
Algebraic Rewritings for Optimizing Regular Path Queries

G�osta Grahne and Alex Thomo

Concordia University

fgrahne� thomog�cs�concordia�ca

Abstract

Rewriting queries using views is a powerful technique that has applications in query op�

timization� data integration� data warehousing etc� Query rewriting in relational databases

is by now rather well investigated� However� in the framework of semistructured data the

problem of rewriting has received much less attention� In this paper we focus on extracting

as much information as possible from algebraic rewritings for the purpose of optimizing

regular path queries� The cases when we can �nd a complete exact rewriting of a query

using a set a views are very �ideal�� However� there is always information available in the

views� even if this information is only partial� We introduce �lower� and �possibility� par�

tial rewritings and provide algorithms for computing them� These rewritings are algebraic

in their nature� i�e� we use only the algebraic view de�nitions for computing the rewritings�

This fact makes them a main memory product which can be used for reducing secondary

memory and remote access� We give two algorithms for utilizing the partial lower and

partial possibility rewritings in the context of query optimization�

� Introduction

Semistructured data is a self�describing collection� whose structure can naturally model irreg�
ularities that cannot be captured by relational or object�oriented data models �ABS���� This
kind of data is usually best formalized in terms of labelled graphs� where the graphs represent
data found in many useful applications such web information systems� XML data reposito�
ries� digital libraries� communication networks� and so on� Almost all the query languages for
semi�structured data provide the possibility for the user to query the database through regular
expressions� The design of query languages using regular path expressions is based on the ob�
servation that many of the recursive queries that arise in practice amount to graph traversals�
These queries are in essence graph patterns and the answers to the query are subgraphs of the
database that match the given pattern �MW��� FLS�	� CGLV��� CGLV
�����

For example� for answering a query containing in it the regular expression � � � article
 �
� � � ref � � � �ullman � widom

 one should �nd all the paths having at some point an edge
labelled article� followed by any number of other edges then by an edge ref and �nally by an
edge labelled with ullman or widom �

Based on practical observations� the most expensive part of answering queries on semistruc�
tured data is �nding these graph patterns described by regular expressions� This is� because
a regular expression can describe arbitrary long paths in the database which means in turn
an arbitrary number of physical accesses� Hence it is clear that� having a good optimizer for

�

answering regular path �sub
queries is very important� This optimizer can be used for the
broader class of full �edged query languages for semistructured data�

In semistructured data� as well as in other data models such as relational and object
oriented� the importance of utilizing views is well recognized� �LMSS��� CGLV��� Lev����
Simply stated� the problem is� Given a query Q and a set of views fV�� � � � � Vng� �nd a
representation of Q by means of the views and then answer the query on the basis of this
representation� Several papers investigate this problem for the case of conjunctive queries
�LMSS��� Ull��� CSS��� PV���� Their methods are based on the query containment and the
fact that the number of literals in the minimal rewriting is bounded from above by the number
of literals in the query�

It is obvious that a method for rewriting of regular path queries requires a technique for
rewriting of regular expressions� i�e� given a regular expression E and a set of regular expres�
sions E�� E�� ���� En one wants to compute a function f�E�� E�� ���� En
 which approximates E�
As far as the authors know� there are two methods for computing such a function f which
approximates E from below� The �rst one of Conway �Con��� is based on the derivatives of
regular expressions introduced by Brzozowski �Brzo���� which provide the ground for the devel�
opment of an algebraic theory of factorization in the regular algebra �BL	�� which in turn gives
the tools for computing the approximating function� The second method by Calvanese et al
�CGLV��� is automata based� Both methods are equivalent in the sense that they compute the
same rewriting of a query� However� these methods model �using views� only full paths of the
database� i�e� paths whose labels spell a word belonging to the regular language of the query�
But in practice� the cases in which we can infer from the views full paths for the query are
very �ideal��The views can cover partial paths which can be satisfactory long for using them
in optimization but if they are not complete paths� they are ignored by the above mentioned
methods� So� it would probably be better to give a partial rewriting in order to encapture
all the information provided by the views� The information provided by the views is always
useful� even if it is partial and not complete� The problem of a partial rewriting is touched
upon brie�y in �CGLV���� However� there this problem is considered only as an extension of
the complete rewriting� enriching the set of the views with new elementary one�symbol views�
and materializing them before query evaluation� The choice of the new elementary views to be
materialized is done in a brute force way� using some cost criteria depending on the application�

In this paper we use a very di�erent approach� For each word in the regular language of
the query we do the best possible using views� If the word contains a sub�path that a view
has traversed before� we use that view for evaluation� We present generalized query answering
algorithms that access the database only when necessary� For the �been there� subpaths our
algorithms use the views� Note that we do not materialize any new views� we only consult the
database �on the �y�� as needed�

The outline of the paper is as follows� In Section
 we formalize the problem of query
rewriting using views in the realistic framework of cached views and available database� Then
we discuss the utility of algebraic rewritings� We show through a realistic example that the
complete rewritings can be empty for a particular query� while the partial information pro�
vided by the views is no less than ��� of the complete �missing� information� In Section �
we introduce and formally de�ne a new algebraic� formal�language operator� the exhaustive
replacement� Simply described� given two languages L� and L�� the result of the exhaustive
replacement operation is the replacement� by a special symbol� of all the words of L� that

occur as sub�words of words in L�� Moreover� between any two occurrences of words of L�

as sub�words in a word from L�� no word from L� appears as a subword� In Section � we
give a theorem showing that the result of the exhaustive replacement can be represented as
an intersection of a rational transduction and a regular language� The proof of the theorem
is constructive and provides an algorithm for computing the exhaustive replacement opera�
tor� Then in Section � we present the partial possibility rewriting that is a generalization of
the previously introduced exhaustive replacement operator� In Section � we de�ne a partial
lower rewriting� It is the largest subset of words in the partial possibility rewriting such that
their expansions to the the database alphabet are contained in the query language� In Sec�
tion � we review a typical query answering algorithm for regular path queries and show how
two modify it into two other �lazy� algorithms for utilizing the partial lower and possibility
rewritings respectively� The computational complexity is studied in Section 	� We show that
the algorithms proposed for computing the partial possibility and partial lower rewritings are
essentially optimal�

� Background

Rewriting regular queries� Let � be a �nite alphabet� called the database alphabet� Ele�
ments of � will be denoted R�S� T�R�� S�� � � � � R�� S�� � � �� etc� Let V � fV�� � � � � Vng be a set
of view de�nitions� with each Vi being a �nite or in�nite regular language over �� We call the
set � � fv�� � � � � vng the outer alphabet� or view alphabet� For each vi � �� we set def �vi
 � Vi�
The substitution def associates with each �view name� vi in the view alphabet the language
Vi� The substitution def is applied to words� languages� and regular expressions in the usual
way �see e� g� �HU���
�

A database query Q is a �nite or in�nite regular language over �� Sometimes we need to
refer to a regular expression representing a language Q� We then write re�Q
 to denote this
expression�

A maximal lower rewriting �l�rewriting
 of a user query Q using V is a language Q� over
�� that includes all the words vi� � � � vik � �� such that

def�vi� � � � vik
 � Q�

A maximal possibility rewriting �p�rewriting
 of a user query Q using V is a language Q��

over �� that includes all the words vi� � � � vik � �� such that

def�vi� � � � vik
 �Q �� ��

For instance� if re�Q
 is �RS
�� and we have the views V�� V�� V� and V� available� with
re�V�
 � R� SS� re�V�
 � S� re�V�
 � SR and re�V�
 � �RS
� respectively� the l�rewriting is
v�� and the p�rewriting is �v� � v�v

�
�v�

��

Semistructured databases� We consider a database to be an edge labeled graph� This graph
model is typical in semistructured data� where the nodes of the database graph represent the
objects and the edges represent the attributes of the objects� or relationships between the
objects�

�

Ra

d c

b

SS

R

T

Figure �� An example of a graph database

Formally� we assume that we have a universe of objects D� Objects will be denoted
a� b� c� a�� b�� � � � � a�� b�� � � �� and so on� A database DB over �D��
 is a pair �N�E
� where
N � D is a set of nodes and E � N ���N is a set of directed edges labeled with symbols
from �� Figure � contains an example of a graph database�

If there is a path labeled R�� R�� � � � � Rk from a node a to a node b we write a
R��R����Rk�	 b�

Let Q be a query and DB � �N�E
 a database� Then the answer to Q on DB is de�ned as

ans�Q�DB
 � f�a� b
 � N� � a
W
�	 b for some W � Qg�

For instance� if DB is the graph in Figure �� and Q � fSR� Tg� then ans�Q�DB
 �
f�b� d
� �d� b
� �c� a
g

What are rewritings good for� In a scenario with a database and materialized views
there are various assumptions� such as the exactness�soundness�completeness of the views�
and whether the database relations are available� and if so� at what cost compared to the cost
of accessing the views� Depending on the application �information integration� cache�based
optimization� etc
 di�erent assumptions are valid� The use of rewritings in answering user
queries using views have been thoroughly investigated in the case of relational databases �see
e�g� the survey �Lev���
� For the case of semi�structured databases much less is currently
known� Notably� Calvanese et al �CGLV��� show how to obtain l�rewritings� and the same
authors� in �CGLV
���� discuss the possible use of l�rewritings in information integration ap�
plications� The present authors show in �GT
���� how p�rewritings are obtained and how they
are pro�table in information integration applications� where the database graph is unavailable�
The paper �GT
���� shows that running an l�rewriting on the view graph is guaranteed to
produce a subset of the desired answer� while running the p�rewriting is guaranteed to produce
a superset�

In particular� the l�rewriting can be empty� even if the desired answer is not� Suppose for
example that query Q is re�Q
 � R� � � � R��� and we have available two views V� and V�� where
re�V�
 � R� � � � R�� and re�V�
 � R�� � � � R���� It is easy to see that the l�rewriting is empty�
However� depending on the application� a �partial rewriting� such as v�R��v� could be useful�
In the next section we develop a formal algebraic framework for the partial rewritings� This
framework is �exible enough and can be easily tailored to the speci�c needs of the various
applications� In Section � we demonstrate the usability of the partial rewritings in query
optimization�

�

� Replacement � A New Algebraic Operator

In this section we introduce and study a new algebraic operation� the Exhaustive Replacement
in words and languages�

Let W be a word� and M a ��free language over some alphabet� and let y be a symbol
outside that alphabet� Then we de�ne

�M �W
 �

�
fW�yW� � there is a W� �M such that W �W�W�W�g if non�empty
fWg otherwise�

Furthermore� let L be a set of words over the same alphabet as M � Then de�ne �M �L
 �S
W�L �M �W
� We can now de�ne the powers of �M as follows�

��M �fWg
 � �M �W
� �i��
M �fWg
 � �M ��

i
M �fWg

�

Let k be the smallest integer such that �k��
M �fWg
 � �kM �fWg
� We then set

��M �W
 � �kM �fWg
�

�It is clear that k is at most the number of symbols in W �

The Exhaustive Replacement �ER
 of a ��free language M in a language L� using a special

symbol y not in the alphabet� can be simply de�ned as

L�M �
�
W�L

��M �W
�

Intuitively� the exhaustive replacement L � M replaces in every word W � L the non�
overlapping occurrences of words from M with the special symbol y� Moreover� between two
occurrences of words of M to be replaced� no nonempty word from M appears as a subword�

Example � Let L � fRSRSRSR�RRSRSR�RSRRSRRSRg� M � fRSRg� Then

L�M � fySy� RSySR�RySR�RRSy� yyyg�

being the union of the sets�

��fRSRg�fRSRSRSRg
 � fySy� RSySRg�

��fRSRg�fRRSRSRg
 � fRySR�RRSyg�

��fRSRg�fRSRRSRRSRg
 � fyyyg�

� Computing the Replacement Operation

In this section we will present an algorithm for computing the partial rewriting of a database
query� To this end� we will give �rst a characterization of the ER�operator� The construction
in the proof of our characterization provides the basic algorithm for computing the result of
the ER�operator on given languages� The construction is based on �nite transducers�

A �nite transducer T � �S� I�O� �� s� F
 consists of a �nite set of states S� an input alphabet
I� and output alphabet O� a starting state s� a set of �nal states F � and a transition�output

�

function � from �nite subsets of S � I� to �nite subsets of S � O�� Intuitively� for instance
�q��W
 � ��q�� U
 means that if the transducer is in state q� and reads word U � it can go to
state q� and emit the word W � For a given word U � I�� we say that a word W � O� is
an output of T for U if there exists a sequence �q��W�
 � ��s� U�
� �q��W�
 � ��q�� U�
� � � � �
�qn�Wn
 � ��qn��� Un
 of state transitions of T � such that qn � F � U � U� � � � Un � I�� and
W � W� � � � Wn � O�� We write W � T �U
� where T �U
 denotes the set of all outputs of T
for the input word U � For a language L � I�� we de�ne T �L
 �

S
U�L T �U
�

We are now in a position to state our characterization theorem�

Theorem � Let L and M be regular languages over an alphabet �� There exists a �nite
transducer T and a regular language M � such that�

L�M � T �L
 �M ��

Proof sketch� Let A � �S��� �� s�� F
 be a nondeterministic �nite automaton that accepts the
language M � Let us consider the �nite transducer�

T � �S
 fs��g��� � �
�� s��� fs

�
�g
�

where � �
 fyg� and� written as a relation�

�� � f�s�R� s�� �
 � �s�R� s�
 � �g

f�s��� R� s
�
�� R
 � R � �g

f�s��� R� s� �
 � �s�� R� s
 � �g

f�s��� R� s
�
�� y
 � �s�� R� s
 � � and s � Fg

f�s�R� s��� y
 � �s�R� s
�
 � � and s� � Fg�

Intuitively� transitions in the �rst set of �� are the transitions of the �old� automaton modi�ed
so as to produce � as output� Transitions in the second set mean that �if we like� we can
leave everything unchanged�� i�e� each symbol gives itself as output� Transitions in the third
set are for non�deterministically jumping from the new initial state s�� to the states of the old
automaton A� that are reachable in one step from the old initial state s�� These transitions
give � as output� Transitions in the fourth set are for handling special cases� when from the
old initial state q�� an old �nal state can be reached in one step� In these cases we can replace
the one symbol words accepted by A with the special symbol y� Finally� the transitions of
the �fth set are the most signi�cant� Their meaning is� in a state� where the old automaton
has a transition by a symbol� say R� to an old �nal state� there will in the transducer be an
additional transition R�y to s��� which is also the �only
 �nal state of T � Observe� that if the
transducer T decides to leave the state s�� while a su!x U of the input string is unscanned�
and enter the old automaton A� then it can return back only if there is a pre�x U � of U � such
U � � L�A
� In this case the trasducer replaces U �� which is a subword of the input string� by
the special symbol y�

Given a word ofW � L as input� the �nite transducer T replaces arbitrary many occurences
of words of M in W with the special symbol symbol y�

�

s0

s2 s3
s4

s1

R

S

R

S T

s0

s2 s3

s’0

R/R
S/S

T/T

s4

s1

R

S

R

S T

R

R

R/

R/

/T

Figure
� An example of a replacement transducer

For an example� suppose M is R�SR
� � RST � Then an automaton that accepts this
language is given in Figure
 drawn with solid arrows� The corresponding rational transducer
is shown in the same �gure in the right� It consists of the automaton A� whose transitions
now produce as output �� plus the state s�� and the additional transitions drawn with dashed
arrows� For simplicity we have not drawn the � outputs of some transitions� It can now be
shown that

T �L
 � L
fU�yU�y � � � yUk � for some U in L and words Wi in M� U � U�W�U�W� � � �Wk��Ukg�

"From the transduction T �L
 we get all the words of L having replaced in them an arbitrary
number of words from M � What we like is not an arbitrary but an exhaustive replacement of
words fromM � To achive this goal we will intersect the language T �L
 with a regular language
M � which will serve as a �mask� for the words of L�M � We set

M � � � �M �
c �

Now M � guarantees that no other candidate for replacing occurs inside the words of the �nal
result�

� Partial P�Rewritings

We can give a natural generalization of the de�nition of the replacement operator for the case
when we like to exhaustively replace subwords not from one language only� but from a �nite
set of languages �such as a �nite set of view de�nitions
� For this purpose� let W be a word
and M � fM�� � � � �Mng be a set of languages over some aplhabet� and let fy� � � � � yng be a set
of symbols outside that alphabet� Now we de�ne

�M�W
 �

�
fW�yiW� � there is a W� �Mi such that W �W�W�W�g if non�empty
fWg otherwise�

The generalized exhaustive replacement of M � fM�� � � � �Mng in a language L� by the
corresponding special symbols y�� � � � � yn� is�

L�M �
�
W�L

��M�W
�

�

In the following we will de�ne the notion of the partial p�rewriting of a database query Q
using a set V � fV�� � � � � Vng of view de�nitions�

De�nition � The partial p�rewriting of a query Q over � using a set V � fV�� � � � � Vng of
view de�nitions over � is�

Q�V�

with � � fv�� � � � � vng as the corresponding set of special symbols�

As a generalization of Theorem � we can give the following result about the partial p�
rewriting of a query Q over � using a set V � fV�� � � � � Vng of view de�nitions over ��

Theorem � The partial p�rewriting Q�V can be e�ectively computed�

Proof sketch� Let Ai � �Si��� �i� s�i� Fi
� for i � ��� n� be n nondeterministic �nite automata
that accept the corresponding Vi languages� Let us consider the �nite transducer�

T � �S�
 � � �
 Sn
 fs
�
�g����
 �� ��� s��� fs

�
�g
�

where

�� � f�s�R� s�� �
 � �s�R� s�
 � �i� i � ��� n�g

f�s��� R� s
�
�� R
 � R � �g

f�s��� R� s� �
 � �s�i� R� s
 � �i� i � ��� n�g

f�s��� R� s
�
�� yi
 � �s�i� R� s
 � �i and s � Fi� i � ��� n�g

f�s�R� s��� yi
 � �s�R� s
�
 � �i and s� � Fi� i � ��� n�g�

The transducer T performs the following task� given a word of Q as input� it replaces nondeter�
ministically some words of V�� � � � � Vn from the input with the corresponding special symbols�
The proof of this claim is similar as in the previous theorem�

"From the tranduction T �Q
 we get all the words of Q having replaced in them an arbitrary
number of words from V�
 � � �
 Vn� But what we like is the exhaustive replacement Q �V�
For this we intersect the language T �Q
 with the regular language

���
 �
� �V�
 � � �
 Vn
��
 �
�

c
�

which will serve as a mask for extracting the words in the exhaustive replacement�

We note here that the partial p�rewriting of a query is a generalization of the p�rewriting�
Indeed� consider the the substitution from �
� that maps each vi � � to the corresponding
regular view language Vi and each database symbol R � � to itself� This substitution is the
extension of the def substitution to the � alphabet and we call it def

�� Then the partial
p�rewriting is the set of all the words on �
 �� with no subwords in any V�� � � � � Vn� such
that the result on them of the def

� substitution� has a non empty intersection with Q� The
conceptual similarity of the partial p�rewriting with p�rewriting can also be observed in another
way# change the above mask to �� and the result will be the p�rewriting� as opposed to the
partial p�rewriting�

	

� Partial L�Rewritings

We de�ned the l�rewriting of a query Q given a set of view de�nitions V � fV�� � � � � Vng as the
set of all the words on the view alphabet � such that their substitution by def is contained in
the query language Q� In the same spirit we will de�ne the partial l�rewriting� It will be the
set of all the �mixed� words on the alphabet �
�� with no subword in �V�
 � � �
 Vn
� such
that their substitution by the extended def

� is contained in the query Q� The condition that
there is no subword in �V�
 � � �
Vn
� says that in fact the partial l�rewriting is a subset of the
partial p�rewriting�

De�nition � The partial l�rewriting of a query Q on � is the language Q� on �
� given by

Q� � fU � Q�V � def ��U
 � Qg�

We now give a method for computing the partial l�rewriting�

Algorithm � �� Compute the complement Qc of the query�

�� Construct the transducer T used for the partial p�rewriting� Then compute the transduc�
tion T �Qc
 of the complement of the query�

	� Compute the complement �T �Qc

c of the previous transduction�

� Intersect the complement �T �Qc

c with the mask

M � ���
 �
� �V�
 � � �
 Vn
��
 �
�
c

Denote with Q� the result�

Theorem � The mixed �
� language Q� gives exactly the partial l�rewriting of Q�

Proof� ���� T �Qc
 is the set of all words U on �
 � such that def
��U
 � Qc �� �� Hence�

�T �Qc

c� being the complement of this set� will contain only �
� words such that all the
��words in their substitution by def

� will be contained in Q� This is the �rst condition for
a word on �
 � to be in the partial l�rewriting of Q� Furthermore� intersecting with the
above mask we keep in �T �Qc

c only the �
 � words that do not contain � subwords in
�V�
� � �
Vn
� This is the second condition for a word on �
� to be in the partial l�rewriting
of Q�
���� We will prove this direction by a contradiction� First observe that both the partial
l�rewriting and the set Q� are subsets of the partial p�rewriting� that is� all their words �pass�
the above mask� In other words their words do not have subwords in �V�
 � � �
 Vn
� Suppose
now� that the mixed �
 ��word U � U� � � � Un is in the partial l�rewriting but not in Q��
That is def ��U
 � Q� On the other hand� since U �� Q� it follows that U � Q�c which means
that U � T �Qc

M c� But as we mentioned before� the word U � which belongs in the partial
l�rewriting� �passes� the mask M and this implies that it cannot �pass� the complement of
the mask� Therefore� U � T �Qc
� Thus def ��U
 �Qc �� � that is� def ��U
 �� Q i�e� U cannot
be in the partial l�rewriting� a contradiction�

�

	 Query Optimization Using Partial Rewritings and Views

In this section we show how to utilize partial rewritings in query optimization in a scenario
where we have available a set of precomputed views� as well as the database itself� The views
could be materialized views in a warehouse� or locally cached results from previous queries in
a client�server environment� In this scenario the views are assumed to be excact� and we are
interested in answering the query by consulting the views as far as possible� and by accessing
the database only when necessary�

Formally� let � � fv�� � � � vng be the view alphabet and let V � fV�� � � � � Vng be a set of
view de�nitions as before� Given a database DB� which is a graph� where the edges are labelled
with database symbols from �� we de�ne the view graph V over �V��
 to be a database over
�D��
 induced by the set �

i�f������ng

f�a� vi� b
 � �a� b
 � ans�Vi�DB
g�

of ��labelled edges�
It is now straightforward to show� that if the l�rewritingQ� is exact �meaning def �Q�
 � Q
�

then ans�Q�DB
 � ans�Q��V
 �see Calvanese et al� �CGLV
����
�
However� the cases when we are able to obtain an exact rewriting of the query using the

views would be rare in practice� in the general we have in the views only part of the information
needed to answer the query� So� should we ignore this partial information only beacuse it is not
complete$ In the previous sections we showed how this partial information can be captured
algebraically by the partial rewritings� In the following� we use the partial rewritings not to
avoid completely accesing database� but to minimize such access as much as possible�

However� in order to be able to utilize the partial l�rewriting Q�� it should be exact� i�e�
we require that def ��Q�
 � Q� We can use for testing the exactness the optimal algorithm of
�CGLV����

Given an exact partial l�rewriting� we can use it to evaluate the query on the view�graph�
and accessing the database in a �lazy� fashion� only when necessary� Before describing the
lazy algorithm� let us review how query answering on semistructured databases typically works
�ABS����

Algorithm � We are given a regular expression Q and a database graph DB� First con�
struct an automaton AQ for Q� Let N be the set of nodes in the database graph� and let
fs�� s�� s�� � � � smg be the set of states in AQ� with s� being the initial state� For each node
a � N compute a set Reacha as follows�

�� Initialize Reacha to f�a� s�
g�

� Repeat � until Reacha no longer changes�

�� Choose a pair �x� s
 � Reacha� If there is a database symbol R� such that a transition

s
R
�	 s� is in AQ and an edge a

R
�	 a� is in the database DB� then add the pair �x�� a�

to Reacha�

Finally� set ans�Q�DB
 � f�a� b
 � a � N� �b� s
 � Reacha� and s is a �nal state in AQg�

��

In the following we modify this algorithm into a lazy algorithm for answering a query Q
using its partial l�rewriting with respect to a set of cached exact views�

Algorithm � We are given an automaton AQ� � corresponding to an exact partial l�rewriting
Q� and the view graph V� Let N be the set nodes in V� and let fs�� s�� s�� � � � smg be the states
in AQ� � For each node a � N then compute a set Reacha�

�� Initialize Reacha to f�a� s�
g� and Expandeda to false�

� For each database symbol R� if there is in AQ� a transition s�
R
�	 s from the initial state

s�� then access the database and add to V the subgraph of DB induced by the R�edges�

�� Repeat � until Reacha no longer changes�

�� Choose a pair �x� s
 � Reacha� If there is a view or database symbol R� such that a

transition s
R
�	 s� is in AQ� go to ��

�� If there is an edge a
R
�	 a� in the viewgraph� add the pair �x�� a�
 to Reacha�

Otherwise� if Expandeda � false� set Expandeda � true� access the database and add
to V the subgraph of DB induced by all edges originating from a�

Set eval�Q��V�DB
 � f�a� b
 � a � N� �b� s
 � Reacha� and s is a �nal state in AQ�g�

Theorem � Given a query Q and a set of exact views� if the partial l�rewriting Q� of Q is
exact� then eval�Q��V�DB
 � ans�Q�DB
�

Next� let us discuss how to utilize the partial p�rewritingQ�� of a query Q for computing the
answer set ans�Q�DB
� If we use the same algorithm as in the case of the partial l�rewriting
we might get a proper superset of the answer� Note however that� contrary to Algorithm �� in
any case the partial p�rewriting does not need to be exact�

Theorem 	 Given a query Q and a set V of exact views� if Q�� is the partial p�rewriting of Q
using V� then ans�Q�DB
 � eval�Q���V�DB
�

In other words� we are not sure if all the pairs are valid� To be able to discard false hits�
suppose that the views are materialized using Algorithm
� We can then associate each pair
�a� b
 in the view graph with their derivation� That is� for each pair �a� b
 connected with an
edge� say vi� in the view graph� we have an automaton� say Aab� with start state a and �nal
states fbg� What is this automaton$ For each pair �a� b
� we can consider the database graph
as a non�deterministic automaton DBab with initial state a and �nal states fbg� It is now easy
to see that

Aab � DBab �AVi

where AVi is an automaton for the view Vi� We are now ready to formulate the algorithm for
using the partial p�rewriting in query answering�

��

Algorithm �

�� Compute eval�Q���V�DB
 using Algorithm �� During the execution of Algorithm � the
view graph V is extended with new edges and nodes as described� Call the extended view
graph it V ��

� Replace in V% each edge labeled with a view symbol� say vi� between two objects a and
b with the automaton Aab of the derivation� Call the new graph V��

�� Set veri�ed�Q���V�DB
 � eval�Q���V�DB
 � f�a� b
 � Q � V ��
ab �� �g�

Theorem
 Given a query Q and a set V of exact views� if Q�� is the partial p�rewriting of Q
using V� then verified�Q���V�DB
 � ans�Q�DB
�

 Complexity Analysis

The following theorem establishes an upper bound for the problem of generating the exhaustive
replacement L�M � where L and M are regular languages�

Theorem � Generating the exhaustive replacement of a regular language M from another
language L can be done in exponential time�

Proof� Let us refer to the cost of the steps in the constructive proof of the Theorem �� To
construct a non�deterministic automaton for the language M and using it to construct the
transducer g is polynomial� To compute the transduction of the regular language L� g�L
� is
again polynomial� But at the end� in order to compute the subset of the words in g�L
� to which
no more replacement can be applied� is exponential� This is because we intersect with a mask
that is a language described by an extended regular language containing complementation�

Theorem � Let be an alphabet and A� B be regular languages over � Then the problem of
deciding the emptiness of A � � �B �
c is PSPACE complete�

The proof of this theorem is given in the Appendix� We are now in a position to prove the
following result�

Theorem
 There exist regular languages L and M � such that the exhaustive replacement
L�M cannot be computed in polynomial time� unless PTIME�PSPACE�

Proof� Suppose that given two regular expressions A and B on alphabet we like to test
the emptiness of A � � �B �
c� Without loss of generality let us assume that there exists
one symbol in A that does not not appear in B� To see why even with this restriction the
above problem of emptiness is still PSPACE complete� imagine that we can simply have a
tape symbol which does not appear at all in the de�nition of the transition function of the
Turing machine� Then this symbol will appear in the above set A but not in B �see Appendix
�
Let us denote this special symbol with y� We substitute the y symbol in A with the regular

�

expression B� The result will be another regular expression A� which has polynomial size�
Clearly� A � � �B �
c � A � �A�

�B
�
As a conclusion� if we had a polynomial time algorithm producing a polynomial size rep�

resentation for A�
� B� we could polynomially construct an NFA for A � �A�

� B
� Then we
could check in NLOGSPACE the emptiness of this NFA� This means that� the emptiness of
A� � �B �
c could be checked in PTIME� which is a contradiction� unless PTIME�PSPACE�

Corollary � The algorithm in the proof of Theorem � for computing the partial p�rewriting
of a query Q using a set V � fV�� � � � � Vng of view de�nitions� is essentially optimal�

Theorem �� Given a query Q and a set V � fV�� � � � � Vng of view de�nitions� to compute
the partial l�rewriting is in �EXPTIME�

Proof� Let us refer to the constructive proof of the Theorem �� To compute the complement
Qc of the query is exponential� To transduce it to T �Qc
 is polynomial� To complement again
is exponential� So� in total we have
EXPTIME� To compute the mask is EXPTIME and to
intersect is polynomial� Finally�
EXPTIME � EXPTIME �
EXPTIME�

For the partial lower rewriting we have the following�

Theorem �� The presented Algorithm � for computing the partial l�rewriting of a query Q
using a set V � fV�� � � � � Vng of view de�nitions� is essentially optimal�

Proof� Polynomially intersect the partial l�rewriting with �� and get the l�rewriting of �CGLV����
But� the l�rewriting is optimally computed in doubly exponential time in �CGLV���� so our
algorithm is essentially optimal�

References

�Abi��� S� Abiteboul� Querying Semistructured Data� Proc� of ICDT ���� pp� ���	�

�ABS��� S� Abiteboul� P� Buneman and D� Suciu� Data on the Web � From Relations to
Semistructured Data and Xml� Morgan Kaufmann� �����

�AHV��� S� Abiteboul� R� Hull and V� Vianu� Foundations of Databases� Addison�Wesley�
�����

�AQM���� S� Abiteboul� D� Quass� J� McHugh� J� Widom and J� L� Wiener� The Lorel
Query Language for Semistructured Data� Int� J� on Digital Libraries ���� ���

pp� �	�		�

�Bun��� P� Buneman� Semistructured Data� Proc� of PODS ����� pp� �����
��

�BDFS��� P� Buneman� S� B� Davidson� M� F� Fernandez and D� Suciu� Adding Structure
to Unstructured Data� Proc� of ICDT ����� pp� ��������

�Brzo��� J� A� Brzozowski� Derivatives of Regular Expressions� JACM ��

� ����� pp�
�	�����

��

�BL	�� J� A� Brzozowski and E� L� Leiss� On Equations for Regular Languages� Finite
Automata� and Sequential Networks� TCS �� ��	�� pp� �����

�CGLV��� D� Calvanese� G� Giacomo� M� Lenzerini and M� Y� Vardi� Rewriting of Regular
Expressions and Regular Path Queries� Proc� of PODS ����� pp� ����
���

�CGLV
���� D� Calvanese� G� Giacomo� M� Lenzerini and M� Y� Vardi� Answering Regular
Path Queries Using Views� Proc� of ICDE
���� pp� �	����	�

�CGLV
���� D� Calvanese� G� Giacomo� M� Lenzerini and M� Y� Vardi� View�Based Query
Processing for Regular Path Queries with Inverse� Proc� of PODS
���� pp�
�	����

�CSS��� S� Cohen� W� Nutt� A� Serebrenik� Rewriting Aggregate Queries Using Views�
Proc� of PODS ����� pp� �������

�Con��� J� H� Conway� Regular Algebra and Finite Machines� Chapman and Hall �����

�DFF���� A� Deutsch� M� F� Fernandez� D� Florescu� A� Y� Levy� D� Suciu� A Query
Language for XML� WWW� � Computer Networks 	�
������ ����� pp� �����
����

�DG��� O� Duschka and M� R� Genesereth� Answering Recursive Queries Using Views�
Proc� of PODS ����� pp� ��������

�FS�	� M� F� Fernadez and D� Suciu� Optimizing Regular path Expressions Using Graph
Schemas Proc� of ICDE ���	� pp� ���
��

�FLS�	� D� Florescu� A� Y� Levy� D� Suciu Query Containment for Conjunctive Queries
with Regular Expressions Proc� of PODS ���	� pp� ������	�

�GM��� G� Grahne and A� O� Mendelzon� Tableau Techniques for Querying Information
Sources through Global Schemas� Proc� of ICDT ���� pp� ��
�����

�GT
���� G� Grahne and A� Thomo� An Optimization Technique for Answering Regular
Path Queries� Proc� of WebDB
����

�HU��� J� E� Hopcroft and J� D� Ullman Introduction to Automata Theory� Languages�
and Computation� Addison�Wesley �����

�HRS��� H� B� Hunt and D� J� Rosenkrantz� and T� G� Szymanski� On the Equivalence�
Containment� and Covering Problems for the Regular and Context�Free Lan�
guages� Journal of Computing and System Sciences �
�

 ����� pp�

�
�	

�Kari��� L� Kari� On Insertion and Deletion in Formal Languages� Ph�D� Thesis� �����
Department of Mathematics� University of Turku� Finland�

�Lev��� A� Y� Levy� Answering queries using views� a survey� Submitted for publication
�����

��

�LMSS��� A� Y� Levy� A� O� Mendelzon� Y� Sagiv� D� Srivastava� Answering Queries Using
Views� Proc� of PODS ����� pp� �������

�MW��� A� O� Mendelzon and P� T� Wood� Finding Regular Simple Paths in Graph
Databases� SIAM J� Comp� �
��� �December ����
�

�MMM��� A� O� Mendelzon� G� A� Mihaila and T� Milo� Querying the World Wide Web�
Int� J� on Digital Libraries �
��� ���� pp� ������

�MS��� T� Milo and D� Suciu� Index Structures for Path Expressions� Proc� of ICDT�
����� pp�
���
���

�PV��� Y� Papakonstantinou� V� Vassalos� Query Rewriting for Semistructured Data�
proc� of SIGMOD ����� pp� �������

�Ull��� J� D� Ullman� Information Integration Using Logical Views� Proc� of ICDT �����
pp� ������

�Var		� M� Y� Vardi� The universal�relation model for logical independence� IEEE Soft�
ware�

�Yu��� S� Yu� Reqular Languages� In� Handbook of Formal Languages� G� Rozenberg
and A� Salomaa �Eds�
� Springer Verlag ����� pp� ������

� Appendix

Theorem � Let be an alphabet and A� B be regular languages over � Then the problem of
deciding the emptiness of A � � �B �
c is PSPACE complete�

Proof� First� observe that

�A � � �B �
c � ��� �A � �B ��

But� this problem is a sub�case of the problem of testing regular expression containment�
which is known to be PSPACE complete �HRS���� So� there exists an algorithm running in
polynomial space that decides the above problem�

Next� we show that the problem is PSPACE�hard� Let L be a language that is decided
by a Turing machine M running in polynomial space nk for some constant k� The reduction
maps an input w into a pair of regular expressions explained in the following�

Let%s denote with the alphabet consisting of all symbols that may appear in a computation
history� If & and Q are the M %s tape alphabet and states� then � &
Q
 f'g� We assume
that all con�gurations have length nk and are padded on the right by blank symbols if they
otherwise would be too short� Let%s suppose for a moment that we have organized some
con�gurations in a tableau where each row of the tableau contains a con�guration and we
mark the begining and the end of each one by the marker '� Now� in this organization we
consider all the
� � windows� A window is legal if that window does not violate the actions
speci�ed by the M %s transition function� In other words� a window is legal if it might appear
when each con�guration correctly follows another� By a proved claim in the the proof of the

��

Cook�Levin Theorem we know that� if the top row of the table is the start con�guration and
every window in the table is legal� each row of the table is a con�guration that legally follows
the preceding one� We encode a set of con�gurations C� � � �Cl as a single string� with the
con�gurations separated from each other by the ' symbol as shown in the following �gure�

' � �z �
C�

' � �z �
C�

' � � �' ��z�
Cl

'

Now� we can describe the set of words in � with at least one illegal window with the
following regular expression�

 �B �

where
B �

�
bad	abc�def

abc 	n
k��
def�

Clearly� the set of con�guration sequences with no illegal windows is described by

� �B �
c�

What we need now� is be able to extract from the set of sequences of this form� an accepting
computation history for the input w� We already have assured that there is not any illegal
window� After that� we need two more things� the start con�guration C� must be

'q�w� � � � wn t � � �t� �z �
nk�n

'�

where w � w� � � � wn� and there must appear a symbol qaccept� We encapture the condition
about C� by the regular expression

A� � 'q�w� � � � wn t
nk�n ' ��

and the condition that there should be an accepting con�guration by the regular expresion

A� � �qaccept
��

Putting A� and A� together we have the following regular expression

A � A� �A� � 'q�w� � � � wn t
nk�n ' �qaccept

��

Summarising� there is an accepting computation of M on input w if and only if

A � � �B �
c �� ��

We �nish the proof by emphasizing that the size of the above expression is polynomial�

��

