
An Experimental Evaluation of Giraph and GraphChi

Junnan Lu
University of Victoria, BC, Canada

byzantin@uvic.ca

Alex Thomo
University of Victoria, BC, Canada

thomo@uvic.ca

Abstract—We focus on the vertex-centric (VC) model intro-
duced in Pregel, a Google system for distributed graph processing.
In particular, we consider two popular implementations of the
VC model: Apache Giraph and GraphChi. The first is a VC
system for cluster computing, while the second is a VC system
for a single PC. Apache Giraph became very popular after
careful engineering by Facebook researchers in 2012 to scale
the computation of PageRank to a trillion-edge graph of user
interactions using 200 machines. On the other hand, GraphChi
became popular, around the same time in 2012, as it made possible
to perform intensive graph computations in a single PC, in just
under 59 minutes, whereas the distributed systems were taking
400 minutes using a cluster of about 1,000 computers (as reported
also by MIT Technology Review). Since then, new versions of
Apache Giraph and GraphChi have been released, where new
ideas and optimizations have been implemented. Therefore, it is
time to validate again the claims made four years ago. In this
work, we embark in this validation. We consider three corner-
stone graph problems: computing PageRank, shortest-paths, and
weakly-connected-components. Based on current experiments, we
conclude that in the present, even for a moderate number of
simple machines, Apache Giraph outperforms GraphChi for all
the algorithms and datasets tested. This is in contrast to the
claims of the GraphChi authors in 2012.

I. INTRODUCTION

Graphs are very popular in analyzing data. Many inter-
esting graph applications such as transportation routes, news-
paper article similarity, disease outbreak and scientific work
citations have been studied for decades. Graph algorithms that
have been applied frequently include shortest paths computa-
tion, weakly-connected-components, connection-counting, and
Pagerank. The main problem when applying graph analytics is
the typically very big size of the available graphs. Taking the
web graph, for example, the estimation from Google shows
that the population of web pages is now exceeding 1 trillion.
Social networks are other examples of very big graphs. In
2012, the number of users (as vertices) of Facebook exceeded
over a billion with over 190 billion of friendship relationships,
which can be viewed as links. Another example, LinkedIn,
has more than 8 million users with more than 60 million of
relationships.

Due to the irregular internal structure and the large scale
of the data, processing such graphs is considered computation-
ally hard in the traditional centralized way. Determining the
best paradigm for computing systems in order to handle and
process such data is a hot research area in the data analytics
community.

Google’s Pregel is a simple yet popular graph processing
tool which is inspired by the BSP model [8]. Similar to BSP,
Pregel consists of a sequence of iterations, called supersteps

[4]. In each superstep in Pregel, a user-defined-function, com-
pute, is invoked for each vertex of the graph in order to conduct
computation in parallel. The user defined function, such as
reading a message from the previous superstep or sending a
message to be read in the next superstep, defines the logic
and behavior of each single vertex in each of the iterations
or supersteps. Such a model is also labeled as vertex centric
because the computation task is running independently and
locally.

Apache Giraph is an open source implementation of pro-
prietary Pregel. All the essential functionality for processing
a graph in parallel like in Pregel is implemented in Apache
Giraph. Giraph became popular after careful engineering by
Facebook researchers in 2012 to scale the computation of
PageRank to a trillion-edge graph of user interactions using
200 machines [1].

Systems like Apache Giraph and Pregel require a dis-
tributed computing cluster to process large scale graph data
quickly and effectively. Although distributed computing fa-
cilities such as cloud computing clusters are becoming more
common and accessible, nevertheless, the question of how to
process large scale graph data effectively without distributed
commodity computing clusters is an interesting avenue for a
data analyst who may need to analyze a large graph dataset but
is unable to access a distributed computing cluster. GraphChi
proposed by Kyrola and Guestrin [5] is a disk-based, vertex-
centric system, which segments a large graph into different
partitions. Then, a novel parallel sliding window algorithm
is implemented to reduce random access to the data graph.
Graphchi can process hundreds to thousands of graph vertices
per second. GraphChi became popular, around the same time
in 2012, as it made possible to perform intensive graph
computations in a single PC in just under 59 minutes, whereas
the distributed systems were taking 400 minutes using a cluster
of about 1,000 computers (as reported also by MIT Technology
Review). Since then, new versions of GraphChi and Apache
Giraph have been released, where new ideas and optimizations
have been implemented. Therefore, it is time to validate again
the claims made four years ago. In this work, we embark in
this validation.

We consider three cornerstone graph problems that are
often used as subroutines for several graph analytics tasks:
computing (1) PageRank, (2) shortest-paths, and (3) weakly-
connected-components. Based on current experiments, we con-
clude that in the present, even for a moderate number of simple
machines, Apache Giraph outperforms GraphChi for all the
algorithms and datasets tested. This is in contrast to the claims
of the GraphChi authors in 2012.

II. ALGORITHMS

We evaluated four algorithms in our comparisons: PageR-
ank, Single-Source Shortest Paths (SSSP), and Weakly Con-
nected Components (WCC).

A. PageRank

PageRank [11] is a popular random walk algorithm that
produces a ranking of the vertices in a network. The main
goal of PageRank is to assign a numeric value to each of the
vertices by exploring the structure of the graph. In the context
of vertices being web pages, a page receives more importance,
if it is linked from other pages of high importance. PageRank
uses a damping factor, a probability value, to determine the
likelihood that a user will jump to a random page by clicking
an outgoing link from the current page when the user is
browsing. In this evaluation, the damping factor is set to 0.85.

At superstep 0, each vertex is assigned a value of 1.0 as the
vertex value. Then the vertex sends to each neighbor its “vote”,
which is 1/outdegree. At each subsequent superstep, each
vertex will sum all the values it receives from its neighbors and
store the summation in x. The vertex value will be updated by
combining the in-edge summation value x with the dumping
factor as 0.15 + 0.85 ∗ x. The vertex value is again broadcast
to the neighbors. We perform 30 such iterations of PageRank
computations. The implementation for PageRank is slightly
different for Giraph and GraphChi. In the former we receive
and send messages, in the latter we read from in-edges and
write to out-edges. The pseudocode for Giraph is given in
Alg. 1, whereas the pseudocode for GraphChi is omitted
as being quite similar (this is not always so; see the next
algorithm).

Algorithm 1 PageRank: Compute function for Giraph
1: function COMPUTE(Vertex v, List messages)
2: if superstep = 0 then
3: v .value ← 1
4: else
5: x← 0
6: for all m in messages do
7: x← x+m.value
8: v .value ← 0.15 + 0.85 ∗ x
9: y ← x/v .numOutEdges

10: for all outEdge in v .outEdgeList do
11: sendMessage(outEdge.targetVertexId , y)

B. SSSP

SSSP here stands for single-source shortest path. SSSP is
a traversal algorithm which finds the shortest paths between
a source vertex and all the other reachable vertices. The
vertex-centric SSSP is a parallel variant of the Bellman-Ford
algorithm. At the first superstep, the distance of the source
vertex is set to 0 and the values of all other vertices are set to
plus infinity. Also, the source vertex s is the only active vertex
in the first superstep. At each point in time, a vertex v has as
value its tentative distance dv from the source. Vertex v sends
dv + c(v, w) to each neighbor w, where c(v, w) is the cost of
the (v, w) edge. Upon receiving messages from its neighbors,
vertex v updates its value to be the minimum of the received

values. The number of supersteps executed by SSSP is limited
by the graph’s longest shortest path.

Whereas Giraph works using messages as described above,
GraphChi works by reading values from in-edges and writing
values to out-edges. Here we need to be more careful than
in the case of PageRank because now the edges have already
values, which are their costs. Therefore, we need to create
special tuple objects to store on the edges (see Alg. 3).

On the other hand, the pseudocode for Giraph is given in
Alg. 2. Observe that in Giraph we have the opportunity to use
a combiner of messages. If there are many messages going to
a vertex, it is clear that not all of them will cause the value of
the vertex to change. In fact only the message with the smallest
value (tentative distance) will be useful. Selecting the message
with the smallest value and removing the other messages is the
job of the combiner in this case. It aggregates messages sent
to a vertex to only one message, the one with the minimum
value.

The pseudocode for GraphChi is given in Alg. 3. Here we
do not have the luxury of a combiner. The computation finishes
when the value of variable numVerticesUpdated becomes 0.

Algorithm 2 SSSP: Compute function for Giraph
1: function COMPUTE(Vertex v, List messages)
2: if superstep = 0 then
3: if v = source then
4: v .value ← 0
5: else
6: v .value ←∞
7: minDist ← v .value
8: for all m in messages do
9: dist ← m.value

10: minDist ← min{minDist , dist}
11: if minDist < v .value then
12: v .value ← minDist
13: for outEdge in v .outEdgeList do
14: y ← minDist + outEdge.value
15: sendMessage(outEdge.targetVertexId , y)

16: v .voteToHalt()

17: function COMBINER(List messages)
18: return min(messages)

C. WCC

The weakly connected components (WCC) problem is
to assign to each vertex v the id of the weakly connected
component that v belongs to. A component (subgraph) C is
weakly connected if for every pair u, v of vertices, there exists
a semi-path (ignoring edge directions) from u to v in C. The
idea for this algorithm is simple. Each vertex has its own id and
propagates this id to its neighbors. A vertex v, upon receiving
the ids from its neighbors, checks to see whether there is some
id which is smaller than its own. If so, v changes its id to this
smaller id. At the end of the algorithm, which happens when
there are no more id updates, each vertex will have an id that is
the id of WCC the vertex belong to. At the first superstep, all
vertices are active which is different from SSSP. At each of the
supersteps, a vertex can vote to halt if there is nothing left to

Algorithm 3 SSSP: Update function for GraphChi
1: function UPDATE(Vertex v)
2: if iteration = 0 then
3: if v = source then
4: v .value ← 0
5: else
6: v .value ←∞
7: minDist ← v .value
8: for all inEdge in v .inEdgeList do
9: edgeVal ← inEdge.pair .value

10: minDist ← min{minDist , edgeVal}
11: if minDist < v .value then
12: v .value ← minDist
13: numVerticesUpdated++
14: for outEdge in v .outEdgeList do
15: edgeVal ← outEdge.pair .value
16: dist ← minDist + outEdge.value
17: outEdge.setVal(new Pair(edgeVal , dist))

update. The pseudocode for Giraph is given in Alg. 4, whereas
the pseudocode for GraphChi is omitted as being similar.

Algorithm 4 WCC: Compute function for Giraph
1: function COMPUTE(Vertex v, List messages)
2: if superstep = 0 then
3: v .value ← source.getId()

4: changed ← false
5: for all m in messages do
6: if m.value < v.value then
7: v .value ← m.value
8: changed ← true

9: if changed = true then
10: for outEdge in v .outEdgeList do
11: sendMessage(outEdge.targetVertexId , v .value)

12: v .voteToHalt()

III. EXPERIMENTS

The Giraph experimentation is conducted on 20, 25, 30, 25,
and 40 machines. All machines are T2.micro Amazon Elastic
Computing instances which are located in us-west-2a. A single
EC2 T2.micro instance is used for running GraphChi program.
Each T2.micro instance has one 2.5 GHz, Intel Xeon Family
CPU, 1 GB of RAM Memory. All instances run Amazon Linux
AMI 2015.09.1 (HVM) Operating System. The T2.micro ma-
chines, used in this experimentation, are in the AWS Free Tier.
All machines are EBS backed by default. No additional EBS
attachment is added for the simplicity of management. There is
one worker per machine. The Giraph, Hadoop and Java SDK
and runtime environments were installed in both the master
and workers.

The datasets we used are

• Soc-LiveJournal (|V | = 4, 847, 571, E =
68, 993, 773)

• Soc-Pokec (|V | = 1, 632, 803, E = 30, 622, 564)

• Cit-Patents (|V | = 3, 774, 768, E = 16, 518, 948).

We obtained them from http://snap.stanford.edu.

The running times of each algorithm for different machine
numbers (giraph instances, GIs) are given in Figure 1. In
the first, second, and third rows of results, we show the
running times of PageRank, SSSP, and WCC for the Soc-
LiveJournal, Soc-Pokec, and Cit-Patents datasets, respectively.
All the running times are given in seconds.

What we observe is that Giraph outperforms GraphChi
significantly for a moderate number of machines (even 20
free-tier T2.micro machines). This is in contrast to what was
reported in 2012 in [6] where the situation was reversed. Then,
not even 1000 machines were able to beat GraphChi running
on a single machine.

On the other hand, Giraph does not always scale linearly.
For PageRank on Soc-LiveJournal, we achieve impressive scal-
ability when the number of machines is increased. The runtime
using 20 machines is 971 seconds, whereas the runtime using
39 machines (almost double) is 287. This translates to a 3.38
speed-up. On the other hand, for PageRank on Soc-Pokec and
Cit-Patents, the speedup is not that impressive. As we go from
using 20 machines to using 39 machines, we see speedups by
a factor of 1.39 and 1.44, respectively. This is good but not
ideal.

Doing a similar analysis for SSSP, we see speedups of
1.67, 1.15, and 1.29 on Soc-LiveJournal, Soc-Pokec, and Cit-
Patents, respectively, when we go from 20 machines to 39.
Similarly, for WCC, we see speedups of 1.21, 1.19, and 1.18
on Soc-LiveJournal, Soc-Pokec, and Cit-Patents, respectively.
We can explain the lesser degree of speedup for SSSP and
WCC compared to PageRank by the fact that they are less
computationally intensive than PageRank which needs a con-
siderable number of iteration to converge. Therefore, the start
up time takes a more considerable portion of the overall time
for SSSP and WCC.

IV. RELATED WORKS

The Pregel distributed graph processing framework was
introduced by Malewicz et. al. in [8]. Apache Giraph (http://
giraph.apache.org) is an open source implementation of Pregel
based on Hadoop. An excellent reference on Giraph is the
recent book by Martella, Shaposhnik, and Logothetis [9].

GraphChi was created by Aapo et. al. [6]. Its excellent
speed compared to distributed vertex-centric systems at the
time (2012) was commented with awe at MIT Technology
Review [12].

Around the same time, a group of Facebook researchers
introduced several optimizations to Giraph [1]. These and other
optimizations to Giraph are described in a recent paper by
Ching et. al. in [2]. As such, Giraph has become a much faster
system that can easily outperform GraphChi even with few
machines (as we showed with our experiments).

Thorough analysis of distributed vertex-centric systems
have been presented by Han et. al. [5] and Lu et. al. in [7]. A
recent survey of vertex-centric frameworks is by McCune et.
al. [10].

As future work, we would like to analyze further more
specialized shortest path approaches which are selective in

Fig. 1. Running times of Giraph and GraphChi (sec).

the edges they use. For example the type of edges to use
can be specified by regular-path-queries (c.f. [3], [4]). It will
be interesting to see how to devise vertex-centric algorithms
for shortest paths guided by an automaton representing RPQs.
Initial attempts are the algorithms presented in [13], [14] for
a general distributed, message passing system.

REFERENCES

[1] Scaling apache giraph to a trillion edges. http://bit.ly/1TomAkh.
Accessed: 2016-05-22.

[2] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan.
One trillion edges: graph processing at facebook-scale. PVLDB, 8(12),
2015.

[3] G. Grahne and A. Thomo. Algebraic rewritings for optimizing regular
path queries. Theoretical Computer Science, 296(3), 2003.

[4] G. Grahne, A. Thomo, and W. Wadge. Preferentially annotated regular
path queries. In ICDT. Springer, 2007.

[5] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin.
An experimental comparison of pregel-like graph processing systems.
Proceedings of the VLDB Endowment, 7(12):1047–1058, 2014.

[6] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In USENIX OSDI, pages 31–46, 2012.

[7] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph
computing systems: An experimental evaluation. PVLDB, 8(3):281–
292, 2014.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD. ACM, 2010.

[9] C. Martella and R. Shaposhnik. Practical graph analytics with apache
giraph. 2015.

[10] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR), 48(2):25, 2015.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. 1999.

[12] J. Pavlus. Your laptop can now analyze big data. MIT Technology
Review, July 17, 2014.

[13] M. Shoaran and A. Thomo. Fault-tolerant computation of distributed
regular path queries. Theoretical Computer Science, 410(1):62–77,
2009.

[14] D. C. Stefanescu, A. Thomo, and L. Thomo. Distributed evaluation of
generalized path queries. In SAC. ACM, 2005.

