
Nucleus Decomposition in Probabilistic Graphs:
Hardness and Algorithms

Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and Kui Wu

Abstract—Finding dense components in graphs is of great
importance in analysing the structure of networks. Popular
frameworks for discovering dense subgraphs are core and truss
decompositions. Recently, Sarıyüce et al. introduced nucleus
decomposition, which uses r-cliques contained in s-cliques,
where s > r, as the basis for defining dense subgraphs. Nucleus
decomposition can reveal interesting subgraphs that can be
missed by core and truss decompositions.

In this paper, we present nucleus decomposition in probabilistic
graphs. The major questions we address are: How to define mean-
ingfully nucleus decomposition in probabilistic graphs? How hard
is computing nucleus decomposition in probabilistic graphs? Can
we devise efficient algorithms for exact or approximate nucleus
decomposition in large graphs?

We present three natural definitions of nucleus decomposition
in probabilistic graphs: local, global, and weakly-global. We show
that the local version is in PTIME, whereas global and weakly-
global are #P-hard and NP-hard, respectively. We present an
efficient and exact dynamic programming approach for the local
case. Further, we present statistical approximations that can scale
to bigger datasets without much loss of accuracy. For global and
weakly-global decompositions we complement our intractability
results by proposing efficient algorithms that give approximate
solutions based on search space pruning and Monte-Carlo
sampling. Extensive experiments show the scalability and
efficiency of our algorithms. Compared to probabilistic core
and truss decompositions, nucleus decomposition significantly
outperforms in terms of density and clustering metrics.

Index Terms—Probabilistic Graphs, Dense Subgraphs, Nucleus
Decomposition

I. INTRODUCTION

Probabilistic graphs are graphs where each edge has a prob-
ability of existence (cf. [1]–[8]). Many real-world graphs, such
as social, trust, and biological networks are associated with
intrinsic uncertainty. For instance, in social and trust networks,
an edge can be weighted by the probability of influence or
trust between two users that the edge connects [9]–[11]. In
biological networks of protein-protein interactions (cf. [12])
an edge can be assigned a probability value representing the
strength of prediction that a pair of proteins will interact in a
living organism [13]–[15].

Mining dense subgraphs and discovering hierarchical rela-
tions among them is a fundamental problem in graph analysis
tasks. For instance, it can be used for visualizing complex
networks [16], finding correlated genes and motifs in biolog-
ical networks [17], [18], detecting communities in social and
web graphs [19], [20], summarizing text [21], and revealing

F. Esfahani,V. Srinivasan, A. Thomo and K. Wu are with the Department
of Computer Science, University of Victoria, Victoria, B.C.
E-mail: esfahani,srinivas,thomo,wkui@uvic.ca.

new research subjects in citation networks [22]. Core and truss
decompositions are popular tools for finding dense subgraphs.
A k-core is a maximal subgraph in which each vertex has at
least k neighbors, and a k-truss is a maximal subgraph whose
edges are contained in at least k triangles. Core and truss
decompositions have been extensively studied for deterministic
as well as probabilistic graphs (cf. [1], [23]–[27]).

A recent notion of dense subgraphs is nucleus introduced
by Sarıyüce et al. [28], [29]. Nucleus decomposition is a
generalization of core and truss decompositions that uses
higher-order structures to detect dense regions. It can reveal
interesting subgraphs that can be missed by core and truss
decompositions. In a nutshell, a k-(r, s)-nucleus is a maximal
subgraph whose r-cliques are contained in at least k of s-
cliques, where s > r. For r = 1, s = 2 and r = 2, s = 3
we obtain the notions of k-core and k-truss, respectively. For
r = 3, s = 4, r-cliques are triangles, s-cliques are 4-cliques,
and k-(3, 4)-nucleus is strictly stronger than k-truss and k-
core. Sarıyüce et al. in [28], [29] observed that, in practice,
k-(3, 4)-nucleus is the most interesting in terms of the quality
of subgraphs produced for a large variety of graphs. As such,
in this paper we also focus on this decomposition. To the best
of our knowledge, nucleus decomposition over probabilistic
graphs has not been studied yet.

As pointed out by [28], [29], nucleus decomposition can
uncover a finer grained structure of dense groups not possible
using other dense subgraph mining methods; as such, nucleus
decomposition can be beneficial for a large variety of applica-
tions, e.g. community structure discovery [30], mining dense
regions in internet of things [31], financial fraud detection [32],
extracting brain connectome subgraph hierarchy [33], detec-
tion of complexes in biological networks [34], etc. All these
applications of nucleus decomposition extend naturally to the
probabilistic networks.

A. Contributions

We are the first to study nucleus decomposition in prob-
abilistic graphs. The major questions we address are: How
to define meaningfully nucleus decomposition in probabilistic
graphs? How hard is computing nucleus decomposition in
probabilistic graphs? Can we devise efficient algorithms for
exact or approximate nucleus decomposition in large graphs?
Definitions. We start by introducing three natural notions of
probabilistic nucleus decomposition (Section III). They are
based on the concept of possible worlds (PW’s), which are
instantiations of a probabilistic graph obtained by flipping
a biased coin for each edge independently, according to its

probability. We define local, global, and weakly-global notions
of nucleus as a maximal probabilistic subgraph H satisfying
different structural conditions for each case.

In the local case, we require a good number of PW’s of
H to satisfy a high level of density around each triangle (in
terms of 4-cliques containing it) in H. This is local in nature
because the triangles are considered independently of each
other. To contrast this, we introduce the global notion, where
we request the PW’s themselves be deterministic nuclei. This
way, not only do we achieve density around each triangle but
also ensure the same is achieved for all the triangles of H
simultaneously. Finally, we relax this strict requirement for
the weakly-global case by requiring that PW’s only contain a
deterministic nucleus that includes the triangles of H.

Global and Weakly-Global Cases. We show that comput-
ing global and weakly-global decompositions are intractable,
namely #P-hard and NP-hard, resp. We complement these
results with efficient algorithms for these two cases that
give approximate solutions based on search space pruning
combined with Monte-Carlo sampling (Section V).

Local Case. We show that local nucleus decomposition is in
PTIME (Section IV). The main challenge is to compute the
probability of each triangle to be contained in k 4-cliques. We
present a dynamic programming (DP) solution for this task,
which combined with a triangle peeling approach, solves the
problem of local nucleus decomposition efficiently. While this
is welcome result, we further propose statistical methods to
speed-up the computation. Namely, we provide a framework
where well-known distributions, such as Poisson, Normal, and
Binomial, can be employed to approximate the DP results.
This hybrid approach speeds-up the computation significantly
and is able to handle datasets, which DP alone cannot.

Experiments. We present extensive experiments which show
that our DP method for local nucleus decomposition is efficient
and can handle large datasets; when combined with our
statistical approximations, the process is significantly sped-
up and can handle much larger datasets. We demonstrate
the importance of nucleus decomposition by comparing it to
probabilistic core and truss decomposition using density and
clustering metrics. Comprehensive use cases show that our
notions of nucleus decomposition can detect subgraphs with
nice properties which are missed by other notions.

II. DETERMINISTIC NUCLEI

Let G = (V,E) be an undirected graph, where V is a set
of vertices, and E is a set of edges. For a vertex v ∈ V , let
N(v) be the set of v’s neighbors: N(v) = {u : (u, v) ∈ E}.
The (deterministic) degree of v in G, is equal to |N(v)|.
Nucleus decomposition in deterministic graphs. Nucleus
decomposition is a generalization of core and truss decompo-
sitions [28], [29]. Each nucleus is a subgraph which contains a
dense cluster of cliques. The formal definitions are as follows.

Let r, s with r < s be positive integers. We call cliques of
size r, r-cliques, and denote them by R,R′, etc. Analogously,
we call cliques of size s, s-cliques, and denote them by S, S′.

Definition 1: The s-support of an r-clique R in G, denoted
s-suppG(R), is the number of s-cliques in G that contain R.

Definition 2: Two r-cliques R and R′ in G, are s-connected,
if there exists a sequence R = R1, R2, · · · , Rk = R′ of r-
cliques in G such that for each i, there exists some s-clique
in G that contains Ri ∪Ri+1.

Now nucleus decomposition is as follows.
Definition 3: Let k be a positive integer. A k-(r, s)k-(r, s)k-(r, s)-nucleus

is a maximal subgraph H of G with the following properties.

1) H is a union of s-cliques: every edge in H is part of an
s-clique in H .

2) s-suppH(R) ≥ k for each r-clique R in H .
3) Each pair R,R′ of r-cliques in H is s-connected in H .
For simplicity, whenever clear from the context, we will

drop the use of prefix s from the definition of support and
connectedness.

When r = 1, s = 2, r-cliques are nodes, s-cliques are edges,
and k-(1, 2)-nucleus is the well-known notion of k-core. When
r = 2, s = 3, r-cliques are edges, s-cliques are triangles,
and k-(2, 3)-nucleus is the well-known notion of k-truss.
[28] shows that k-(3, 4)-nucleus, where we consider triangles
contained in 4-cliques, provides much more interesting
insights compared to k-core and k-truss in terms of density and
hierarchical structure. As such, in this paper, we also focus on
the r = 3, s = 4 case. For simplicity, we will drop using r and
s and assume them to be 3 and 4, respectively. In particular,
we will refer to k-(3, 4)-nucleus as simply k-nucleus.

III. PROBABILISTIC NUCLEI

Probabilistic Graphs. A probabilistic graph is a triple
G = (V,E, p), where V and E are as before and
p : E → (0, 1] is a function that maps each edge e ∈ E to its
existence probability pe. In the most common probabilistic
model (cf. [1], [3], [4]), the existence probability of each
edge is assumed to be independent of other edges.

In order to analyze probabilistic graphs, we use the concept
of possible worlds that are deterministic graph instances of
G in which only a subset of edges appears. Conceptually, the
possible worlds are obtained by flipping a biased coin for each
edge independently, according to its probability. We write G v
G to say that G is possible world for G. The probability of a
possible world G = (V,EG) v G is as follows: Pr[G | G] =∏
e∈EG

pe
∏
e∈E\EG

(1− pe).
We will use G, G′, H, H′ to denote probabilistic graphs.

Nucleus decomposition in probabilistic graphs. We now
define three variants of nucleus decomposition in probabilistic
graphs which are based on Definitions 4 and 5 we give below.
These variants relate to the nature of nucleus and we refer to
them as local (`), global (g), and weakly-global (w).

Definition 4: Let H be a probabilistic graph, 4 a triangle,
and µ a mode in set {`, g,w}. Then, XH,4,µ is a random
variable that takes integer values k with tail probability

Pr(XH,4,µ ≥ k) =
∑
HvH

Pr[H | H] · 1µ(H,4, k), (1)

where indicator variable 1µ(H,4, k) is defined depending on
mode µ as follows.

1`(H,4, k) = 1 if 4 is in H , and the support of 4 in H is
at least k.

1g(H,4, k) = 1 if 4 is in H , and H is a deterministic k-
nucleus.

1w(H,4, k) = 1 if 4 is in H , and there is a subgraph H ′

of H that contains 4 and is a deterministic k-nucleus.

It is clear that (1g(H,4, k) = 1) =⇒ (1w(H,4, k) = 1)
=⇒ (1`(H,4, k) = 1).

In the above definition, 1`(H,4, k) has a local quality
because a possible world G satisfies its condition if it
provides sufficient support to triangle 4 without considering
other triangles in H . On the other hand, 1g(H,4, k) and
1w(H,4, k) have a global quality because a possible world
H satisfies their conditions only when other triangles in H
are considered as well (creating a nucleus together).

In the following, as preconditions for cohesiveness, we will
assume cliqueness and connectedness for the nuclei subgraphs
we define. Specifically, we will only consider subgraphs H,
which, ignoring edge probabilities, are unions of 4-cliques,
and where each pair of triangles in H is connected in H.

Definition 5: Let G = (V,E, p) be a probabilistic graph.
Given threshold θ ∈ [0, 1], integer k ≥ 0, and µ ∈ {`, g,w},
a µ-(k, θ)-nucleus H is a maximal subgraph of G, such that
Pr(XH,4,µ ≥ k) ≥ θ for each triangle 4 in H.

Moreover, the µ-(k, θ)- nucleusness (or simply nucleusness
when µ, k, and θ are clear from context) of a triangle 4 is
the largest value of k such that 4 is contained in a µ-(k, θ)-
nucleus.

Intuitively for µ = `, from a probabilistic perspective, a
subgraph H of G can be regarded as a cohesive subgraph of G
if the support of every triangle in H is no less than k with high
probability (no less than a threshold θ). We call this version
local nucleus.

Local nucleus is a nice concept for probabilistic subgraph
cohesiveness, however, it has the following shortcoming.
While it ensures that every triangle4 in H has support at least
k in a good number of instantiations of H, it does not ensure
those instantiations are deterministic nuclei themselves or they
contain some nucleus which in turn contains 4. Obviously,
nucleusness is a desirable property to ask for in order to
achieve a higher degree of cohesiveness and this leads to the
other two versions of probabilistic nucleus of a global nature,
which we call global and weakly-global (obtained for µ = g
and µ = w).

In general, g-(k, θ)-nuclei are smaller and more cohesive
than w-(k, θ)-nuclei. We remark that, every g-(k, θ)-nucleus is
contained in a w-(k, θ)-nucleus which in turn is contained in
an `-(k, θ)-nucleus. In the full version [35], we give a detailed
example illustrating the three nucleus notions we introduce.
Nucleus Decomposition. The nucleus decomposition finds the
set of all the µ-(k, θ)-nuclei for different values of k. We
will study the problem in the three different modes we con-
sider. Specifically, we call nucleus-decomposition problems

for the different modes `-NuDecomp, g-NuDecomp, and w-
NuDecomp, respectively.

We show that `-NuDecomp can be computed in polynomial
time and furthermore we give several algorithms to achieve
efficiency for large graphs. In the full version [35], we show
that g-NuDecomp and w-NuDecomp are #P -hard and NP-
hard, respectively. Nevertheless, as we show later in this paper,
once we obtain the `-NuDecomp, we can use it as basis, com-
bined with sampling techniques, to effectively approximate g-
NuDecomp and w-NuDecomp.

IV. LOCAL NUCLEUS DECOMPOSITION

Here we propose efficient algorithms for solving `-
NuDecomp. Peeling is a general strategy that has been used
broadly in core and truss decompositions as well as in deter-
ministic nucleus decomposition [28]. However, generalizing
peeling to compute `-NuDecomp creates significant compu-
tational challenges. For example, a challenge is finding the
support score for each triangle. This is because of the combi-
natorial nature of finding the maximum value of k such that
Pr(XG,4,` ≥ k) ≥ θ for a triangle 4. In particular, triangle 4
in a probabilistic graph can be part of different numbers of 4
cliques with different probabilities. As a result, considering all
the subsets of 4-cliques which contain4 results in exponential
time complexity. In our algorithm, we identify two challenging
tasks, namely computing and updating nucleus scores.

A. Computing initial nucleus scores

Our process starts by computing a nucleus score κ4 for
each triangle 4, which initially is the maximum k for which
Pr(XG,4,` ≥ k) ≥ θ.

Given a probabilistic graph G = (V,E, p), let4 = (u, v, w)
be a triangle in G. For i = 1, . . . , c4, where c4 = |N(u) ∩
N(v) ∩ N(w)|, let zi ∈ N(u) ∩ N(v) ∩ N(w) and Si =
{u, v, w, zi}. In other words, for each i, Si is the set of vertices
of a 4-clique that contains4. For notational simplicity, we will
also denote by Si the 4-clique on {u, v, w, zi}.

Similarly, for each i, let Ei = {(u, zi), (v, zi), (w, zi)} be
the set of edges which connect vertex zi to vertices of 4.
Let Pr(Ei) = p(u, zi) · p(v, zi) · p(w, zi) be the existence
probability of Ei. We have:

Pr(XG,4,` ≥ k) = Pr(XG,4,` ≥ k− 1)− Pr(XG,4,` = k− 1)
(2)

Thus, we need to compute Pr(XG,4,` = k) for any k, and
find the maximum value of k for which the probability on the
left-hand side of Equation 2 is greater than or equal to θ. In
fact, Pr(XG,4,` = k) gives the probability that 4 is contained
in k number of 4-cliques in G. Under the condition that 4
exists, we denote X (S4, k, j) to be the probability that 4 is
contained in k of 4-cliques from {S1, · · · , Sj} ⊆ S4, where
S4 the set of 4-cliques containing 4 in G. In other words,
X (S4, k, j) is a conditional probability (conditioning on the
existence of 4).

We fix an arbitrary order on S4. The event that 4 is con-
tained in k of 4-cliques from {S1, · · · , Sj}, can be expressed
as the union of the following two sub-events: (1) the event that

the 4-clique Sj exists and4 is contained in (k−1) of 4-cliques
from {S1, · · · , Sj−1}, and (2) the event that the Sj does not
exist and 4 is part of k of 4-cliques from {S1, · · · , Sj−1}.
Thus, we have the following recursive formula:

X (S4, k, j) = Pr(Ej) · X (S4, k − 1, j − 1) (3)
+ (1− Pr(Ej)) · X (S4, k, j − 1),

where k ∈ [0, c4], and j ∈ [0, c4]. Initially, we set
X (S4, 0, 0) = 1, X (S4,−1, j) = 0 for any j, and
X (S4, k, j) = 0, if k > j. Setting j = c4 in Equation 3,
and multiplying X (S4, k, j) by Pr(4) (existence probability
of 4), gives the desired probability Pr(XG,4,` = k). Thus,
Pr(XG,4,` = k) = Pr(4) · X (S4, k, c4).

Given a triangle 4, let the neighbor triangles of 4 be those
triangles which form a 4-clique with 4. In the following we
show how we can update Pr(XG,4,` ≥ k) when a neighbor
triangle is processed in the decomposition.

B. Updating nucleus scores

Once the κ scores have been initialized as described above,
a process of peeling “removes” the triangle 4∗ of the lowest
κ-score, specifically marks it as processed, and updates the
neighboring triangles4 (those contained in the same 4-cliques
as the removed triangle) in terms of Pr(XG,4,` ≥ k). Because
of the removal of 4∗ the cliques containing it cease to exist,
thus Pr(XG,4,` ≥ k) of the neighbors 4 will change. We
recompute this probability using the formula in Equation 3,
where the sets of cliques S4 are updated to remove the cliques
containing 4∗.

Algorithm 1 `-NuDecomp

1: function `-NUCLEUSNESS(G, θ)
2: for all triangles 4 ∈ G do
3: κ(4)← arg maxk{X (S4, k, c4) ≥ θ}
4: processed[4]← false
5: for all unprocessed 4 ∈ G with minimum κ(4) do
6: ν(4)← κ(4)
7: Find set S4 of 4-cliques containing 4
8: for all S ∈ S4 with non-processed triangles do
9: for all 4′ ⊂ S, 4′ 6= 4, κ(4′) > κ(4) do

10: κ(4′)← arg maxk{X (S4′\S, k, c4′−1) ≥
θ}

11: processed[4]← true
12: return array ν(·)

Algorithm 1 computes the nucleusness of each triangle in
G. In line 3, for each triangle 4, κ(4) is initialized using
Equation 3. Array processed records whether a triangle has
been processed or not in the algorithm (line 4). At each
iteration (line 5-11), an unprocessed triangle4 with minimum
κ(4) is considered, and its nucleus score is set and stored in
array ν (line 6). Then, the κ(4′) values of all the neighboring
triangles 4′ are updated using Equation 3. The affected
triangles are those unprocessed triangles which are part of the

same 4-clique with triangle 4. The algorithm continues until
all the triangles are processed. At the end, each triangle obtains
its nucleus score and array ν with these scores is returned
(line 12). Once all the nucleus scores are obtained, we build
`-(k, θ)-nuclei for each value of k.

Observe that the κ values for each triangle at each iteration
decrease or stay the same. This implies that κ for each triangle
4 is a monotonic property function similar to properties
described in [36] for vertices. Now, we can use a reasoning
similar to the one in [36] to show that our algorithm, which
repeatedly removes a triangle with the smallest κ value, gives
the correct nucleusness for each triangle.

We show in the full version [35] that `-NuDecomp can be
computed in polynomial time and that its space complexity
is O(TG). This is the same as the space complexity of
deterministic nucleus decomposition.

While being able to compute `-NuDecomp in polyno-
mial time is good news, finding the maximum k such that
Pr(XG,4,l ≥ k) ≥ θ is quadratic in c4 which is not
efficient for large probabilistic graphs. As an alternative ap-
proach, we will now propose efficient methods to approximate
Pr(XG,4,l ≥ k) in O(c4) time such that the results are practi-
cally distinguishable from the exact values. The approximation
is based on limit theorems, such as Le Cam’s Poisson Limit
Theorem [37] and Lyapunov’s Central Limit Theorem [38].

C. Approximating κ scores

Framework. Given a triangle 4 = (u, v, w), let Si =
{u, v, w, zi} for i = 1, . . . , c4, as before. Also, let Ei =
{(u, zi), (v, zi), (w, zi)} be the edges that connect zi to the
vertices of 4.

With slight abuse of notation, we also define each Ei as an
indicator random variable which takes on 1, if all the edges
in Ei exist, and takes on 0, if at least one of the edges in
the set does not exist. We observe that the variables Ei are
mutually independent since the sets Ei do not share any edge.
Also, each Bernoulli variable Ei takes value 1 with probability
p(u, zi) · p(v, zi) · p(w, zi) and 0 with 1− (p(u, zi) · p(v, zi)) ·
p(w, zi)).

Let ζ =
∑c4
i=1 Ei. We can verify the following proposition.

Proposition 1: Pr(XG,4,` ≥ k) = Pr(4) · Pr[ζ ≥ k].
The expectation and variance of ζ are µ =

∑c4
i=1 Pr(Ei) and

σ2 =
∑c4
i=1

(
Pr(Ei) · (1−Pr(Ei)

)
, respectively. Now we show

that we can approximate the distribution of ζ using Le Cam’s
Theorem which makes use of Poisson Distribution [37].
Poisson Distribution [39]: A discrete random variable X is
said to have Poisson distribution with positive parameter λ, if
the probability mass function of X is given by:

Pr[X = k] =
λke−k

k!
, k = 0, 1, · · · , (4)

The expected value of a Poisson random variable is λ.
Setting λ to µ, we can approximate the distribution of ζ by

the Poisson distribution. Using Le Cam’s Theorem [37], the
error bound on the approximation is as follows:
c4∑
k=0

∣∣∣∣Pr(ζ = k)− λke−λ

k!

∣∣∣∣ < 2

c4∑
i=1

(
Pr(Ei)

)2
= 2(µ− σ2).

(5)
Equation 5 shows that the Poisson distribution is reliable if

Pr(Ei) and c4 are small.
In some applications,

∑c4
i=1

(
Pr(Ei)

)2
in Equation 5 can be

large, even if each Pr(Ei) is small. As a result, the difference
between the variance σ2 =

∑c4
i=1 Pr(Ei)−

∑c4
i=1 (Pr(Ei))2 of

ζ, and the variance λ =
∑c4
i=1 Pr(Ei) of the Poisson approx-

imation becomes large. To tackle the problem, we define a
Translated Poisson [40] random variable Y = bλ2c+Πλ−bλ2c,
where λ2 = λ − σ2 and Π is Poisson distribution with
parameter λ − bλ2c. In this formula λ =

∑c4
i=1 Pr(Ei) is the

expected value of distribution ζ. Thus, the difference between
the variance of Y and ζ can be written as:

Var(Y)− Var(ζ) = λ− bλ2c − σ2 = λ− σ2 − bλ2c,
= λ2 − (λ2 − {λ2}) = {λ2} < 1, (6)

where {λ2} = λ2 − bλ2c . As can be seen the difference
between the variances becomes small in this case.

We will now consider the scenario when c4 is large. In
this case, the variance of ζ will be large. In the following, we
show the use of Central Limit Theorem for this case.

Central Limit Theorem. An important theorem in statistics,
Lyapunov’s Central Limit Theorem (CLT) [38] states that,
given a set of random variables (not necessarily i.i.d.), their
properly scaled sum converges to a normal distribution under
certain conditions.

If c4 and hence σ2 are large, then by [38], Z =
1
σ

∑c4
i=1(Ei − µi) has standard normal distribution, where

µi = Pr(Ei). To approximate Pr[ζ ≥ k] = Pr[
∑c4
i=1 Ei ≥ k]

using CLT we can subtract
∑c4
i=1 µi from the sum of Ei’s and

divide by σ. As a result, we have:

Pr

[c4∑
i=1

Ei ≥ k

]
= Pr

[
1

σ

c4∑
i=1

(Ei − µi) ≥
1

σ

(
k −

c4∑
i=1

µi

)]
(7)

Since Z = 1
σ

∑c4
i=1(Ei − µi) has standard normal distri-

bution, we can find the maximum value of k such that the
right-hand side of Equation 7 is at equal or greater than
the threshold. Evaluation of each probability can be done in
constant time. Thus, finding the maximum value of k can be
done in O(c4) time.

Binomial Distribution. In many networks, edge probabilities
are close to each other and as a result, for each triangle
4, Pr(Ei)’s are also close to each other. In that case,
the distribution of support of the triangle 4 can be well
approximated by Binomial distribution. A random variable X
is said to have Binomial distribution with parameters p and
n, if the probability mass function of X is given by [41]:

Pr[X = k] =

(
n

k

)
pk(1− p)(n−k). (8)

In the above equation, p is success probability, and n is the
number of experiments. In statistics, the sum of non-identically
distributed and independent Bernoulli random variables can be
approximated by the Binomial distribution [42]. As discussed
in [42], the Binomial distribution provides a good approxi-
mation, if its variance is close to the variance of ζ. For the
approximation, we set n = c4 and n · p = µ.

Summary. We compute Pr(XG,4,` ≥ k) using the following
set of conditions based on four thresholds A,B,C,D.

1) If c4 is large (c4 ≥ A), the CLT approximation is used.
2) If (1) does not hold, then if c4 and Pr(Ei)’s are small

(c4 < B and Pr(Ei)′s < C), the Poisson approximation
is used.

3) If (1) and (2) do not hold, then if
∑c4
i=1

(
Pr(Ei)

)2
> 1,

the Translated Poisson approximation is used.
4) If (1), (2), and (3) do not hold, then if the ratio of the

variance of ζ to the variance of the Binomial distribution
with n = c4 and p = µ/n is close to 1 (e.g. not less
than a number D), the Binomial approximation is used.

5) Otherwise, Dynamic Programming is used.
For selecting the thresholds we refer to the literature in

statistics. In particular, CLT gives a good approximation if the
number (for our problem c4) of random variables in the sum is
at least 30 ([43], p. 547). In fact, we set our threshold A = 200
to much higher than what is suggested by the literature. Also,
regarding Poisson distribution, the existence probability (for
our problem Pr(Ei)’s) of the indicator random variables in the
sum should be less than 0.25 (see [37]). So, we set C = 0.25.
We set B to be half of A so that it is considerably far from A
(threshold on c4). We set D = 0.9 which is close enough to 1.

When using A = 200, B = 100, C = 0.25, D = 0.9,
we observed that the results of computing Pr(XG,4,` ≥ k)
using an approximation are practically indistinguishable
from the solution of dynamic programming. Furthermore,
as we observed in our experiments, falling back to dynamic
programming in point (5) happens only in a small amount of
cases, i.e. most triangles in real world networks satisfy one
of the earlier conditions (1)-(4). This means we can avoid
dynamic programming for most of the triangles.

V. GLOBAL AND WEAKLY-GLOBAL NUCLEUS

In this section, we propose algorithms for computing global
and weakly-global nucleus decomposition. Given a graph H,
computing Pr(XH,4,g ≥ k) and Pr(XH,4,w ≥ k) requires
finding all the possible worlds ofH, which are in total 2|E(H)|,
where E(H) is the number of edges in H. This is prohibitive.
Thus, we use Monte Carlo sampling to estimate the probabil-
ities, denoted by P̂r(XH,4,g ≥ k) and P̂r(XH,4,w ≥ k). The
following lemma states a special version of the Hoeffding’s
inequality [44] that provides the minimum number of samples
required to obtain an unbiased estimate.

Lemma 1: Let Y1, · · · , Yn be independent random variables
bounded in the interval [0, 1]. Also, let Ȳ = 1

n

∑n
i=1 Yi. Then,

we have that

Pr
[
|Ȳ − E[Ȳ]| ≥ ε

]
≤ 2e−2nε

2

. (9)

In other words, for any ε, δ ∈ (0, 1], Pr
[
|Ȳ − E[Ȳ]| ≥ ε

]
≤ δ,

if n ≥
⌈

1
2ε2 ln

(
2
δ

)⌉
.

Based on the above, using Monte Carlo sampling, we can
obtain an estimate of Pr(XH,4,g ≥ k), and Pr(XH,4,w ≥ k)
for any subgraph H by sampling n possible worlds of H,
{H1, · · · , Hn}, where n =

⌈
1

2ε2 ln
(
2
δ

)⌉
, ε is an error bound,

and δ is a probability guarantee. In particular, we have:

P̂r(XH,4,µ ≥ k) =

n∑
i=1

1µ(Hi,4, k)/n, (10)

where µ = g or w, and the indicator function 1µ(Hi,4, k) is
given in Definition 4. Based on Lemma 1, what we obtain is
an unbiased estimate. Thus, setting µ = g,w, we have

Pr
[∣∣∣Pr (XH,4,µ ≥ k)− P̂r (XH,4,µ ≥ k)

∣∣∣ ≥ ε] ≤ δ. (11)

g-(k, θ)(k, θ)(k, θ)-nucleus. In what follows, we propose an algorithm
for finding all g-(k, θ)-nuclei for different values of k =
1, . . . , kmax, where kmax is the largest value for which the
local nucleus is non-empty. This is because we extract global
nuclei from local ones since every g-(k, θ)-nucleus is part of
an `-(k, θ)-nucleus. The main steps of our proposed algorithm
are given in Algorithm 2.

Given a positive integer k, threshold θ, error-bound ε, and
confidence level δ, the algorithm starts by creating subgraph
Ck as the union of all `-(k, θ)-nuclei (line 4). Then, the
algorithm incrementally builds a candidate g-(k, θ)-nucleus
H as follows. For each triangle 4 in Ck, it adds to H all
the 4-cliques in Ck containing 4 (line 6). By this process
other triangles 4′ could potentially be added to H such that
the number of 4-cliques containing 4′ is less than k. In
order to remedy this, the algorithm adds all the 4-cliques of
Ck containing 4′ to H. This process continues until all the
triangles in H are contained in at least k 4-cliques (lines 7-8).
Once the candidate graph H is obtained, n samples of possible
worlds of H are obtained (line 10). Then, the algorithm checks
if the condition P̂r(XH,4,g ≥ k) ≥ θ is satisfied for each
triangle4 inH (lines 11-13). At the end, the algorithm returns
all g-(k, θ)-nuclei H (line 15-17), for all the possible values
of k.
w-(k, θ)-nucleus. In what follows, we propose an algorithm
for finding all w-(k, θ)-nuclei, for different values of k =
1, . . . , kmax, where kmax is as before. We begin by noting
that each w-(k, θ)-nucleus is an `-(k, θ)-nucleus. The steps of
our proposed algorithm are given in Algorithm 3.

We use array global score to store the number of deterministic
k-nuclei that each triangle belongs to. The array is initialized
to zero for all the triangles in the candidate graph (line 5). For
each candidate graph which is a `-(k, θ)-nucleus, we obtain
the required number n of possible worlds for the given ε and
δ. Then, we perform deterministic nucleus decomposition on
each world (lines 6-8). If triangle 4 is in a deterministic k-
nucleus of that possible world, the corresponding index of 4
in array global score is incremented by one (lines 9-10). In
line 12, the approximate value P̂r(XH,4,w ≥ k) is obtained

Algorithm 2 g-NuDecomp

1: function g NUCLEUS(G, θ, ε, δ)
2: solution ← {}
3: for all k ← 1 to kmax do
4: Ck ← the union of `-(k, θ)-nuclei by Algorithm 1
5: for all 4 ∈ Ck do
6: H ← all 4-cliques in Ck containing 4
7: while ∃4′ ∈ H with less than k 4-cliques ∈ H

containing it do
8: add all 4-cliques of Ck containing 4′ to H

9: condition hold ← true
10: sample← {H1, · · · , Hn}
11: for all 4 ∈ H do P̂r(XH,4,g ≥ k)← Eq.(10)

12: if P̂r(XH,4,g ≥ k) < θ then
13: condition hold ← false
14: break
15: if condition hold == true then
16: solution← solution ∪H
17: return solution

Algorithm 3 w-NuDecomp

1: function w NUCLEUS(G, θ, ε, δ)
2: solution ← {}
3: for all k ← 1 to kmax do
4: for all `-(k, θ) H do
5: global score[4] ← 0 for each 4 ∈ H
6: sample← {H1, · · · , Hn}
7: for all H ∈ sample do
8: H ′ ← k-nucleus of H
9: for all triangle 4 ∈ H ′ do

10: global score[4] ++

11: for all 4 ∈ H do
12: P̂r(XH,4,w ≥ k)← global score[4]/n

13: solution ← solution ∪ connected union of 4’s
with P̂r(XH,4,w ≥ k) ≥ θ

14: return solution

for each triangle. Then, we start creating the connected compo-
nents H using triangles with P̂r(XH,4,w ≥ k) ≥ θ (line 13).
At the end, the algorithm returns all w-(k, θ)-nuclei, for all
the possible values of k.
Remark. Both of these algorithms run in polynomial time.
They compute the correct answer provided the estimation
of the threshold probabilities using Monte-Carlo sampling is
close to the true value. If not, they give approximate solutions.
Space Complexity. For global and weakly global
decompositions the space needed is O(TG + m · n),
where m is the number of edges in H and n is the number
of possible worlds for H we sample.

From a theoretical point of view, n, the number of samples,
is constant for fixed values of ε and δ, and since m, number
of edges, is absorbed by TG , we can say that the above

0.1 0.2 0.3 0.4 0.5

0.33
0.36
0.39
0.42
0.45
0.48

Ti
m

e
(s

)
krogan

0.1 0.2 0.3 0.4 0.5

10

15

20

25

dblp

0.1 0.2 0.3 0.4 0.5

9

12

15

flickr

0.1 0.2 0.3 0.4 0.5

102.4

102.6

102.8

pokec

0.1 0.2 0.3 0.4 0.5

102.9

103

biomine

0.1
0.2

0.3
0.4

0.5

102

103

104

ljournal

DP
AP

Fig. 1: Run times of DP and AP for varying θ (x axis). Both perform well on medium datasets. For bigger datasets,
biomine and ljournal, the difference is more pronounced. For ljournal, for θ = 0.1, it is only AP that can complete.

Graph |V | |E| dmax pavg |4|
krogan 2,708 7,123 141 0.68 6,968
dblp 684,911 2,284,991 611 0.26 4,582,169
flickr 24,125 300,836 546 0.13 8,857,038
pokec 1,632,803 22,301,964 14,854 0.50 32,557,458
biomine 1,008,201 6,722,503 139,624 0.27 93,716,868
ljournal-2008 5,363,260 49,514,271 19,432 0.50 411,155,444

TABLE I: Dataset Statistics

complexity is again O(TG), i.e. same as the space complexity
for deterministic nucleus.

From a practical point of view, for each sample graph
(possible world) we use a bit array to record whether an edge
exists in the sample or not. For practical values of ε and δ,
m ·n is about 200 ·m bits, which is 200/(32 + 32) ∼ 3 times
more than the space needed to store the edges as adjacency
lists (assuming an integer node id is 32 bits, and the graph is
undirected, i.e. each edge is represented as two directed edges).
In other words, to store the n possible worlds we only need
about three times more space than what is needed to store G.

VI. EXPERIMENTS

We present our extensive experimental results to test the
efficiency, effectiveness, and accuracy of our proposed algo-
rithms. Our implementations are in Java and the experiments
are conducted on a commodity machine with Intel i7, 2.2Ghz
CPU, and 12Gb RAM, running Ubuntu 18.04.

Datasets and Experimental Framework. Statistics for
our datasets are in Table I. We order the datasets based
on the number of triangles they contain. Datasets with real
probabilities are flickr, dblp, and biomine from [1], [45] and
krogan from [46].

We also consider datasets ljournal-2008 and pokec.
ljournal-2008 is obtained from Laboratory of Web
Algorithmics (http://law.di.unimi.it/datasets.php) and
pokec is from the Stanford Network Analysis Project
(http://snap.stanford.edu). For these networks, we generated
edge probabilities uniformly distributed in (0, 1].

A. Efficiency Evaluation

In this section, we report the running times of our proposed
algorithms for local nucleus decomposition: one that uses
dynamic programming and the other that uses statistical
approximations for computing and updating the support of
triangles. We denote them by DP and AP, respectively. Next,

we report the running times of our (fully) global and weakly-
global nucleus decomposition algorithms, which we denote
by FG and WG. We set error-bound ε = 0.1 and confidence
level δ = 0.1. Based on these values and Lemma 1, we set the
number of samples to n = 200 >

⌈
1

2ε2 ln
(
2
δ

)⌉
(i.e. greater

than what is required by Hoeffding’s inequality). As such,
our results for global and weakly-global notions of nuclueus
are approximate but come with strong quality guarantees.
Running time results for DP and AP are shown in Figure 1 for
different values of θ. Y-axis for the last 3 plots is in log-scale.

Both algorithms perform well on medium-size datasets,
dblp and flickr; computing the nucleus decomposition of these
two graphs takes less than 1 sec. For a larger-size dataset,
pokec, both algorithms complete in less than 10 min. Note
that AP clearly outperforms DP on large-size datasets such as
biomine and ljournal-2008 for small values of θ. For instance,
for ljournal-2008 with θ = 0.1, it is only AP that can run to
completion, whereas DP could not complete after one day.
Nevertheless, both DP and AP are able to run in reasonable
time for all the other cases, which is good considering that
nucleus decomposition is a harder problem than core and
truss decomposition.

In general, the running times of both DP and AP decrease
significantly as θ increases. This is because the number of
triangles which, (a) exist with probability greater than θ and
(b) have a support at least k again with probability greater
than θ, decreases. As can be seen, AP is faster than DP on all
datasets for different values of θ. In addition to the ljournal-
2008 case for which only AP could complete, when θ = 0.1,
the gain of AP over DP is about 24% and 30% for biomine
and pokec, respectively.

For speed-up evaluation of AP vs. DP we added two more
datasets. The statistics of these datasets are given in Table II.
The first dataset is enwiki-2013. What is special about this
dataset is that its maximum initial nucleus score is 2, 813,
which is much larger than in other graphs we consider. We
set θ = 0.1; when θ is small, more triangles can have enough
probability to be part of a much larger number of 4-cliques.
This can cause too much work for DP to compute nucleus
scores and update these values when the triangles are being
processed in the peeling step. For this dataset, DP was not able
to complete the computation within one week. In contrast, AP
completed in about 80K sec (less than a day).

The other additional dataset we considered is itwiki-2013.

http://law.di.unimi.it/datasets.php
http://snap.stanford.edu

Graph |V | |E| dmax pavg |4|
enwiki-2013 4,206,785 91,939,728 432,260 0.5 304,083,160
itwiki-2013 1,016,867 23,429,644 91,517 0.5 89,901,299

TABLE II: Additional datasets. |V ||V ||V |, |E||E||E|, dmaxdmaxdmax, pavgpavgpavg , 444,
are number of vertices, edges, max degree, avg edge prob-
ability, and number of triangles in the graph, respectively.

The maximum initial nucleus score in this dataset is 1, 866.
In this graph, using the same θ = 0.1, DP needs about 40h,
whereas AP 16h, i.e. AP is 2.5 times faster than DP. Moreover,
we ran DP and AP on biomine with θ = 0.01. DP took about
37.5h, whereas AP 2.5h, thus being 15 times faster than DP.

krogan flickr dblp biomine pokec ljournal

100
101
102
103
104
105

R
un

tim
e

(s
)i

n
lo

g-
sc

al
e L

FG
WG

Fig. 2: Run time of L, FG, and WG. FG and WG
include the time for L. WG is faster because it performs
deterministic decomposition only on a fixed number of
sample graphs while FG does so each time a candidate
graph is discovered.

Model
θ = 0.1 θ = 0.01

Vertices edges Time Vertices Edges Time

Local 75 3455 103 93 3785 105

Weakly-Global 15 157 4 · 103 55 2332 2 · 105

Global 4 6 21 · 103 5 10 6 · 105

TABLE III: Average number of vertices and edges, and
running time for local, weakly-global, and global nucleus
subgraphs with θ equal to 0.1 and 0.01.

We report the running time of FG and WG in Figure 2
along with the running time of local (denoted by L in the
figure) nucleus decomposition for θ = 0.1 (which as explained
above is more difficult than θ = 0.2, . . . , 0.5). Note that the
global and weakly-global nuclei are obtained from the local
ones using Algorithms 2 and 3. Therefore, their running time
includes the time required for obtaining local nuclei. For local
decomposition, we use DP to obtain the probabilistic support
of the triangles, except for ljournal-2008 for which we use
AP since DP does not scale for this threshold. Also, we report
running times averaged across 5 runs, since the solutions of
FG and WG depend on the random sampling steps.

In general WG is faster than FG. This is because WG
performs deterministic nucleus decomposition only on a fixed
number of sample graphs while FG does the decomposition
every time that a candidate graph is detected. We also note
that as the graph becomes larger, WG will have to perform
nucleus decomposition on larger sample graphs leading to
increased running time. For FG, usually candidate graphs are

Dataset
Avg Error % of 4 with Error

θ = 0.2/θ = 0.4

krogan 0.0524/0.0209 5.24/2.08
dblp 0.0069/0.0041 0.69/ 0.41
flickr 0.0031/0.0 0.31/0.0
pokec 0.0014/4.15e-5 0.14/0.004
biomine 0.0/0.0 0.0/0.0
ljournal-2008 0.0179/0.0070 1.79/0.69

TABLE IV: Avg difference (error) of AP scores from true DP
scores and pct’s of triangles with error. Errors are very small.

small even for large graphs. So, when the graph becomes
lager, the runtime of WG increases more compared to FG.

Moreover, we compare the running time of nucleus de-
composition algorithms, local, weakly-global, and global, on
biomine with θ = 0.1 and θ = 0.01 in Table III (columns
4,7). For the local decomposition (L) we used DP because we
are interested in the relative difference in running time for the
different nucleus notions and L is the initial step for computing
WG and FG.

When θ decreases, running times increase since more tri-
angles can have enough probability to be contained in a local
nucleus subgraph. In terms of the size of the results, Table III
shows the average number of vertices and edges for the L,
WG, and FG subgraphs aggregated over all k ∈ [1, kmax].
In general, the average values increase as we decrease the
threshold. This is due to the fact that by decreasing θ more
triangles can have enough probability to be contained in 4-
cliques.

B. Accuracy Evaluation

To evaluate the accuracy of the AP algorithm, we compare
the final nucleus scores obtained by DP and AP algorithms.
We report the results in Table IV. We show the results for θ
equal to 0.2 and 0.4, since for the remaining values the error
results do not differ significantly. The second column shows
the average difference (error) from true value over the total
number of triangles. The last column shows the percentage of
triangles whose value is different from their exact value.

As can be seen, the average error is quite small for all the
datasets we consider. Particularly, for flickr with θ = 0.4 and
biomine with θ = 0.2 and θ = 0.4 we have that AP computes
nucleus decomposition with zero error. Also, the percentage
of triangles with an error score is very small, namely less than
1% for all the datasets, except krogan and ljournal-2008. For
these two, the percentages are still small, 5.24% and 1.79%,
respectively. These results show that the output of AP is very
close to that of exact computation by DP, and thus, AP is a
reliable approximation methodology.

C. Quality Evaluation of Nucleus Subgraphs

Here we compare the cohesiveness of `-(k, θ)-nucleus with
the cohesiveness of local (k, γ)-truss [24] and (k, η)-core [1].
We use two metrics. The first metric is the probabilistic
density (PD) of a graph G, which we denote by PD(G) and
is defined as follows [24]: PD(G) =

∑
e∈E p(e)

1
2 |V |·(|V |−1)

. In words,

Graph θ |VN | / |VT | / |VC | |EN | / |ET | / |EC | kNmax/kTmax/kCmax PDN/PDT /PDC PCCN/PCCT /PCCC TimeN/TimeT /TimeC

dblp 0.1 19/34/115 171/561/6555 9/14/26 0.800/0.611/0.264 0.790/0.620/0.317 25/100/15.86
dblp 0.3 14/26/138 108/366/6693 7/11/23 0.9917/0.785/0.277 0.9918/0.789/0.384 11/30/16.99

pokec 0.1 13/72/288 121/1335/10592 3/8/27 0.678/0.341/0.129 0.636/0.393/0.170 672/1162/4401
pokec 0.3 6/71/278 21/1031/10142 2/6/25 0.815/0.321/0.132 0.793/0.406/0.172 298/980/4349

biomine 0.1 103/102/430 5231/5127/92200 18/33/79 0.540/0.538/0.211 0.540/0.538/0.217 1098/7642/5792
biomine 0.3 7/102/431 23/5125/92625 2/28/73 0.714/0.538/0.212 0.701/0.539/0.218 939/1563/5685

TABLE V: Cohesiveness statistics of lll-(k, θ)(k, θ)(k, θ)-nucleus N, (k, θ)(k, θ)(k, θ)-truss, T, and (k, θ)(k, θ)(k, θ)-core, C on dblp, pokec, and biomine.
The number of vertices (|VN | / |VT | / |VC ||VN | / |VT | / |VC ||VN | / |VT | / |VC |), the number of edges (|EN | / |ET | / |EC ||EN | / |ET | / |EC ||EN | / |ET | / |EC |), maximum nucleus/truss/core
score (kNmax/kTmax/kCmaxkNmax/kTmax/kCmaxkNmax/kTmax/kCmax), the probabilistic density (PDN/N/N/PDT /T /T /PDC/C/C/), and the probabilistic clustering coefficient
(PCCN/N/N/PCCT /T /T /PCCC/C/C/), respectively.

n AV(PD) AV(PCC) AV(Edge) AV(Vertex) ε δ

150 .905 .726 .903 .770 12.744 55.631 5.336 11.971 0.1 0.1
300 .906 .733 .903 .773 12.725 52.960 5.334 11.543 0.07 0.05
500 .906 .729 .903 .767 13.005 53.883 5.383 11.703 0.05 0.06

1000 .905 .725 .902 .766 12.823 53.772 5.356 11.745 0.05 0.01
2000 .906 .727 .903 .768 12.782 54.264 5.350 11.792 0.03 0.05

AV .906 .728 .903 .769 12.816 54.102 5.352 11.751
SD .0004 .003 .0003 .002 .112 .978 .020 .155

TABLE VI: Effect of sample size (n), ε, and δ on different
average metrics, average PD, average PCC, average number of
edges, and average number of vertices for global and weakly-
global nuclei. The first and second columns for each metric are for
global and weakly-global nuclei, respectively. The results shown
here are on krogan with θ = 0.1. Observe that standard deviation
(SD) is not more than 1.8% of the average for all columns. For
some of the columns SD is much smaller, e.g. for average PD
(first column) it is only 0.05%.

1 5 10 15

0.7

0.75

0.8

0.85

0.9

0.95

1

k

Av
er

ag
e

PD
/P

C
C

PD
PCC

1 5 10 15
100

101

102

103

k

Av
er

ag
e

#o
fN

uc
le

i/E
dg

es # of Edges
of Nuclei

Fig. 3: Average PD and PPC, average number of edges,
average number of `-(k, θ)(k, θ)(k, θ)-nuclei for flickr with θ = 0.3θ = 0.3θ = 0.3.

PD of a probabilistic graph is the ratio of the sum of edge
probabilities to the possible number of edges in a graph.

The second metric is probabilistic clustering coefficient
(PCC). It measures the level of tendency of the nodes to cluster
together. Given a probabilistic graph G, its PCC is defined as
follows [24], [47]: PCC(G) =

3
∑

4uvw∈G p(u,v)·p(v,w)·p(u,w)∑
(u,v),(u,w),v 6=w p(u,v)·p(u,w) .

For probabilistic nucleus, probabilistic truss and probabilis-
tic core subgraphs, we use the same threshold θ = γ = η,
set to 0.1 and 0.3. (γ is used as threshold in the truss case
[24], and η is used as threshold in the core case [1]). Table V
reports results on dblp, pokec, and biomine. Results for the
other datasets are similar. For a given threshold, we report
the statistics of local (kNmax, θ)-nucleus, (kTmax, γ)-truss,
and (kCmax, η)-core, where kNmax, kTmax, and kCmax are
maximum nucleus, truss and core scores, respectively. Also,
for kNmax, kTmax, and kCmax, we might obtain more than

one connected component; we report the average statistics over
such components. We denote by VN , VT , VC , the sets of nodes,
by EN , ET , EC , the sets of edges, by PDN , PDT , PDC , the
PD’s and by PCCN , PCCT , PCCC , the PCC’s of nucleus,
truss, and core components, respectively. The last column
shows the running time for computing each decomposition. We
observe that sometimes nucleus decomposition is faster than
truss decomposition. This is because in nucleus decomposition
there could be fewer triangles that survive the specified thresh-
old in terms of support than edges in truss decomposition.

As can be seen in the table, (kNmax, θ)-nucleus produces
high quality results in terms of PD and PCC. We achieve a
significantly higher PD and PCC for nucleus compared to truss
and core. For instance, for dblp the PD for nucleus is 0.8
versus 0.611 and 0.264 for truss and core, which translates
for nucleus being about 30% and 200% more dense than truss
and core. Similar conclusions can be drawn for PCC as well.

Moreover, Figure 3 reports the average PD, average
PCC, average edges in each `-(k, θ)-nucleus, and number
of connected components (`-(k, θ)-nuclei) for an example
dataset flickr with fixed θ = 0.3 and varying k. We see that
even for small values of k, PD and PCC are considerably high
(above 70-80%). In general, PD and PCC become larger as
k increases, since denser nuclei will be detected by removing
triangles having low support probability to be part of a
4-clique. This causes the final subgraphs to have edges with
high probability only. Furthermore, since `-(k, θ)-nucleus
implies connectivity, the number of connected components
increases as k decreases. It results in an increase in the
average number of edges in each `-(k, θ)-nucleus.

Finally, we compare the PD and PCC values of g-(k, θ)-
nucleus, w-(k, θ)-nucleus over 5 runs of these algorithms, and
`-(k, θ)-nucleus, for krogan, flickr, and dblp datasets using
θ = 0.001, and averaging over all the possible values of k.
The results are shown in Figure 4. We see that g-(k, θ)-nucleus
achieves higher cohesiveness as expected. In addition, w-
(k, θ)-nucleus exhibits quite good PD and PCC values higher
than those for `-(k, θ)-nucleus.
Effect of ε and δ. We consider krogan dataset with θ = 0.1.
The choice of ε and δ influence the number n of possible
worlds we sample. For ε = 0.1 and δ = 0.1 we obtain n =
150. In order to see the fidelity of our results, we experiment
by increasing n to higher values, namely 300, 500, 1000, 2000.

krogan dblpflickr

0.4

0.6

0.8

1
PD

g-(k, θ)-nucleus

w-(k, θ)-nucleus

`-(k, θ)-nucleus

krogan flickr dblp

0.4

0.6

0.8

1

PC
C

g-(k, θ)-nucleus

w-(k, θ)-nucleus

`-(k, θ)-nucleus

Fig. 4: PD and PCC for g-(k, θ)(k, θ)(k, θ), w-(k, θ)(k, θ)(k, θ), and `-(k, θ)(k, θ)(k, θ)
nuclei on krogan, flickr, and dblp.

As the results in Table VI show, the following metrics about
global and weakly-global nuclei: average PD, average PCC,
average number of vertices, and average number of edges
change very little. Specifically, the first two metrics are dis-
persed by not more than 0.4% around their mean over the
different values of n, and the last two metrics are dispersed
by not more than 1.8%. There can be many ε and δ values
corresponding to a given sample size; for illustration, for
n = 150, we can have ε = 0.1, δ = 0.1, whereas for
n = 2000, we can have ε = 0.03, δ = 0.05, i.e. we see that
even though in the latter case the ε and δ decrease by a factor
of 3 and 2, respectively, still the nuclei results in terms of the
aforementioned metrics are almost the same. This validates
the choice of ε and δ to 0.1 since lower values do not offer
significant improvement in the quality of results.
D. Case Studies

DBLP. To show the usefulness of nucleus decomposition in
probabilistic graphs, we apply our decomposition algorithms
to solve the task-driven team formation problem for a DBLP
network. In task-driven team formation [1], we are given a
probabilistic graph GT = (V,E, pT), which is particularly
obtained for task T . Vertices in GT are individuals and edge
probabilities are obtained with respect to task T as described
in [1]. Given a query 〈Q,T 〉, where Q ⊂ V , and T is a set of
keywords describing a task, the goal is to find a set of vertices
that contain Q and make a good team to perform the task de-
scribed by the keywords in T . By a good team we mean a good
affinity among the team members in terms of collaboration
for the given task. To solve task-driven team formation using
nucleus decomposition, we extend the definition of [1] to em-
ploy probabilistic nucleus: Given a probabilistic graph GT =
(V,E, pT) with respect to a task T , a query set Q of vertices,
and a threshold θ, apply nucleus decomposition on GT and
find a (k, θ)-nucleus (local/weakly-global/global) which (1)
contains the vertices in Q, and (2) has the highest value of k
for the given θ, and return the obtained subgraph as a solution.

In our experiment, we use a DBLP collaboration network
from [1], where vertices are authors, and edges represent
collaboration on at least one paper. The dataset has 1, 089, 442
vertices and 4, 144, 697 edges. For each edge, we take the
bag of words of the title of all papers coauthored by the two
authors connected by the edge and apply Latent Dirichlet
Allocation (LDA) [1], [48] to infer its topics and calculate

the edge probability. Given a task T with keywords, and the
input collaboration network, we obtain a probabilistic graph
GT , in which p(u, v) represents the collaboration level in the
papers co-authored by u and v related to task T ([1], [24]).

The first sample query we consider is 〈{“algorithm”},
{“Erik D. Demaine”, “J. Ian Munro”, “John Iacono”}〉. Fig-
ure 5a shows the subgraph obtained by `-(k, θ)-nucleus and w-
(k, θ)-nucleus decompositions, where k = 2 and θ = 10−11.
The threshold is the same as in the case studies of previous
works (on truss and core). As discussed in [1], the edge
probabilities in the dataset are very small, which requires
setting threshold θ to a small value. More systematically,
picking an appropriate value for the threshold can be done
using binary search over (0, b], where b ≤ 1. The subgraph
contains all the three authors in the query. It has 10 vertices
and 33 edges. As can be seen, the obtained subgraph is
quite good for task-driven team formation. All the authors
in the subgraph are well-known and have strong collaboration
affinity to work on a research paper related to algorithms.
A g-(k, θ)-nucleus (same k and θ) that contains the query
vertices is shown with thick blue edges in the same figure. As
expected, this subgraph is more cohesive and it happens to be
a clique of size 6. Its density and clustering coefficient (PCC)
is 0.138 and 0.140 as opposed to 0.099 and 0.110 for the local
and weakly-global subgraphs. From a research perspective the
collaborations of the academicians in the blue subgraph are
more focused on designing efficient data-structures.

We run the global truss algorithm on the dataset. As
expected the global truss subgraph which contains the query
authors is bigger than global nucelus (9 vertices and 18 edges)
and its PD and PCC are lower (0.067 and 0.086).

We also run global core decomposition as in [26] for the
same value k and θ. It should be noted that the global core
definition is different from global truss and global nucleus.
Also, it does not assume connectivity between nodes. How-
ever, for fairness of comparison, we considered a connected
component of this subgraph which contains the query authors.
The obtained subgraph contains 569 vertices and 5294 edges,
with PD 0.003 and PCC 0.061.

Regarding local truss, we obtained a subgraph of 170
vertices and 1033 edges with PD 0.008 and PCC 0.0872. On
the other-hand, local core results in PD and PCC being equal
to 0.0084 and 0.0659 with 226 vertices and 2631 edges. As
can be seen, our nucleus decomposition results in much better
subgraphs in terms of subgraph size and cohesiveness.

The second query we use shows the usefulness of the
weakly-global notion. It has keyword {“algorithm”} and ver-
tices {“Xindong Wu”, “Bing Liu 0001”, “Vipin Kumar”}.
Figure 5b shows the w-(k, θ) nucleus for this query, where
the threshold is the same as before, and k = 1. The local
nucleus containing the query authors had more than 100 nodes
while the global nucleus containing these three query authors
was empty. This example shows that the weakly global notion
can discover interesting teams when the other two notions
produce teams that are too big or too small (or empty). In
particular, all the authors in the resulting subgraph are very

Notion Max k Nodes Density
l-core 88 2408 0.04
g-core 31 10026 0.01
l-truss 4 5787 0.01
l-nucleus 1 95 0.06
g-truss 2 10 0.44
w-nucleus 1 8 0.51
g-nucleus 1 4 0.56

TABLE VII: Comparison of different dense subgraph
notions with respect to (1) max k for which the subgraph
contains the proteins of interest, (2) number of nodes in
the subgraph, and (3) density of the subgraph. θ = 0.001.

(a) (b)
Fig. 5: a) A case study of task-driven team formation with key-
word {“algorithm”}, and query vertices {“Erik D. Demaine”,
“J. Ian Munro”, “John Iacono”}, k = 2, and θ = 10−11. The
depicted graph with thick blue edges corresponds to a g-(k, θ) nu-
cleus. The whole graph (of 10 vertices) is a `-(k, θ) nucleus which
coincides with a w-(k, θ) nucleus in this example. b) A weakly-
global w-(k, θ) nucleus for task-driven team formation with query
nodes {“Xindong Wu”, “Bing Liu 0001”, “Vipin Kumar”}, and
keyword { “algorithm”}. k = 1, and θ = 10−11.

P12931 P04626

P62993 P46109

P42684P21860

P27986 P00533

(a)

Fig. 6: w-(k, θ) nucleus (green and pink nodes) and a g-
(k, θ)-nucleus (pink nodes) that contain the proteins of
interest P04626, P12931, P42684. k = 1 and θ = 0.001.

well-know and have similar research area which can form a
good team related to keyword algorithm (query keyword).
On the other-hand, global truss gave empty result. In addition,
both local truss and core decomposition, did not lead to a
desired team as the number of vertices in such graphs was
very large, 16, 663 and 31, 300, respectively. In fact, it is not
realistic for this amount of authors to collaborate on a paper
or project related to algorithms. The PD and PCC for weakly-
global subgraph is 0.036 and 0.0388, as opposed to density
0.00005 and PCC 0.0280 in local truss and PD 0.000001 and
PCC 0.0236 in local core. A similar argument holds for global
core with 2, 997 vertices, 35, 354 edges, PD 0.0004, and PCC

0.0294. For local nucleus decomposition, cohesiveness results
show PD 0.03 and PCC 0.0331 with a number of vertices of
100 which is much smaller than local core and local truss.
Human Biomine. We use the human biomine dataset [49],
which has 861,812 nodes and 8,666,287 edges. This dataset
is different from the biomine dataset we used for our effi-
ciency evaluation. We consider how our notions perform in
detecting proteins/genes that interact with the SARS-CoV-
2 coronavirus. Bouhaddou et al. [50] found that during the
SARS-CoV-2 virus infection, changes in activities can happen
for human kinases. We select three proteins, P04626, P12931
and P42684; they are tyrosine kinase-related proteins and
come from UniProt, which is a freely accessible database of
protein sequences and functional information. The gene names
associated with these proteins are SRC, ERBB2, and ABL2.
These proteins have received literature support for interaction
with SARS-CoV-2 coronavirus [50]–[56]. We refer to them
as proteins of interest. We find the subgraphs obtained by
local, weakly-global, and global nucleus decomposition which
contain these three nodes. Moreover, at the same time we
compare these graphs with their counterparts, truss and core in
terms of density and size of the subgraph. For all the notions
we set threshold θ = 0.001.

Table VII shows the comparison of different dense sub-
graph notions with respect to (1) largest k for which the
subgraph contains the proteins of interest, (2) number of
nodes in the subgraph, and (3) density of the subgraph. We
see that l-nucleus is denser than l-truss and both l-core and
g-core. Also, w-nucleus and g-nucleus are denser than g-
truss. In terms of nodes, l-nucleus gives a subgraph which
is much smaller than the subgraphs of l-core, g-core, and
l-truss. More precisely, with respect to l-nucleus, the three
proteins of interest appear in a nucleus of 95 vertices and
509 edges. To see which kind of biology function/process
our detected community represent, we use Metascape (https:
//metascape.org/gp/index.html#/main/step1). Metascape [57] is
a web-based portal that provides comprehensive gene list
annotation and analysis resources. Using Metascape, we find
that the proteins in the local nucleus are associated with several
diseases, most of them being forms of cancer (16 out 20).
The p-values of the association are less than 10−18, which is
statistically very significant. Please see our full version [35]
for a figure with more details.

Figure 6 shows the weakly global and global nuclei which
contain the proteins of interest. All the nodes (green and pink)
comprise the weakly global subgraph. The pink nodes com-
prise the global nucleus subgraph. Using Metascape, we find
that the proteins in our weakly-global and global subgraphs
are associated with some more specific forms of cancer such
as Uterine Carcinosarcoma and Hormone Refractory Prostate
Cancer, respectively, with p-values less than 10−6, which are
statistically quite significant, especially given the fact that
these subgraphs are much smaller than the local nucleus (in
general, the more observations we have, the smaller the p-
values become). These findings are useful to biologists in order
to perform targeted tests for checking whether drugs for the

 https://metascape.org/gp/index.html#/main/step1
 https://metascape.org/gp/index.html#/main/step1

treatment of these diseases can also be repurposed for treating
COVID-19 [54]. There are over 250 anticancer drugs approved
by the FDA, but far fewer for specific kinds of cancer. Thus,
showing connections to specific forms helps narrow the choice
of drugs to repurpose.

In summary, it is running all the three versions of nucleus
decomposition on the Biomine dataset that gives surprising
subgraphs pointing to potentially useful further investigation
by biologists. Running only local nucleus decomposition will
miss such interesting groups, no matter how we set k and θ.
BrightKite. BrightKite was a location-based social networking
service provider where users shared their locations by
checking-in. The friendship network was collected using
their public API, and consists of 58,228 nodes and 214,078
edges, and 4,491,143 checkins between April 2008 and
October 2010. We generated probabilities for each edge
based on the Jaccard similarity between the neighborhoods
of two endpoints. Running weakly-global and global nucleus
decompositions on this dataset with θ = 0.1, we retrieve
300 and 20 g-(k, θ) and w-(k, θ) nuclei, respectively. For
weakly-global subgraphs, k ranges in [1, 5], and for global
subgraphs, k can take on values of 1 and 2.

As expected, global nuclei obtain better cohesiveness in
terms of density and clustering coefficient. In particular, the
average density and clustering coefficient in global nuclei over
all values of k, is 0.6951 and 0.6947 as opposed to 0.4844
and 0.5052 in weakly-global nuclei. We also report another
interesting observation on this dataset. We obtain the average
number of checkins by users in the detected subgraphs. The
average number of user checkins in global nuclei is about 6%
more than those in weakly-global nuclei. Moreover, there exist
periods, for instance, the period between August 2008 and
April 2009, in which the average number of checkins of the
users in the global nuclei is 57% more than the average number
of checkins in the weakly-global subgraphs. These results
show that global nuclei can capture better user engagement
(as measured by the checkins) than weakly-global nuclei.
Remark. We explain that all our three models are useful and
they should be used in tandem. Local nucleus helps to identify
dense subgraphs of interest. We can adjust k and θ to obtain
smaller and denser subgraphs. However, global and weakly
global nuclei can identify pockets that are impossible to obtain
with local nucleus no matter how we adjust k and θ.

In our DBLP use case, the local and weakly-global notions
helped us identify a dense subgraph of researchers working
on Algorithms, however, the global nucleus gave a particular
pocket of researchers, who, after close examination, turned out
to be especially focused on designing efficient data-structures.
Then in the same case study, we were able to identify a useful
weakly-global nucleus of researchers, who are well known to
work on algorithms for data mining. The local nucleus was
too big, whereas the global nucleus was empty. In the Biomine
dataset, we observe that the group of proteins in a local nucleus
containing three proteins of interest were related to many
forms of cancer even though the proteins of interest have
received literature support related to COVID-19. Regarding

weakly-global and global notions, they were able to find
subgraphs of the local nucleus that were comprised of proteins
related to more specific cancer diseases. All these examples
show that an analyst should run all the three versions of
nucleus decomposition in tandem on a dataset and then closely
examine the results. More than density, what is important is
the detection of small pockets of nodes with nice properties
that escape getting identified by other notions.

VII. RELATED WORK

In deterministic graphs, core and truss decompositions have
been studied extensviely [58]–[69]. Core decomposition in
probabilistic graphs has been studied in [1], [23], [26], [70].
Bonchi et al. [1] were the first to introduce core decomposition
for such graphs. They focus on finding a subgraph in which
each vertex is connected to k neighbors within that subgraph
with high probability. In [23] more efficient algorithms were
proposed which can also handle graphs that do not fit in main
memory. In [26], the authors focus on finding a subgraph
which contains nodes with high probability to be k-core
member in the probabilistic graph. In [70], an index-based
structure is defined for processing core decomposition in
probabilistic graphs.

In the probabilistic context, the notion of local (k, η)-truss
is introduced by Huang, Lu, and Lakshmanan in [24]. Their
proposed algorithm for computing local (k, η)-truss is based
on iterative peeling of edges with support less than k and
updating the support of affected edges. Also, [24] proposed
the notion of global (k, η)-truss based on the probability of
each edge belonging to a k-truss in a possible world. In [71]
an approximate algorithm for the local truss decomposition
is proposed to efficiently compute the tail probability of
edge supports in the peeling process of [24]. In [72] truss
decomposition is computed using an index-based approach.

Building on the well-studied notions of core and truss
decomposition, Sarıyüce et al. [28] introduce nucleus
decomposition in deterministic graphs. They propose an
algorithm for computing (3, 4)-nuclei. In a more recent work,
Sarıyüce et al. [22] propose efficient distributed algorithms
for nucleus decomposition. Our work is the first to study
nucleus decomposition in probabilistic graphs.

VIII. CONCLUSIONS

In this work, we made several key contributions. We in-
troduced the notion of local, weakly-global and global nuclei
for probabilistic graphs. We showed that computing weakly-
global and global nuclei is intractable. We complemented these
hardness results with effective algorithms to approximate them
using techniques from Monte-Carlo sampling.

We designed a polynomial time, peeling based algorithm
for computing local nuclei based on dynamic programming
and showed that its efficiency can be much improved using
novel approximations based on Poisson, Binomial and Normal
distributions. Finally, using an in-depth experimental study, we
demonstrated the efficiency, scalability and accuracy of our
algorithms for nucleus decomposition on real world datasets.

REFERENCES

[1] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core decom-
position of uncertain graphs,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2014, pp. 1316–1325.

[2] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cliques
from an uncertain graph,” in 2015 IEEE 31st Int. Conf. on Data
Engineering. IEEE, 2015, pp. 243–254.

[3] R. Jin, L. Liu, and C. Aggarwal, “Discovering highly reliable subgraphs
in uncertain graphs,” in Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2011, pp. 992–1000.

[4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2003, pp. 137–146.

[5] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of misin-
formation in social networks,” in Proceedings of the 20th International
Conference on World Wide Web, 2011, pp. 665–674.

[6] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, 2014,
pp. 75–86.

[7] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reachability
computation in uncertain graphs,” Proceedings of the VLDB Endowment,
vol. 4, no. 9, pp. 551–562, 2011.

[8] Z. Zou, H. Gao, and J. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in Proceedings
of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 633–642.

[9] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in Proceedings of the third ACM
International Conference on Web search and Data Mining, 2010, pp.
241–250.

[10] N. Korovaiko and A. Thomo, “Trust prediction from user-item ratings,”
Social Network Analysis and Mining, vol. 3, no. 3, pp. 749–759, 2013.

[11] U. Kuter and J. Golbeck, “Using probabilistic confidence models for
trust inference in web-based social networks,” ACM Transactions on
Internet Technology (TOIT), vol. 10, no. 2, p. 8, 2010.

[12] G. Cavallaro, “Genome-wide analysis of eukaryotic twin cx 9 c pro-
teins,” Molecular BioSystems, vol. 6, no. 12, pp. 2459–2470, 2010.

[13] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller,
“Identifying functional modules in protein–protein interaction networks:
an integrated exact approach,” Bioinformatics, vol. 24, no. 13, pp. i223–
i231, 2008.

[14] J. Dong and S. Horvath, “Understanding network concepts in modules,”
BMC systems biology, vol. 1, no. 1, p. 24, 2007.

[15] R. Sharan, I. Ulitsky, and R. Shamir, “Network-based prediction of
protein function,” Molecular systems biology, vol. 3, no. 1, p. 88, 2007.

[16] F. Zhao and A. Tung, “Large scale cohesive subgraphs discovery for
social network visual analysis,” Proceedings of the VLDB Endowment,
vol. 6, pp. 85–96, 2012.

[17] B. Zhang and S. Horvath, “A general framework for weighted gene co-
expression network analysis,” Statistical applications in genetics and
molecular biology, vol. 4, no. 1, 2005.

[18] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou, “Motifcut:
regulatory motifs finding with maximum density subgraphs,” Bioinfor-
matics, vol. 22, no. 14, pp. e150–e157, 2006.

[19] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” The VLDB Journal,
vol. 29, no. 1, pp. 353–392, 2020.

[20] R. Li, L. Qin, F. Ye, G. Wang, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng,
“Finding skyline communities in multi-valued networks,” The VLDB
Journal, pp. 1–26, 2020.

[21] L. Antiqueira, O. N. Oliveira Jr, L. da Fontoura Costa, and M. d.
G. V. Nunes, “A complex network approach to text summarization,”
Information Sciences, vol. 179, no. 5, pp. 584–599, 2009.

[22] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms for
hierarchical dense subgraph discovery,” Proc. of the VLDB Endowment,
vol. 12, no. 1, pp. 43–56, 2018.

[23] F. Esfahani, V. Srinivasan, A. Thomo, and K. Wu, “Efficient computation
of probabilistic core decomposition at web-scale.” in Proceedings of

the 22nd International Conference on Extending Database Technology
(EDBT), 2019, pp. 325–336.

[24] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in Proceedings of the
2016 International Conference on Management of Data. ACM, 2016,
pp. 77–90.

[25] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decom-
position of large networks on a single pc,” Proceedings of the VLDB
Endowment, vol. 9, no. 1, pp. 13–23, 2015.

[26] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient probabilistic
k-core computation on uncertain graphs,” in Proceedings of the IEEE
34th International Conference on Data Engineering (ICDE). IEEE,
2018, pp. 1192–1203.

[27] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, 2012.

[28] A. E. Sariyüce, C. Seshadhri, A. Pinar, and U. V. Catalyurek, “Finding
the hierarchy of dense subgraphs using nucleus decompositions,” in
Proceedings of the 24th International Conference on World Wide Web,
2015, pp. 927–937.

[29] A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek, “Nucleus
decompositions for identifying hierarchy of dense subgraphs,” ACM
Transactions on the Web (TWEB), vol. 11, no. 3, pp. 1–27, 2017.

[30] R. Saxena, S. Kaur, and V. Bhatnagar, “Social centrality using network
hierarchy and community structure,” Data Mining and Knowledge
Discovery, vol. 32, no. 5, pp. 1421–1443, 2018.

[31] Y. Zhao, X. Dong, and Y. Yin, “Effective and efficient dense subgraph
query in large-scale social internet of things,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 4, pp. 2726–2736, 2019.

[32] S. Zhang, D. Zhou, M. Y. Yildirim, S. Alcorn, J. He, H. Davulcu,
and H. Tong, “Hidden: hierarchical dense subgraph detection with
application to financial fraud detection,” in Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 2017, pp.
570–578.

[33] Q. Wu, X. Huang, A. Culbreth, J. Waltz, L. E. Hong, and S. Chen,
“Extracting brain disease-related connectome subgraphs by adaptive
dense subgraph discovery,” bioRxiv, 2020.

[34] X. Ma, G. Zhou, J. Shang, J. Wang, J. Peng, and J. Han, “Detection
of complexes in biological networks through diversified dense subgraph
mining,” Journal of Computational Biology, vol. 24, no. 9, pp. 923–941,
2017.

[35] F. Esfahani, V. Srinivasan, A. Thomo, and K. Wu, “Nucleus decompo-
sition in probabilistic graphs: Hardness and algorithms,” arXiv preprint
arXiv:2006.01958, 2021, also available at: https://tinyurl.com/294fmk7b.

[36] V. Batagelj and M. Zaveršnik, “Fast algorithms for determining (gener-
alized) core groups in social networks,” Advances in Data Analysis and
Classification, vol. 5, no. 2, pp. 129–145, 2011.

[37] L. Le Cam, “An approximation theorem for the poisson binomial
distribution.” Pacific Journal of Mathematics, vol. 10, no. 4, pp. 1181–
1197, 1960.

[38] A. Lyapunov, “Nouvelle forme de la théoreme dur la limite de proba-
bilité,” Mémoires de l’Academie Impériale des Sci. de St. Petersbourg,
vol. 12, pp. 1--24, 1901.

[39] F. A. Haight, “Handbook of the poisson distribution,” 1967.
[40] A. Röllin, “Translated poisson approximation using exchangeable pair

couplings,” The Annals of Applied Probability, vol. 17, no. 5/6, pp.
1596–1614, 2007.

[41] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[42] W. Ehm, “Binomial approximation to the poisson binomial distribution,”
Statistics & Probability Letters, vol. 11, no. 1, pp. 7–16, 1991.

[43] N. Mukhopadhyay, Probability and statistical inference. CRC Press,
2000.

[44] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409–426.

[45] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” PVLDB, vol. 3, no. 1-2, pp. 997–1008, 2010.

[46] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis et al., “Global landscape of protein
complexes in the yeast saccharomyces cerevisiae,” Nature, vol. 440, no.
7084, p. 637, 2006.

[47] J. J. Pfeiffer and J. Neville, “Methods to determine node centrality and
clustering in graphs with uncertain structure,” in Fifth International AAAI
Conference on Weblogs and Social Media, 2011.

https://tinyurl.com/294fmk7b

[48] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[49] V. Podpečan, c. Ramšak, K. Gruden, H. Toivonen, and N. Lavrač,
“Interactive exploration of heterogeneous biological networks with
biomine explorer,” Bioinformatics, 06 2019. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btz509

[50] M. Bouhaddou, D. Memon, B. Meyer, K. M. White, V. V. Rezelj, M. C.
Marrero, B. J. Polacco, J. E. Melnyk, S. Ulferts, R. M. Kaake et al.,
“The global phosphorylation landscape of sars-cov-2 infection,” Cell,
vol. 182, no. 3, pp. 685–712, 2020.

[51] M. Marchetti, “Covid-19-driven endothelial damage: complement, hif-1,
and abl2 are potential pathways of damage and targets for cure,” Annals
of hematology, pp. 1–7, 2020.

[52] W.-j. Zheng, Q. Yan, Y.-s. Ni, S.-f. Zhan, L.-l. Yang, H.-f. Zhuang, X.-h.
Liu, and Y. Jiang, “Examining the effector mechanisms of Xuebijing
injection on COVID-19 based on network pharmacology,” BioData
mining, vol. 13, p. 17, 2020.

[53] K. Taniguchi-Ponciano, E. Vadillo, H. Mayani, C. R. Gonzalez-Bonilla,
J. Torres, A. Majluf, G. Flores-Padilla, N. Wacher-Rodarte, J. C. Galan,
E. Ferat-Osorio et al., “Increased expression of hypoxia-induced factor
1α mRNA and its related genes in myeloid blood cells from critically ill
COVID-19 patients,” Annals of Medicine, vol. 53, no. 1, pp. 197–207,
2021.

[54] Y. Guo, F. Esfahani, X. Shao, V. Srinivasan, A. Thomo, L. Xing, and
X. Zhang, “Integrative COVID-19 Biological Network Inference with
Probabilistic Core Decomposition,” Briefings in Bioinformatics, 2021
(in press), doi: 10.1093/bib/bbab455, https://www.biorxiv.org/content/
10.1101/2021.06.23.449535v1.full.pdf.

[55] H. Zhao, M. Mendenhall, and M. W. Deininger, “Imatinib is not a potent
anti-sars-cov-2 drug,” Leukemia, vol. 34, no. 11, pp. 3085–3087, 2020.

[56] K. H. Ebrahimi, J. Gilbert-Jaramillo, W. S. James, and J. S. McCullagh,
“Interferon-stimulated gene products as regulators of central carbon
metabolism,” The FEBS journal, vol. 288, no. 12, p. 3715, 2021.

[57] Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tana-
seichuk, C. Benner, and S. K. Chanda, “Metascape provides a biologist-
oriented resource for the analysis of systems-level datasets,” Nature
communications, vol. 10, no. 1, pp. 1–10, 2019.

[58] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[59] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, 2014,
pp. 1311–1322.

[60] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National security agency technical report, vol. 16, pp. 3–1, 2008.

[61] Y. Zhang and S. Parthasarathy, “Extracting analyzing and visualizing
triangle k-core motifs within networks,” in Proceedings of IEEE 28th
International Conference on Data Engineering. IEEE, 2012, pp. 1049–
1060.

[62] P. Chen, C. K. Chou, and M. Chen, “Distributed algorithms for k-truss
decomposition,” in Proceedings of 2014 IEEE International Conference
on Big Data (Big Data). IEEE, 2014, pp. 471–480.

[63] S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient computation
of importance based communities in web-scale networks using a single
machine,” in Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, 2016, pp. 1553–1562.

[64] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” IEEE Transactions on parallel and distributed systems,
vol. 24, no. 2, pp. 288–300, 2012.

[65] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement
meets similarity: Efficient (k,r)-core computation on social networks,”
Proc. VLDB Endow., vol. 10, no. 10, p. 998–1009, 2017.

[66] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering. IEEE, 2011, pp. 51–62.

[67] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K. L. Wu, and Ü. V.
Çatalyürek, “Streaming algorithms for k-core decomposition,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[68] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient bitruss
decomposition for large-scale bipartite graphs,” in Proceedings of 2020
IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 661–672.

[69] G. Preti, G. De Francisci Morales, and F. Bonchi, “Strud: Truss decom-
position of simplicial complexes,” in Proceedings of the Web Conference
2021, 2021, pp. 3408–3418.

[70] B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R. Li, “Index-based
optimal algorithm for computing k-cores in large uncertain graphs,”
in Proceedings of the IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 2019, pp. 64–75.

[71] F. Esfahani, J. Wu, V. Srinivasan, A. Thomo, and K. Wu, “Fast truss
decomposition in large-scale probabilistic graphs.” in Proceedings of
the 22nd International Conference on Extending Database Technology
(EDBT), 2019, pp. 722–725.

[72] Z. Sun, X. Huang, J. Xu, and F. Bonchi, “Efficient probabilistic truss
indexing on uncertain graphs,” in Proceedings of the Web Conference
2021, 2021, pp. 354–366.

https://doi.org/10.1093/bioinformatics/btz509
http://dx.doi.org/10.1093/bib/bbab455
https://www.biorxiv.org/content/10.1101/2021.06.23.449535v1.full.pdf
https://www.biorxiv.org/content/10.1101/2021.06.23.449535v1.full.pdf

	Introduction
	Contributions

	Deterministic Nuclei
	Probabilistic Nuclei
	Local Nucleus decomposition
	Computing initial nucleus scores
	Updating nucleus scores
	Approximating scores

	Global and Weakly-Global Nucleus
	Experiments
	Efficiency Evaluation
	Accuracy Evaluation
	Quality Evaluation of Nucleus Subgraphs
	Case Studies

	Related Work
	Conclusions
	References

