as t increases, lower l is accessible
and therefore a greater number of partitions implies better evenness. First, we
present the following corollary.

Corollary 1. Let 0 < ε < 1
2 be a parameter and set k := 1 + 1

tε and l := 1 + 2
tε .

Given ρ ≥ 1
m lnnt, it holds that

Pr

[
|B(lm) ∩ S| < |S|

t

]
≤ 2

nt
(11)

It can be verified that the chosen values for k and l satisfy the system of
equations given by (4) for 0 < ε < 1

2 and t large enough. Furthermore, the
system of equations given by (4) is always satisfied for large enough t given fixed
ε, k and l. Therefore, we obtain arbitrarily strong evenness as long as t is allowed
to be sufficiently large. Given our chosen value of l and Corollary 1 we arrive at
the following.

Corollary 2. With probability at least 1 − O( 1
n ), the size of every partition is

less than (2 + 2
tε )m where 0 < ε < 1

2 .

In fact, it can be shown that for ε = 1
4 , we can satisfy the system of equations

given by (4) when t > 10. By combining all of above, we arrive at Corollary 3.

Corollary 3. Given ρ ≥ 1
m lnnt and t > 10,

Pr

[
|A ∩ [bi, bi+1]| >

(
2 +

2
4
√
t

)
m

]
≤ O

(
1

n

)
(12)

for 0 ≤ i ≤ t− 1 and where b0 := −∞ and bt := +∞.



Finally, we observe that a stronger version of Theorem 1 (Claim 1) exists by
noting that plugging k := 1 + 1

4√t into Lemma 1 yields an analog to Theorem 1

that bounds the probability that |S| >
(

1 + 1
4√t

)
m to at most O

(
1
n

)
.

5.1 Tightening the Bound

Given the memory available in modern machines and typical values for t, we
observe that probabilities of failure to produce strongly even partitions on the
order of O( 1

m ) are negligible. This is reasonable since current main memories of
computation nodes are on the order of gigabytes. If we consider m (the average
workload) to be safely within the capacity of main memory (e.g. m is on the
order of 220), then 1

m is very small.
Thus, we are able to further restrict the size of the intervals which corresponds

to partitions that are more even. The trick is to construct the intervals { Ij }j
by placing the left endpoint of the interval j+ 1 a distance m

t away from the left
endpoint of interval j (see Figure 1). As a result,

– Lemma 2 has a stronger form: no two adjacent boundary elements are more
than (l + 1

t ) away from each other.
– When we apply union bound with the at most t2 intervals, we obtain a

probability of failure no larger than O( 1
nt )× t

2 = O( 1
m ).

lm

Farthest the next 
interval starts

Farthest the next 
interval ends

(l+
1
t
)m

m
t

Fig. 1. With m
t

spacing, Lemma 2 is strengthened to ensure adjacent boundary ele-
ments are within (l + 1

t
) of each other with high probability.

This argument applies to every bound shown in the previous section. We
phrase the counterpart of Corollary 3 as an example.

Theorem 4. Given ρ ≥ 1
m lnnt and t > 10,

Pr

[
|A ∩ [bi, bi+1]| >

(
1 +

2
4
√
t

+
1

t

)
m

]
≤ O

(
1

m

)
(13)

for 0 ≤ i ≤ t− 1 and where b0 := −∞ and bt := +∞.



As a result, we see that as the number of machines increases, the evenness
of the partitions approach its optimal value m with high probability.

Remark: Strongly Minimal Algorithms for Databases. As mentioned in
the introduction, Tao et al. [24] show how a minimal algorithm for sorting leads
to minimal algorithms for other database problems by using a single additional
round after sorting. The problems considered include ranking, group-by, semi-
join, and 2D skyline. As a result of our analysis for TeraSort, these problems
have strongly minimal MapReduce algorithms.

6 Conclusions

Despite the great variety of algorithms developed for MapReduce, few are able
to achieve the ideal goal of parallelization: balanced workload across the partic-
ipating machines, network traffic bounded by the total input data size, and a
speedup over sequential algorithms linear in the number of machines available.

In this paper we introduce the new notion of strongly minimal MapReduce al-
gorithms. Our definition strengthens the minimality criteria of minimal MapRe-
duce algorithms as defined in [24]. Precisely, strongly minimal algorithms have
partitions that approach the optimal evenness value of m as the number of ma-
chines t grows with high probability. We prove that the popular parallel sorting
paradigm, TeraSort, is strongly minimal under the self-sampling strategy with
a sampling rate ρ = 1

m lnnt. Additionally, this leads to strongly minimal algo-
rithms that settle an array of important database problems.

Finally, our techniques are general and apply beyond the analysis of strongly
minimal MapReduce algorithms to any setting that fits the Sample-Partition
problem model; we show that given a sufficiently high sampling rate the ap-
proximate partitions obtained from self-sampling as the number of partitions
increases approach the partition sizes obtained from an ideal partitioning with
high probability. We believe that the refined bucketing arguments we use in our
analysis are of independent interest and are likely to have other applications.

In future work, our goal is to continue this line of research and identify other
fundamental problems that have strongly minimal algorithms.
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