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I. INTRODUCTION

Weighted bipartite b-matching (WBM) is one of the fun-
damental and widely studied problems in combinatorial op-
timization. Given a weighted bipartite graph G = (U, V,E)
with weights W : E → R+, where U , V and E represent left
vertices, right vertices and edges, respectively, the weighted
bipartite b-matching problem (WBM) is to find a subgraph
H ⊆ G with maximum total weight w(H) =

∑
e∈H w(e),

such that every vertex i in H is incident to at most b(i) edges.
An implicit assumption of WBM is that any two nodes on

the same side do not conflict with each other, even if they
share similar features in practice. For example, a recommender
system running WBM can recommend several books of the
same subject to a reader, as long as the subject is his/her
favorite and the availability constraints of the books are not
violated. This, however, does not generate desired results in
some real-world scenarios. For book recommendation, a reader
may not want all recommended books from the same subject
but instead may prefer books of diverse subjects so that more
interesting topics can be discovered. However, considering
conflicts would inevitably lead to new challenges for WBM
when generating the matching result. This conflict challenge
has not been fully studied and thus is the focus of this work.

In this article, we introduce a new generalization of WBM,
Conflict-Aware Weighted Bipartite b-Matching (CA-WBM),
that can address the conflict challenges mentioned above.

II. PROBLEM DEFINITION AND ITS HARDNESS

In order to capture the conflict constraint, we consider a
natural extension of WBM. Formally, we say that two vertices
are in conflict with each other if matching them to the same
vertex is not desirable.

CA-WBM imposes a set of conflict pairs C, requiring that
each u ∈ U is adjacent to at most τ(u) of those pairs:

Definition 1. Conflict-Aware Weighted Bipartite B-
Matching (CA-WBM) Given G, vertex-labelling functions
B : U

⋃
V → N, τ : U → N, and a set of unordered

pairs C ⊆ V × V , find the subgraph H = ((U, V ), E′,W )

* A longer version of this paper was published in IEEE TKDE [1].

maximising
∑

e∈E′ W (e) with every vertex u ∈ U
⋃

V
adjacent to at most B(u) edges and every vertex u ∈ U
adjacent to at most τ(u) pairs of vertices v, v′ ∈ V that appear
as an unordered pair (v, v′) ∈ C.
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Fig. 1: The CA-WBM problem contrasted with WBM. Two
conflicts, (v2, v3), (v2, v4), are introduced, e.g., because the
products are too similar. If u3 has a conflict threshold τ(u3) =
0, then it cannot match both v2 and v4, leading to a lower
score, but potentially more diverse, solution.

In terms of hardness result, we prove that:

Theorem 1. CA-WBM is NP-hard.

III. ALGORITHMS FOR SOLVING CA-WBM

We present two formulations of CA-WBM, capturing the
conflict constraint and propose corresponding algorithms for
solving CA-WBM. We also study an online version of CA-
WBM. Let m = |U | and n = |V |. We represent the degree
constraint for all vertices, as specified by the vertex-labelling
function B, with a (m+ n)-dimensional column vector D =
[D(i)]T . We denote by X = [xij ]

T the mn-dimensional
column vector of 0-1 variables, with xij = 1 indicating i
is matched to j and xij = 0 otherwise.

A. Integer Linear Program (ILP)-based Algorithm

CA-WBM without conflict constraints can be described as

max
X

WX

s.t. AX(i) ≤ D(i),∀i, 1 ≤ i ≤ m+ n

xij ∈ {0, 1},∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(1)
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Fig. 2: Experiment plots for the ILP, LPR, and GREEDY algorithms on CA-WBM and online CA-WBM

where matrix A is an (m+n)×mn matrix indicating adjacent
edges for vertices in U and V .

To formulate conflict constraints linearly, we introduce a
new 0-1 variable zi,(j,k). For each vertex i ∈ U , zi,(k,l) equals
1 if and only if there is a conflict edge between two vertices
k, l ∈ V , and both edges eki and eli are matched in the graph.
Therefore, conflict constraints can be described as follows:

1− xki − xli + zi,(k,l) ≥ 0, ∀ i ∈ U, ∀(k, l) ∈ Ci (2)
xki + xli − 2zi,(k,l) ≥ 0, ∀ i ∈ U, ∀(k, l) ∈ Ci (3)∑
(k,l)∈Ci

zi,(k,l) ≤ τ, ∀ i ∈ U (4)

In constraints (2), (3) and (4), Ci is defined as: Ci = {(k, l) ∈
C|(k, i) ∈ E ∧ (l, i) ∈ E}. That is, Ci represents the set of
conflicts within the set of vertices in V linked to vertex i ∈ U .

This problem can be solved by ILP solvers, such as Gurobi1.
Since obtaining an integer solution in CA-WBM is NP-hard,
in order to improve scalability, we use a rounding procedure
after solving the linear program (LP) relaxation. Our LP-based
algorithm for CA-WBM is as follows: 1) Solve the linear
program relaxation to obtain optimal solution X; 2) Sort the
first mn elements of X from largest to smallest. We round
each non-zero value to 1 provided doing so does not violate
the degree constraints or the conflict constraints. Otherwise,
we set it to 0. The result after this step is referred to as the
LP relaxation with rounding (LPR).

B. A Greedy Algorithm

To further improve scalability, an intuitive greedy algorithm
can be used to obtain approximate solution. This algorithm
(GREEDY) tries to match candidate edges with the maximum
weight if doing so does not violate any degree constraint
or conflict constraint. We showed performance guarantees of
GREEDY by connecting CA-WBM to k-extendible system [2],
specifically for k = 2.

Theorem 2. Let d = maxv∈V |{(v, v′)|(v, v′) ∈ C}|. Algo-
rithm GREEDY is a (2 + d)-approximation algorithm.

C. An Online Algorithm

We also study an online version of CA-WBM (online CA-
WBM), where vertices of a particular side (e.g., buyers) arrive

1http://www.gurobi.com/, accessed December 2016.

in an online fashion and the corresponding edges, as well
as their weights, and conflict edges are revealed when each
vertex arrives [3], [4]. Upon arrival of a vertex v, the system
is assumed to immediately generate matchings to v and cannot
change the matchings at a later time.

For approximately solving online CA-WBM, we propose an
online randomized algorithm Randomized CA-WBM, inspired
by the algorithm in [5]. Denoting the maximum weight of any
edge in G by wmax, the performance is given as:

Theorem 3. Randomized CA-WBM achieves a competitive
ratio of (α+1)edln(1+wmax)e, where α = max(d1−1, d2),
d1 = maxs∈U B(s) and d2 = maxb∈V |{(b, b′)|(b, b′) ∈ C}|.

We showed that Randomized CA-WBM is near optimal
by giving the following lower bound of performance on
randomized algorithms.

Theorem 4. For online CA-WBM, no randomized algorithm
can achieve a competitive ratio better than dlog2(wmax+1)e+1

2 .

IV. RESULTS AND EVALUATION

We implemented corresponding exact and approximate al-
gorithms, and evaluated their performance of optimality and
scalability on both synthetic and real-world datasets. The
results (plotted in Fig.2) show that the proposed approximate
algorithms can consistently achieve solutions at least 85% of
the optimal. The greedy algorithm shows linearly increasing
running time and is especially scalable to large-scale datasets.
In addition, Randomized CA-WBM achieves approximately 3.5
competitive ratio [6] on average, which indicates promising
performance in practice.
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