
Fuzzy Joins in MapReduce: Edit and Jaccard
Distance

Ben Kimmett
University of Victoria, BC, Canada

blk@uvic.ca

Alex Thomo
University of Victoria, BC, Canada

thomo@uvic.ca

Venkatesh Srinivasan
University of Victoria, BC, Canada

srinivas@uvic.ca

Abstract—In ICDE’12, Afrati, Das Sarma, Menestrina,
Parameswaran and Ullman proposed similarity join algorithms
for MapReduce. In this paper, we evaluate and extend their
research, testing their proposed algorithms using edit distance
and Jaccard similarity. We provide details of adaptations needed
to implement their algorithms based on these similarity measures.
We conduct an extensive experimental study on large datasets and
evaluate the algorithms across several dimensions that define the
performance profile in MapReduce.

Keywords—Fuzzy Join, Similarity Join, MapReduce, Entity
Resolution, Record Linkage

I. INTRODUCTION

Fuzzy join (or similarity join) is a binary operation that
takes two sets of elements as input and computes a set of
similar element-pairs as output. This is different from exact
join where records are matched based on the equality of some
fields (cf. [3], [15]). Fuzzy join is very useful in a multitude
of applications, such as entity resolution [7], [12], [16], [18]
(finding records that refer to the same entity or person),
recommender systems [1], [4], [6], [28] (finding similar users
in terms of items they have rated), and clustering [5], [17],
[19], [20] (grouping items based on similarity). The fuzzy join
problem has attracted significant attention from the research
community (cf. [2], [13], [24], [25], [26], [27]).

In this paper, we focus on the computation of fuzzy join
in MapReduce. More specifically, we report an experimental
evaluation of some MapReduce algorithms proposed by Afrati,
Das Sarma, Menestrina, Parameswaran and Ullman in [2].
These algorithms have been described and analyzed in [2]
from a theoretical point of view only. In [14], we provide
an experimental evaluation of the fuzzy join algorithms of
[2] using simple Hamming distance. In the current paper, we
continue this line of work and consider the more challenging
cases of edit and Jaccard distances.

In [2], the authors argue that there is a tradeoff between
communication cost and processing cost in the distributed
MapReduce setting, and that there is a skyline of the proposed
algorithms; i.e. none dominates another. In [14], we showed
via experiments that, from a practical point of view, some
algorithms are almost always preferable to others. These
algorithms were Splitting and Naive, with the former being
faster than the latter when Hamming distance is used. In the
current paper, we extend the work in [14] to consider edit and
Jaccard distances.

While Naive can be easily extended to handle edit and
Jaccard distances, Splitting is more challenging. We describe

map

reduce

reduce

reduce

Fig. 1: Graphic representation of the MapReduce process.
Input items (circles) are categorized in the map phase, then
groups of items are processed in the reduce phase.

our algorithmic contributions with respect to Splitting, then
embark into the experimental setup and evaluation. We show
that for edit and Jaccard distances, both Naive and Splitting
continue to be able to handle large datasets in terms of
communication and processing cost in MapReduce. However,
in contrast to our results for Hamming distance, Naive (in spite
of its name) is now more efficient than Splitting.

Our contributions and results can be summarized as fol-
lows. First, we explain the algorithmic features of Naive and
Splitting algorithms in MapReduce, and present an algorithmic
engineering of the Splitting algorithm for Jaccard distance.
Next, we perform extensive experiments for Naive and Split-
ting using edit and Jaccard distance on large datasets, such
as genome sequences and movie ratings. Finally, we provide
insights on the practical performance of the two algorithms
considered across five dimensions: communication cost, map-
per computation cost, shuffle time, reducer computation cost,
and total time.

II. MAPREDUCE

Computations in MapReduce have two primary phases:
a map phase, and a reduce phase (see Figure 1). In the
map phase, input records are read, and grouped by some
characteristic of the record (this varies depending on the
algorithm used). The mapper emits key-value pairs, where the
key is used to group the items (that is, every item a mapper
groups together will have the same key when it is output).

The reduce phase takes the input from the map phase.
The key to MapReduce’s model is that every key-value pair
with the same key will end up at the same reducer instance,
and will be able to be processed as a group by that reducer.
Once the reducer receives the groups of data, it performs a

processing step on each group (the nature of this step also
varies depending on the algorithm used). It then outputs the
result of the processing step.

MapReduce also has a ‘shuffle phase’, which consists of
transferring data between the mappers and reducers. It is not
shown in Figure 1, but we track it separately in our results
graphs.

The bulk of [2] focuses on measuring similarity using Ham-
ming distance, though the paper does mention how some of
their algorithms could be applied to edit distance and Jaccard
distance. In this paper, we examine two of the algorithms in
[2], using edit and Jaccard distance as our similarity measures.

While [2] proposed other algorithms, such as the Ball-
Hashing algorithms, the poor performance of these in our
previous paper [14] led us to decide not to consider these
algorithms in this paper. The bottleneck of the Ball-Hashing
algorithms is the amount of intermediate data they generate;
this feature remains the same for any distance measure, and
may in fact become worse when used with varied text strings
or sets (for edit or Jaccard distance) as opposed to the binary
bit-strings used to test Hamming distance algorithms.

The algorithms we examine are Naive, which compares
every element in a set with every other using a rather insight-
ful triangular arrangement of reducers, and Splitting, which
divides each element in a set in chunks, then checks to see if
elements with matching chunks are similar. Determining how
to create meaningful chunks for each distance measure is not
always easy, and our algorithmic contribution is in showing
how to do that for Jaccard distance.

While Splitting was the algorithm with the best communi-
cation cost and fastest processing time in our previous work
[14], in which we analyzed the Hamming distance algorithms
of [2], we show that it does not do as well on edit or Jaccard
distance due to how this algorithm handles input.

III. ALGORITHMS AND IMPLEMENTATION

Input Formats The distance measures covered in this
paper, Jaccard and edit distance, place different requirements
on the input that can be given to them. This influences the
format of the input in our implementations of these algorithms.

For edit distance, each item in the input is a text string (e.g.
a substring of a genome sequence). Substitutions are allowed.
For Jaccard distance, each item is a set (e.g. the set of products
a user has rated in an e-commerce site). Our implementation
of Jaccard distance uses input consisting of pre-sorted sets of
integers; each set is a single item in the input. Substitutions
are not allowed but, for purposes of implementation, can be
represented as an operation equivalent to the cost of one
deletion plus one addition.

Relation of Edit Distance to Jaccard Distance If input
sets are sorted, the Jaccard similarity of two sets can be
computed by running an edit distance comparator on them,
disallowing substitutions. If a similarity of J is desired, the
maximum number of edits that is permissible to turn some set
A into another set B is as follows:

(|A|+ |B|) ∗ (1− 2J
J+1).

To explain this, we start by noting that Jaccard similarity of
sets A and B is defined as |A∩B||A∪B| . The size of the union can be
defined as |A|+|B|−m, where m is the number of elements in
both A and B (matching elements). This works because each
element in A and B is counted once if we sum the magnitude
of each. However, this double-counts matching elements, so
subtracting m gives a correct count of the magnitude of the
union. Additionally, m is the magnitude of the intersection,
|A∩B|. However, while |A| and |B| are known, m is not. To
show the relation stated above, we look at the connection of
m to the two distance measures.

There is a connection between m and the edit distance of A
and B (that is, the number of insertions and deletions needed
to turn A into B, or vice versa; this will be denoted as e).
Assuming |A| ≥ |B|, there must be at least |A|−|B| elements
of A which must be deleted; once this is done, there are |B|−m
elements of A which must be converted into elements of B.
However, as substitutions are not allowed in this version of
edit distance, the equivalent operation involves deleting each
remaining mismatched item from A, then adding an item that
matches one in B. This takes 2(|B| −m) edits. The total cost
of these two steps, e, is |A|−|B|+2(|B|−m) = |A|+|B|−2m
edits, implying |A|+|B|−e2 = m.

There is also a connection between the Jaccard similarity
and the minimum intersection m between two sets, assuming
the magnitudes of the sets (|A| and |B|) are known. For a pair
of sets, J = |A∩B|

|A∪B| =
m

|A|+|B|−m . This can be rewritten as
J∗(|A|+|B|)

1+J = m.

We can now put the two equations together, giving
|A|+|B|−e

2 = J∗(|A|+|B|)
1+J , which simplifies to e = (|A| +

|B|) ∗ (1− 2J
J+1). This also yields another important relation;

if the edit distance, e, between A and B is known, the Jaccard
similarity of the two sets is |A|+|B|−e|A|+|B|+e . The relation between
edit and Jaccard distance shown here will be useful when we
discuss the splitting algorithm for Jaccard distance later.

Naive Algorithm
The Naive algorithm sends a chunk of the input to each
(physical) reducer. Each reducer compares each possible pair
of items in the input to see if it is within the desired edit
distance or Jaccard similarity. If a pair is within this threshold,
it is output.

The algorithm that distributes input to reducers is as
follows: Let n = k∗(k+1)

2 be the number of reducers, for some
integer k. Each reducer is assigned an identifier (i, j), where
0 ≤ i ≤ j ≤ k; this creates a triangular ‘matrix’ of reducers.
Each item in the input is hashed to some value in [0, k). If an
input item has the hash i, it is sent to reducer (i, j) or (j, i)
(whichever exists) for each j ∈ [0, k). The input item is thus
sent to k reducers.

At this point, each reducer compares the input it receives.
As an optimization, each input item keeps track of which half
of its destination identifier contains its hash; for a reducer at
(i, j), items with a hash of i are only joined with items which
have a hash of j. This prevents comparing the same pairs of
items more than once. If the reducer’s identifier is of the form
(i, i), the input is joined to itself.

This algorithm is the same as the Naive covered in [14],
with the exception that the Hamming distance comparator
routine has been replaced with an edit distance comparator
to calculate edit distance or Jaccard similarity.

Splitting Algorithm
In this algorithm, the mappers break the input into chunks of
a specific length. Input items with matching chunks are sent to
(logical) reducers; each reducer compares each possible pair
of items within the input in the same way reducers for the
Naive algorithm do.

In the Hamming distance implementation of this algorithm
(as described in [14]), the mappers determine a chunk size,
t, and break input strings into chunks of that size or smaller.
This does not work for the Edit distance and Jaccard similarity
implementations.

Splitting Algorithm - Edit Distance
In the Edit Distance Splitting algorithm, input strings that are
very similar to one another may contain most of the same
characters– shifted at some offset. This renders the method
of creating fixed-position chunks impossible; as an example,
consider the words ‘adventurer’ and ‘misadventure’. The edit
distance of these strings is 4 (deleting ‘r’ and adding ‘mis’
will convert ‘adventurer’ to ‘misadventure’). However, if each
string is split into fixed-position chunks of size (say) 2, the
first string will have chunks ‘ad’,’ve’,’nt’,’ur’, and ‘er’, and the
second string will have the chunks ‘mi’,’sa’,’dv’,’en’,’tu’,’re’,
and ‘r’– none of which match the chunks of the first words.
The only way to have smaller chunks is to have chunks of one
character, which may not be feasible for long strings.

Instead, to narrow down the pools of strings to be joined,
the mappers for the edit-distance splitting algorithm determine
a chunk size, then create a ‘sliding window’ that emits a
substring of that size, starting at every possible position in the
string. While the Hamming distance algorithm would produce,
given an edit distance threshold d and a string of length l, d+1
chunks of size l

d+1 ([2]), the edit distance algorithm will use
the same chunk size and produce chunks of size c1 = b l−dd+1c
(to match strings smaller than the input string) and c2 = b l

d+1c
(to match strings larger than the input string). The number of
chunks produced of each size will be (l − ci) + 1. However,
this increase in the quantity of output drastically reduces the
efficiency of the algorithm.

Splitting Algorithm - Jaccard Distance
We showed that Jaccard distance can be casted to edit distance,
so, we could use the above sliding window technique to
perform Splitting for Jaccard distance as well. However, as
shown in the following, we can do better than that.

In the Jaccard Similarity Splitting algorithm, input is split
into chunks based on its position in the sorted universe. That
is to say: Consider a set where the universe of items is integers
from 1 to 100. If a set S is {1, 3, 5, 6, 10, 22, 54, 55, 56, 57, 92},
and we split into chunks of size c = 5, we will receive the
chunks: {1, 3, 5}, {6, 10}, {22}, {54, 55}, {56, 57}, {92}. Each
chunk contains up to 5 items from the universe; it can be
defined as the subset of the universe containing items (i−1)∗
c+ 1 to i ∗ c (for some i) intersected by S.

The splitting of the input sets into chunks also yields an
extra constraint on the requested similarity. The chunk size

must be set before the map phase starts, i.e. without the luxury
of knowing the magnitude of any particular input set. As
such, we must assume that every set is as large as possible
so that the chunk size will work under any input conditions.
This has two effects: it favors smaller chunk sizes than may
be absolutely necessary to compare the items of a dataset,
decreasing efficiency, and it limits the minimum similarity
threshold the algorithm can accept as a parameter.

The reason for the limit on similarity is as follows: As per
the relation between Jaccard and Edit distance listed above,
the requested Jaccard similarity is converted to edit distance.
However, the size of the universe of items (|U |) is used in place
of both |A| and |B|, because |A| and |B| are not known until
specific items of input are read. Once a maximum permissible
number of edits is known, d, the algorithm tries to split every
input set into d + 1 chunks, like in the Hamming Distance
version of the algorithm. However, if the requested similarity
threshold is ≤ 1

3 , this will require the set be split into more
chunks than there are items in the universe! This is impossible,
as chunks denote the presence or absence (in the input set) of
items in U ; more chunks than items in the universe implies
some chunks would not relate to any items in U , a waste of
communication cost and processing time. As such, the Jaccard
similarity splitting algorithm will fail if a similarity ≤ 1

3 is
requested.

IV. SETUP

Our experiments used different datasets for the edit distance
and Jaccard similarity portions. The datasets used for the edit
distance algorithms were:

• A chunk of DNA from the genome of Drosophila
melanogaster (the fruit fly), downloaded from the
UCSC Genome Browser (http://bit.ly/23mSG1a, Au-
gust 2014 version, full dataset, chunk ‘chr2L’). This
dataset came pre-broken into 32-character strings,
each character in the string representing a nucleotide.
As such, this dataset has a very small alphabet: the
characters A, T, C, G, N, where ‘N’ refers to an
unknown nucleotide. The dataset contained 470,275
strings. We also experimented with a random selection
of 50% of the above dataset, or 235,135 strings.

• A selection of 1,000,000 words chosen randomly
from the Google Ngrams single-word database
(http://bit.ly/1S6mTQ2, version 20120701, all files
from ‘1-grams’). The words chosen contained only
ASCII alphanumeric characters, to place a limit on
the alphabet size. Words were of varying length.

The datasets used for the Jaccard similarity algorithms
were:

• The MovieLens 10 Million dataset [11], containing
10,000,054 movie reviews by 71,567 users, on a uni-
verse of 10,677 movies. This data was preprocessed to
create a sorted set for each individual user, containing
numeric identifiers of all the movies that user had
rated.

• The MovieLens 20 Million dataset, containing
20,000,263 movie reviews by 138,493 users, on a

universe of 26,744 movies. The data was preprocessed
in the same manner as the 10 Million dataset.

For edit distance algorithms, the Drosophila datasets were
tested on similarity thresholds from 1 to 8 edits, and the
Ngrams dataset was tested on similarity thresholds from 1 to 6
edits (as the average length of strings in the sets were shorter
than the Drosophila datasets).

For Jaccard similarity algorithms, a range of similarities
from .50 to .95 were tested, incrementing in steps of .05.
As stated above, the Splitting algorithm was unable to accept
similarities ≤ .33, which influenced the choice of similarities.

Hadoop Cluster Configuration. All data was processed
using Hadoop 1.2.1, on an IBM BladeCenter cluster with 33
machines, divided into three chassis of 11, 11, and 9 machines,
respectively. Inter-chassis and intra-chassis networking was
provided by switches capable of 1 Gbit/second. Each machine
had 4 Intel(R) Xeon(R) E5430 @ 2.66GHz processor cores,
and 6 GB of memory. The cluster settings permitted 4 map jobs
and 4 reduce jobs per machine at any time (effectively, one job
per processor core). Each MapReduce child process (which
handles a single job) was given 1 GB of memory. There were
two 73GB Hot-Swap 3.5” 10K RPM Ultra320 SCSI HDDs per
machine, each with a maximum transfer rate of 104 MB/sec.

V. RESULTS

Here is a summary of our results:

1) The Splitting algorithm did worse than the Naive
algorithm, across all datasets (except at very low
thresholds under controlled conditions). However, the
reasons for the worse performance of Splitting is
different for the two distance measures.

2) In the case of edit distance algorithms, the ‘sliding
window’ that was implemented to handle shifted
matching segments drastically increases processing
time, rendering the splitting algorithm inefficient.
The communication cost is lower than the Naive
algorithm, however.

3) Nothing in the algorithm itself renders the Jac-
card Splitting algorithm inefficient; however, the ex-
tremely long nature of the sets, combined with the
sparse nature of the data, renders the algorithm im-
practical by the sheer number of ‘set chunks’ that
must be created, each with their own copy of the
original set. This drastically increases communication
cost; moreover, the number of resulting chunks ren-
ders the processing time of the algorithm extremely
prohibitive.

Further details about the experiments are in the rest of the
section.

A. Communication Cost

Each algorithm’s communication cost has its own unique
behavior:

Naive Algorithm The Naive algorithm’s communication
cost on any dataset does not change, even as the distance
measure used or difference threshold changes. Increasing the
size of the input does make the cost change, however; this is

expected, as the Naive has to emit a fixed number of copies
for each item in the input.

Splitting Algorithm - Edit Distance The communication
cost for the edit distance version of the splitting algorithm is
directly related to the number of chunks emitted per item in
the input; this is based on the size of the ‘sliding window’ for
any item of input, which is related to the maximum difference
threshold.

In the Drosophila datasets (Figures 2, 3), communication
cost is higher than that of the equivalent Naive algorithm.
There is a dip in the Splitting algorithm’s communication cost
at difference threshold 2 only. Ignoring this dip, the Splitting
cost is lower at threshold 1 than it is at threshold 3 and above.

This behavior is explained by a combination of normal
function of the algorithm and the nature of the dataset. In the
Drosophila datasets, all input strings are 32 characters long.
This means that for a maximum difference threshold of d edits,
chunks of size b 32−dd+1 c and b 32

d+1c will be emitted for every
input string. For a difference threshold of 1, this translates into
35 chunks of lengths 15 and 16; for a difference threshold of
2, 18 chunks, of length 15 only; and for a difference threshold
of 3 and above, 37 chunks of lengths 14 and 15.

In the Ngrams dataset (Figure 4), the Splitting algorithm
has a better communication cost than the Naive algorithm. In
these datasets, input strings are of varying lengths, and are
usually far shorter than 32 characters. Because of this, far
fewer chunks are emitted on average per string, rendering the
communication cost more manageable.

Splitting Algorithm - Jaccard Distance As the Jaccard
version of the splitting algorithm does not have a ‘sliding
window’ like the edit distance version does, the Splitting
algorithm does not create many chunks over a small input item
like the edit distance Splitting algorithm does. However, this
is balanced out by the nature of the MovieLens datasets; sets
of movies a user has rated tend to be both large and sparse,
resulting in many chunks being emitted, each containing only
a small portion of the set. The communication cost for the
MovieLens datasets (Figure 5, 6) is thus significantly higher
than the Naive algorithm’s cost for the same datasets.

B. Processing Time

For the processing time of all algorithms, the mapper and
shuffle phases took trivial amounts of time, typically less than
one minute. This implies that the mapper processing is highly
efficient, and that transferring the data does not add any load
of any kind.

Naive Algorithm While the processing time of naive
algorithms typically does not tend to vary due to factors
other than the size of the input, the processing time of
Naive algorithms using edit distance or Jaccard similarity does
increase slightly (and approximately linearly) as the difference
threshold increases. This is because both algorithms use an edit
distance comparator that returns a result immediately once it is
able to do so; this is often easier to do with a tighter difference
threshold, as non-matching pairs will fail more quickly.

Splitting Algorithm - Edit Distance The processing time
for edit-distance Splitting algorithms tends to increase at a

higher order of growth than the Naive algorithms. This is likely
due to the high number of overlaps generated by the ‘sliding
window’ portion of the algorithm if there is a matching portion
of two strings longer than the window size, each of which must
be independently checked by the reducer. Notwithstanding, the
Splitting algorithm is faster than the Naive algorithm when
run on the Drosophila datasets (Figures 2, 3) at low distance
thresholds (a maximum of 5 edits and below). This may be
due to the low alphabet size of the data (which would lower
the number of possible sequences of characters a reducer could
receive), or due to a high degree of variation in the 32-character
strings of the set (which would cause large chunks to mismatch
more often).

For the Ngrams dataset (Figure 4), the Naive algorithm is
far faster the Splitting algorithm. This is expected, to an extent;
the short length of many words in the Ngrams set means that
these words will have their ‘sliding window’ size be a single
character in width, leading to the existence of a pool of all
words that contain that character that some unlucky reducer
node must join.

Splitting Algorithm - Jaccard Distance The processing
time for Jaccard similarity Splitting algorithms also increases
much faster than the Naive algorithms, even though the algo-
rithm does not use a ‘sliding window’ method. This is because
in MovieLens (Figures 5, 6), the movies a user has rated are in
general sparse and tend to create many chunks, thus adding to
the potential comparison overhead. Moreover, given the nature
of the data, it is possible that matching chunks tend to cluster
around popular movies, which may result in many pairs of
users that do not fall within the desired similarity threshold
having to be compared anyway.

C. Further Observations

In these results, several points of interest emerge:

• The ‘sliding window’ approach of the edit-distance
Splitting algorithm hampers its efficiency. However,
this is only due to the possibility that large, matching
chunks of a string could be shifted in a way that would
confuse a fixed-chunk algorithm. There would be no
need for this approach if a constrained variant of edit
distance were used; one that disallows additions and
deletions, but allows substitutions. This could lead to
a drastic gain in the algorithm’s efficiency under these
conditions.

• For the Jaccard similarity Splitting algorithm, it would
be interesting to test if the algorithm behaves more
efficiently than the Naive algorithm when run on dense
sets.

VI. CONCLUSIONS

We presented a detailed evaluation of algorithms proposed
by Afrati, Das Sarma, Menestrina, Parameswaran and Ullman
in [2] using edit and Jaccard similarity. Furthermore, we
presented details of algorithmic engineering and adaptations
in order to scale up the considered algorithms in practice.

As future work, we would like to study enhanced edit
operations with constraints in the style of [8], [9], [10], [22] as
well as extending the results to edit distance over XML items
(cf. [21], [23]).

REFERENCES

[1] M. Abualsaud and A. Thomo. Utilizing favorites lists for better
recommendations. In Big Data and Cloud Computing (BdCloud), 2014
IEEE Fourth International Conference on, pages 303–310. IEEE, 2014.

[2] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran, and
J. D. Ullman. Fuzzy joins using mapreduce. In ICDE’12, pages 498–
509, 2012.

[3] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a
map-reduce environment. Knowledge and Data Engineering, IEEE
Transactions on, 23(9):1282–1298, 2011.

[4] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender
systems survey. Knowledge-Based Systems, 46:109–132, 2013.

[5] D. G. Brizan and A. U. Tansel. A. survey of entity resolution and record
linkage methodologies. Communications of the IIMA, 6(3):5, 2015.

[6] S. Ebrahimi, N. M. Villegas, H. A. Müller, and A. Thomo. Smar-
terdeals: a context-aware deal recommendation system based on the
smartercontext engine. In Proceedings of the 2012 Conference of the
Center for Advanced Studies on Collaborative Research, pages 116–
130. IBM Corp., 2012.

[7] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and
T. Palpanas. Parallel meta-blocking: Realizing scalable entity resolution
over large, heterogeneous data. In Big Data (Big Data), 2015 IEEE
International Conference on, pages 411–420. IEEE, 2015.

[8] G. Grahne and A. Thomo. Regular path queries under approximate
semantics. Annals of Mathematics and Artificial Intelligence, 46(1-
2):165–190, 2006.

[9] G. Grahne, A. Thomo, and W. Wadge. Preferentially annotated regular
path queries. In Database Theory–ICDT 2007, pages 314–328. Springer,
2007.

[10] G. Grahne, A. Thomo, and W. W. Wadge. Preferential regular path
queries. Fundamenta Informaticae, 89(2-3):259–288, 2008.

[11] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. TiiS, 5(4):19, 2016.

[12] Y. He, K. Ganjam, and X. Chu. Sema-join: joining semantically-related
tables using big table corpora. Proceedings of the VLDB Endowment,
8(12):1358–1369, 2015.

[13] H. Kardes, D. Konidena, S. Agrawal, M. Huff, and A. Sun. Graph-based
approaches for organization entity resolution in mapreduce. Graph-
Based Methods for Natural Language Processing, page 70, 2013.

[14] B. Kimmett, V. Srinivasan, and A. Thomo. Fuzzy joins in mapreduce: an
experimental study. Proceedings of the VLDB Endowment, 8(12):1514–
1517, 2015.

[15] B. Kimmett, A. Thomo, and S. Venkatesh. Three-way joins on mapre-
duce: An experimental study. In Information, Intelligence, Systems and
Applications, IISA 2014, The 5th International Conference on, pages
227–232. IEEE, 2014.

[16] L. Kolb and E. Rahm. Parallel entity resolution with dedoop.
Datenbank-Spektrum, 13(1):23–32, 2013.

[17] N. Korovaiko and A. Thomo. Trust prediction from user-item ratings.
Social Network Analysis and Mining, 3(3):749–759, 2013.

[18] C. Li, S. Mehrotra, and L. Jin. Record linkage: A 10-year retrospective.
In Database Systems for Advanced Applications, pages 3–12. Springer,
2013.

[19] T. Nie, W.-c. Lee, D. Shen, G. Yu, and Y. Kou. Distributed entity
resolution based on similarity join for large-scale data clustering. In
Web-Age Information Management, pages 138–149. Springer, 2014.

[20] I. Sandler and A. Thomo. Large-scale mining of co-occurrences:
Challenges and solutions. In P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2012 Seventh International Conference on, pages
66–73. IEEE, 2012.

[21] M. Shoaran and A. Thomo. Evolving schemas for streaming xml. In
Foundations of Information and Knowledge Systems, pages 266–285.
Springer, 2010.

[22] D. C. Stefanescu, A. Thomo, and L. Thomo. Distributed evaluation of
generalized path queries. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 610–616. ACM, 2005.

[23] A. Thomo, S. Venkatesh, and Y. Y. Ye. Visibly pushdown transducers

for approximate validation of streaming xml. In Foundations of
Information and Knowledge Systems, pages 219–238. Springer, 2008.

[24] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity
joins using mapreduce. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 495–506.
ACM, 2010.

[25] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, pages 85–96. ACM, 2012.

[26] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity
joins for near-duplicate detection. ACM Transactions on Database
Systems (TODS), 36(3):15, 2011.

[27] C. Yan, Y. Song, J. Wang, and W. Guo. Eliminating the redundancy
in mapreduce-based entity resolution. In Cluster, Cloud and Grid
Computing (CCGrid), 2015 15th IEEE/ACM International Symposium
on, pages 1233–1236. IEEE, 2015.

[28] N. Yazdanfar and A. Thomo. Link recommender: Collaborative-filtering
for recommending urls to twitter users. Procedia Computer Science,
19:412–419, 2013.

Communication Cost and Processing Time, Drosophila DNA Chunk (50%)

0

100

200

300

400

1 2 3 4 5 6 7 8

C
o
s
t
[M

B
]

Maximum Edit Distance

C

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8

M
in

u
te

s

Maximum Edit Distance

M

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8

M
in

u
te

s

Maximum Edit Distance

S

0

1

2

3

4

1 2 3 4 5 6 7 8

H
o
u
rs

Maximum Edit Distance

R

0

1

2

3

4

1 2 3 4 5 6 7 8

H
o
u
rs

Maximum Edit Distance

T

Naive Splitting/

Fig. 2: Communication cost (C), mapper (M), shuffle (S), reducer (R), and total (T) time, from left to right. (For
Splitting, distance 8, R and T are 16.30 hrs and 16.31 hrs, respectively. They do not fit in the plot area.)

Communication Cost and Processing Time, Drosophila DNA Chunk (Full)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

C
o
s
t
[M

B
]

Maximum Edit Distance

C

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8

M
in

u
te

s

Maximum Edit Distance

M

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8

M
in

u
te

s

Maximum Edit Distance

S

0

3

6

9

12

15

1 2 3 4 5 6 7 8

H
o
u
rs

Maximum Edit Distance

R

0

3

6

9

12

15

1 2 3 4 5 6 7 8

H
o
u
rs

Maximum Edit Distance

T

Naive Splitting/

Fig. 3: For Splitting, distance 8, R and T are 64.91 hrs and 64.92 hrs, respectively. They do not fit in the plot area.

Communication Cost and Processing Time, Ngrams (1M Words)

0

15

30

45

60

75

90

1 2 3 4 5 6

C
o
s
t
[M

B
]

Maximum Edit Distance

C
0

0.25

0.5

0.75

1

1 2 3 4 5 6

M
in

u
te

s

Maximum Edit Distance

M

0

0.25

0.5

0.75

1

1 2 3 4 5 6

M
in

u
te

s

Maximum Edit Distance

S

0

10

20

30

40

50

60

1 2 3 4 5 6

H
o
u
rs

Maximum Edit Distance

R

0

10

20

30

40

50

60

1 2 3 4 5 6

H
o
u
rs

Maximum Edit Distance

T

Naive Splitting/

Fig. 4: Communication cost (C), mapper (M), shuffle (S), reducer (R), and total (T) time, from left to right.

Communication Cost and Processing Time, MovieLens (10M Reviews)

0

1

2

3

4

5

6

7

0.05 0.15 0.25 0.35 0.45

C
o
s
t
[G

B
]

Dissimilarity (1 - Similarity threshold)

C

0

1

2

3

4

5

0.05 0.15 0.25 0.35 0.45

M
in

u
te

s

Dissimilarity (1 - Similarity threshold)

M

0

0.25

0.5

0.75

1

0.05 0.15 0.25 0.35 0.45

M
in

u
te

s

Dissimilarity (1 - Similarity threshold)

S

0

4

8

12

16

20

24

0.05 0.15 0.25 0.35 0.45

H
o
u
rs

Dissimilarity (1 - Similarity threshold)

R

0

4

8

12

16

20

24

0.05 0.15 0.25 0.35 0.45

H
o
u
rs

Dissimilarity (1 - Similarity threshold)

T

Naive Splitting/

Fig. 5: For Splitting, the run with dissimilarity equal to .5 took longer than 24 hours to finish.

Communication Cost and Processing Time, MovieLens (20M Reviews)

0

3

6

9

12

15

0.05 0.15 0.25 0.35 0.45

C
o
s
t
[G

B
]

Dissimilarity (1 - Similarity threshold)

C

0

1

2

3

4

5

0.05 0.15 0.25 0.35 0.45

M
in

u
te

s

Dissimilarity (1 - Similarity threshold)

M

0

1

2

3

4

5

0.05 0.15 0.25 0.35 0.45

M
in

u
te

s

Dissimilarity (1 - Similarity threshold)

S

0

4

8

12

16

20

24

0.05 0.15 0.25 0.35 0.45

H
o
u
rs

Dissimilarity (1 - Similarity threshold)

R

0

4

8

12

16

20

24

0.05 0.15 0.25 0.35 0.45

H
o
u
rs

Dissimilarity (1 - Similarity threshold)

T

Naive Splitting/

Fig. 6: For Splitting, the runs with dissimilarity greater than .3 took longer than 24 hours to finish.

