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Abstract. All the languages for querying semistructured data and the
web use as an integral part regular expressions. Based on practical obser-
vations, finding the paths that satisfy those regular expressions is very
expensive. In this paper, we introduce the “maximal partial rewritings”
(MPR’s) for regular path queries using views. The MPR’s are always
exact and more useful for the optimization of the regular path queries
than other rewritings from previously known methods. We develop an
algorithm for computing MPR’s and prove, through a complexity theo-
retic analysis, that our algorithm is essentially optimal. Also, we present
query answering algorithms that utilize exact partial rewritings for reg-
ular path queries and conjunctive regular path queries respectively.

1 Introduction

Semistructured data are self-describing collections, whose structure can naturally
model irregularities that cannot be captured by relational or object-oriented data
models [1]. This kind of data is usually best formalized in terms of labeled graphs,
where the graphs represent data found in many useful applications such as web
information systems, XML data repositories, digital libraries, communication
networks, and so on. Virtually, all the query languages for semi-structured data
provide the possibility for the user to query the database through regular expres-
sions. The design of query languages using regular path expressions, is based on
the observation that many of the recursive queries that arise in practice amount
to graph traversals. These queries are in essence graph patterns, and the answers
to the query are subgraphs of the database that match the given pattern [17,7,
3,4].

For example, for answering a query containing in it the regular expression
( ∗ ·article) ·( ∗ ·ref · ∗ ·(abiteboul +vianu)), one should find all the paths having
at some point an edge labeled article, followed by any number of other edges,
then by an edge ref , and finally by an edge labeled with abiteboul or vianu.

Based on practical observations, the most expensive part of answering queries
on semistructured data is to find those graph patterns described by regular
expressions. This is because a regular expression can describe arbitrarily long
paths in the database, which means in turn an arbitrary number of physical
accesses. Hence, it is clear that having a good optimizer for answering regular
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path queries is very important. This optimizer can be used for the broader classes
of query languages for semistructured data, as we illustrate in the paper.

In semistructured data as well as in other data models, such as relational
and “object oriented,” the importance of utilizing views is well recognized [16,
3,15,18]. Simply stated the problem is: Given a query Q and a set of views
{V1, . . . , Vn}, find a representation (rewriting) of Q by means of the views and
then answer the query on the basis of this representation.

The most notable methods for obtaining rewritings for regular path queries
are by Calvanese et al in [3,5,6]. However, these methods rewrite –using views–
only complete words of the query. But in practice, the cases in which we can
infer from the views full words for the query, are very “ideal.” The views can
cover partial words that can be satisfactorily long for using them in optimization,
but if they are not complete words, they are ignored by the above mentioned
methods. It would however be desirable to have a partial rewriting in order to
capture and utilize all the information provided by the views.

The problem of computing a partial rewriting is initially treated by Calvanese
et at in [3]. There this problem is considered as an extension of the complete
rewriting, enriching the set of the views with new elementary one-symbol views,
chosen among the database relations (or symbols). The choice of the new ele-
mentary views is done in a brute force way, using a cost criterion depending on
the application. However, there are cases when the algorithm of [3] for comput-
ing partial rewritings gives “too much” (in a sense to be made precise later). It
essentially contains redundant un-rewritten (sub)words from the query.

In a previous paper [10], the present authors presented another algorithm for
computing contained partial rewritings. Using that algorithm we avoid getting
“too much,” but unfortunately, the rewriting is not guaranteed to be exact,
which diminishes its usability.

In this paper we will introduce the “maximal partial rewritings” (MPR’s) for
regular path queries using views. We will show that they don’t give “too much,”
that they are always exact and more useful for the optimization of the regular
path queries.

Then, we will present an algorithm that, when using exact partial rewrit-
ings, optimizes the evaluation of regular path queries to a database. We also
explore the use of the partial rewritings for the optimization of the wider class
of conjunctive regular path queries (CRPQ’s). We introduce the “conjunctive
exact partial rewritings” (CEPR’s) and present an algorithm for utilizing them
in CRPQ evaluation.

Finally, through a complexity theoretic analysis, we prove that our algorithm
for computing the “maximal partial rewritings” is essentially optimal.

Due to space limitations, the proofs of some theorems and lemmas are omit-
ted. These proofs appear in the full version of the paper [12].

2 Background

Semistructured databases. We consider a database to be an edge labeled
graph. This graph model is typical in semistructured data, where the nodes of
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the database graph represent the objects and the edges represent the attributes
of the objects, or relationships between the objects.

Formally, we assume that we have a universe of objects D and a finite alpha-
bet ∆, called the database alphabet. Objects of D will be denoted a, b, c, a′, b′,
. . . , a1, b2, . . ., etc. Elements of ∆ will be denoted R, S, T, R′, S′, . . . , R1, S1, . . .,
etc.

A database DB over (D, ∆) is a pair (N, E), where N ⊆ D is a set of nodes
and E ⊆ N × ∆ × N is a set of directed edges labeled with symbols from ∆.

Queries and rewritings of queries using views. A regular path query Q is a
finite or infinite regular language over the alphabet ∆. Let Q be a regular path
query, and DB = (N, E) a database. Then the answer to Q on DB is defined as:

ans(Q, DB) = {(a, b) ∈ N2 : a
W−→ b for some W ∈ Q}.

Let V = {V1, . . . , Vn} be a set of view definitions with each Vi being a finite or
infinite regular language over ∆. Associated with each view definition Vi there is
a view name vi. We call the set Ω = {v1, . . . , vn} the outer or view alphabet. For
each vi ∈ Ω, we set def (vi) = Vi. The substitution def associates with each view
name vi, in the Ω alphabet, the language Vi. Also, we extend the substitution
def to the ∆ alphabet associating each symbol with itself. The substitution
def is applied to words, languages, and regular expressions, over Ω ∪ ∆ in the
usual way (see e. g. [13]). Sometimes we need to refer to regular expressions
representing the languages Q and Vi. In order to simplify the notation, we will
blur the distinction between the regular expressions and the languages that they
represent.

The maximally contained rewriting, of a user query Q using V (MCRV(Q)),
is the language Q′ over Ω that includes all the words vi1 . . . vik

∈ Ω∗, such that

def(vi1 . . . vik
) ⊆ Q.1

The MCRV(Q) can be empty even if the desired answer is not. Suppose,
for example, that the query Q is Q = R1 . . . R100 and we have available two
views V1 and V2, where V1 = R1 . . . R49 and V2 = R51 . . . R100. It is easy to
see that MCRV(Q) is empty. However, depending on the application, a “partial
rewriting” such as v1R50v2 could be useful. In the next section we develop a
formal algebraic framework for the partial rewritings. In sections 5 and 6 we
demonstrate the usefulness of the partial rewritings in query optimization.

3 Partial Rewritings

Let L be a language and M an ε-free language, both of them over some alphabet
∆. Let m be a symbol outside ∆ and set def (m) = M . A partial M -rewriting of
1 It is easy to see that this definition of MCRV(Q) matches exactly the language of

the output automaton from Theorem 1 in [3], which is the rewriting as defined there,
with respect to the view alphabet.
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L is a language L′ over ∆ ∪ {m}, such that def (L′) ⊆ L. The partial rewriting
is said to be exact, if def (L′) = L. Since the (complete) rewritings, i.e. the ones
that use only the m symbol, are special cases of the partial rewritings, we will
blur the distinction between them and call the partial rewritings just rewritings.

It is clear that there can be several M -rewritings of the same language L. In
order to compare different rewritings, we introduce a partial order between the
languages over ∆∪{m}. With this partial order we want to capture the intuition
that the more subwords on the ∆-alphabet that have been replaced by m in a
rewriting, the “bigger” (and “better”) the rewriting.

Let L1 and L2 be languages over ∆∪{m}. We define L1 to be M -smaller than
L2, denoted L1 ≤M L2, if it is possible to substitute by m some (not necessarily
all) occurrences of words over M occurring as subwords in L1, and obtain L2 as
a result.

Obviously ≤M is transitive and reflexive. It is not antisymmetric, as for
instance {mRR, mm, RRRR} ≤M {mm, RRRR}, and {mRR, mm, RRRR}
≥M {mm, RRRR}, when M is for example {RR}. However, if we define L1 ≡M

L2 iff L1 ≤M L2 and L2 ≤M L1, we will get a partial order on the equivalence
classes.

Notably, we have that if a set L′ is ≤M -maximal, then its equivalence class
is singleton. To show this, we first present the following theorem.

Theorem 1. Let L′ be a language on ∆ ∪ {m}. Then L′ is ≤M -maximal, if
and only if, there does not exist a word W ∈ L′, such that W = W1W2W3, and
W2 ∈ M .

Corollary 1. Let L′ be a language on ∆ ∪ {m}. If L′ is ≤M -maximal, then its
≡M -equivalence class is a singleton.

Now, consider this partial order restricted to the set of all the M -rewritings of
a language L. We will denote the restricted partial order with ≤L

M . Obviously, we
are interested in the ≤L

M -maximal M -rewritings of L. With a similar reasoning
as before, we can prove the next theorem and corollary. The main difference is
that we cannot now replace just any subword which is a word in M . Naturally,
a word W = W1W2W3, where W2 ∈ M and def (W1mW3) ⊆ L, is not yet an
“optimal” word, and we call W2 a subword eligible for replacement.

Theorem 2. Let L′ be a rewriting of L on ∆ ∪ {m}. Then L′ is ≤L
M -maximal,

if and only if, there does not exist a word W ∈ L′, such that W = W1W2W3,
where W2 ∈ M , and def (W1mW3) ⊆ L.

Corollary 2. Let L′ be a rewriting on ∆ ∪ {m}. If L′ is ≤L
M -maximal, then its

≡L
M -equivalence class is a singleton.

Also, we require exactness for a rewriting. Only then a rewriting becomes
useful for query optimization [4,11].

A rewriting that is both ≤L
M -maximal and exact is the union of all ≤L

M -
maximal M -rewritings of L. We call this rewriting the maximal partial M -
rewriting of L, and denote it with MPRM (L).



246 G. Grahne and A. Thomo

From all the above, we can see that the MPRM (L) is the set of all the words
on ∆ ∪ {m} with no subword for potential “contained replacement.”

Example 1. Let M = {RSR, S}, and

L = {RSRS, SRSR, RSRRSR, SS, SRSRS, SSS}.

Then
MPRM (L) = {mm, SmS}.

Here, mm is obtained from RSRS, SRSR, RSRRSR, or SS. The word SmS
is obtained from SRSRS or SSS. There are no more eligible subwords for re-
placement. For instance, replacing subwords in SmS that belong to M , would
violate the containment condition necessary for being a rewriting.

Formally, we have that:

Theorem 3. The rewriting MPRM (L) is ≤L
M -maximal and exact.

We can give a natural generalization of the definition of the maximal partial
M-rewriting for the case when we like to replace subwords not from one language
only, but from a finite set of languages (such as a finite set of view definitions). For
this purpose, suppose we are given the ε-free view languages V = {V1, . . . , Vn}
and a target query language Q, all of them over the alphabet ∆. Also, consider
the view alphabet Ω = {v1, . . . , vn}, for which as defined in Section 2, we have
def (vi) = Vi, for i ∈ [1, n]. A partial V-rewriting of Q is a language Q′ over ∆∪Ω,
such that def (Q′) ⊆ Q. The partial rewriting is said to be exact if def (Q′) = Q.
Then, in order to compare the rewriting we define analogously the partial order
≤V on (∆ ∪ Ω)∗ as follows.

Let Q1 and Q2 be languages over ∆∪Ω. We define Q1 to be V-smaller than
Q2, denoted Q1 ≤V Q2, if it is possible to substitute by vi1 ,. . .,vik

some (not
necessarily all) occurrences of words over Vi1 ,. . .,Vik

respectively, occurring as
subwords in Q1, and obtain Q2 as a result.

As before, we restrict this partial order to the set of all the V-rewritings of a
language Q. Similarly, we denote the restricted partial order with ≤Q

V. Finally,
we define the maximal partial V-rewriting of Q, denoted MPRV(Q), to be the
union of all ≤Q

V-maximal V-rewritings Q′ of Q. Clearly, as in Theorem 3, we
can show that the MPRV(Q) is ≤Q

V-maximal and exact.
We will compare in the following the MPR’s with the partial rewritings pro-

posed in the literature. We begin with the partial rewriting of [3]. In that paper,
candidate sub-alphabets ∆′ ⊆ ∆ are selected using some cost criteria, and then
the symbols of ∆′ are considered as new elementary one-symbol views. Note that
there are exponentially many candidate sub-alphabets. Each time, using the al-
gorithm presented in [3], a rewriting is computed and after that its exactness is
tested. However, the algorithm used, although very suitable for computing all
the rewritings in the view alphabet Ω, can compute “non-optimal” ∆∪Ω words
when it is used for computing partial rewritings. As an example, consider the
regular path query Q = R1R2 + R5

2 and two views V1 = R1 and V2 = R5
2. Then,
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the algorithm of [3] will give as partial rewriting V1R2 + V2 + R5
2, which has the

redundant “non-optimal” word R5
2. As a consequence, the partial rewriting of

[3] is not always ≤Q
V-maximal. We call the partial rewriting of [3] the maximally

contained partial rewriting or MCPRV because it contains all the words W over
∆′ ∪Ω, such that def (W ) ⊆ Q. Observe here that the maximality in this rewrit-
ing is with respect to the containment of ∆′ ∪ Ω words and not really to their
optimality regarding the non-view symbols.

Now, let’s consider the partial rewriting presented in [11]. This rewriting is
the union of all ≤V-maximal V-rewritings of Q. By Theorem 1 we have that
this is the set of all “mixed” words W on the alphabet Ω ∪ ∆ with no subword
in V1 ∪ · · · ∪ Vn, such that their substitution by def is contained in the query Q.
We call this set exhaustive lower partial rewriting, or ELPRV(Q), because we
replace subwords of Q with view symbols thinking only about the optimality of
words with regard to the non-view symbols, but not caring about the exactness
of the rewriting. Clearly, since any ≤V-maximal rewriting is also ≤Q

V-maximal,
the result is that we get always a ≤Q

V-maximal rewriting, but its exactness is not
guaranteed.

Finally, MPRV(Q) is a rewriting that satisfies both the optimality with re-
gard to the non-view symbols and the exactness. Summarizing, and also includ-
ing the maximally contained (complete) rewriting MCRV in the comparison,
we have the following table.

≤Q
V-maximality Exactness

MCR [3] YES NO
MCPR [3] NO YES
ELPR [11] YES NO
MPR YES YES

4 Computing the Maximal Partial Rewriting

To this end, we will first give a characterization of the maximal partial M -
rewriting of a language L. The construction in the proof of our characterization
provides the basic algorithm for computing the rewriting MPRM (L) on a give
regular language L.

The construction is based on finite transducers. A finite transducer T =
(S, I, O, δ, s0, F ) consists of a finite set of states S, an input alphabet I, and an
output alphabet O, a starting state s0, a set of final states F , and a transition-
output relation δ ⊆ S × I∗ × S × O∗. Intuitively, for instance (s0, U, s1, W ) ∈
δ means that if the transducer is in state s0 and reads word U it can go to
state s1 and emit the word W . For a given word U ∈ I∗, we say that a word
W ∈ O∗ is an output of T for U if there exists a sequence (s0, U1, s1, W1) ∈ δ,
(s1, U2, s2, W2) ∈ δ, . . . , (sn−1, Un, sn, Wn) ∈ δ of state transitions in T , such
that sn ∈ F , U = U1 . . . Un, and W = W1 . . . Wn. We write W ∈ T (U), where
T (U) denotes set of all outputs of T for the input word U . For a language L ⊆ I∗

we define T (L) =
⋃

U∈L T (U). It is well known that T (L) is regular whenever L
is.
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We are now in a position to state our characterization theorem.

Theorem 4. Let L and M be regular languages over an alphabet ∆. There exists
a finite transducer T and a regular language M ′, such that

MPRM (L) = (T (Lc))c ∩ M ′,

where (.)c denotes set complement.

Proof. Let A = (S, ∆, δ, s0, F ) be a nondeterministic finite automaton that ac-
cepts the language M . Let us consider the finite transducer:

T = (S ∪ {s′
0}, ∆, ∆ ∪ {m}, δ′, s′

0, {s′
0}),

where δ′, written as a relation, is

δ′ = {(s, R, s′, ε) : (s, R, s′) ∈ δ} ∪
{(s′

0, R, s′
0, R) : R ∈ ∆} ∪

{(s′
0, R, s, ε) : (s0, R, s) ∈ δ} ∪

{(s′
0, R, s′

0, m) : (s0, R, s) ∈ δ and s ∈ F} ∪
{(s, R, s′

0, m) : (s, R, s′) ∈ δ and s′ ∈ F}.

Intuitively, transitions in the first set of δ′ are the transitions of the “old” au-
tomaton, modified so as to produce ε as output. Transitions in the second set
mean that “if we like, we can leave everything unchanged,” i.e. each symbol gives
itself as output. Transitions in the third set are for jumping non-deterministically
from the new initial state s′

0 to the states of the old automaton A, that are reach-
able in one step from the old initial state s0. These transitions give ε as output.
Transitions in the fourth set are for handling special cases, when from the old
initial state s0, an old final state can be reached in one step. In these cases we
can replace the one symbol words accepted by A with the special symbol m.
Finally, the transitions of the fifth set are the most significant. Their meaning
is: in a state, where the old automaton has a transition by a symbol, say R, to
an old final state, there will be, in the transducer, an additional transition R/m
to s′

0, which is also the (only) final state of T . Observe that, if the transducer T
decides to leave the state s′

0 while a suffix U of the input string is unscanned,
and enter the old automaton A, then it can return back only if there is a prefix
U ′ of U , such that U ′ ∈ L(A). In such a case, the transducer T replaces U ′ with
the special symbol m.

Given a word of W ∈ ∆∗ as input, the finite transducer T replaces arbitrarily
many occurrences of words of M in W with the special symbol m. For an exam-
ple, suppose M is given by the automaton in Figure 1, top. The corresponding
finite transducer is shown in the same figure, bottom. It consists of the automa-
ton for M , whose transitions now produce as output ε, plus the state s′

0, and
the additional transitions, which are drawn with dashed arrows.

If L′ is a language on ∆, it is straightforward to verify that

T (L′) = L′∪ {U1mU2m . . . mUk :
for some U ∈ L′ and words Wi ∈ M,

U = U1W1U2W2 . . . Wk−1Uk}.



New Rewritings and Optimizations for Regular Path Queries 249
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Fig. 1. An example of the construction for a replacement transducer

Recall that, we have def (m) = M , and def (R) = R for each R ∈ ∆. From the
above, we can also easily characterize the set T (L′) from another point of view.
Namely, T (L′) is the set of all words W on ∆∪{m}, such that def (W )∩L′ 	= ∅.

Now, let’s consider the transduction T (Lc). As characterized above, T (Lc)
will be the set of all words W on ∆ ∪ {m} such that def (W ) ∩ Lc 	= ∅. Hence,
T (Lc))c, being the complement of this set, will contain all the ∆ ∪ {m} words,
such that all the ∆-words in their substitution by def will be contained in L.
This is the containment condition for a word on ∆ ∪ {m} to be in a rewriting.
Clearly, T (Lc))c is a rewriting, and namely, it is the union of all the M -rewritings
of L. Hence, MPRM (L) ⊆ T (Lc))c.

However, in order to compute MPRM (L), what we like is not a contained
arbitrary, but a contained exhaustive replacement of words from M . To achieve
this goal, we should filter out from the set T (Lc)c, the words having eligible
subwords for replacements (that do not violate the containment constraint). For
this, consider the set (∆ ∪ {m})∗M(∆ ∪ {m})∗. This is the set of all the words
on ∆ ∪ {m} that have at least one potentially eligible subword for replacement.
But, as said before, this replacement should be “contained” in the language L.
Formally speaking, we are interested in solving the following language equation.
Find the biggest languages X, Y ⊆ (∆ ∪ {m})∗ such that

XMY ⊆ (T (Lc))c.

Then, if we are able to find such X and Y , we have that XMY is the set of all
the words on ∆∪{m}, that still have eligible subwords for replacement. Clearly,
we filter out such words and have that

MPRM (L) = (T (Lc))c ∩ (XMY )c.
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So, let’s examine how to solve the above language equation. For this, consider
another special symbol m′, such that m′ 	∈ ∆ ∪ {m}, and the substitution def ′ :
∆ ∪ {m} ∪ {m′} −→ ∆ ∪ {m}, such that

def ′(m′) = M, def ′(m) = m, and def ′(R) = R for R ∈ ∆.

Now, we build a transducer T ′ in the same way as we did for the transducer T ,
but for the extended alphabet ∆∪{m} and considering m′ as the special symbol.
Reasoning similarly as before, if we transduce the complement of (T (Lc))c i.e.
T (Lc), we have that (T ′(T (Lc)))c is the set of all words W ∈ ∆ ∪ {m} ∪ {m′},
such that def ′(W ) ⊆ (T (Lc))c. However, in order to solve the above language
equation, we will be interested in the subset of words in (T ′(T (Lc)))c that contain
exactly one special symbol m′. To get this subset, we filter out the un-wanted
words by intersecting as in the following

(T ′(T (Lc)))c ∩ (∆ ∪ {m})∗m′(∆ ∪ {m})∗.

The above is the set of all words W = W1m
′W2, where W1, W2 ∈ (∆ ∪ {m})∗,

and def ′(W ) ⊆ (T (Lc))c. Consider now the transducers Tl and Tr that erase
from a word W ∈ (∆ ∪ {m})∗m′(∆ ∪ {m})∗ the subword in (∆ ∪ {m})∗m′ and
m′(∆ ∪ {m})∗ respectively. Finally, we set

X = Tr((T ′(T (Lc)))c ∩ (∆ ∪ {m})∗m′(∆ ∪ {m})∗),

and
Y = Tl((T ′(T (Lc)))c ∩ (∆ ∪ {m})∗m′(∆ ∪ {m})∗).

It is easy to see now that X and Y are regular languages and the maximal
solution to the above equation. ��

As a generalization of Theorem 4, we can give the following result about the
maximal partial V-rewriting, of a query Q with respect to a set V = {V1, . . . , Vn}
of view definitions.

Theorem 5. Given a regular path query Q, the MPRV(Q) can be effectively
computed.

5 Optimizing Regular Path Queries Using Partial
Rewritings

In this section we show how to utilize partial rewritings in query optimization
in a scenario where we have available a set of precomputed views, as well as the
database itself. The views could be materialized views in a warehouse, or locally
cached results from previous queries in a client/server environment. In this sce-
nario, the views are assumed to be exact, and we are interested in answering the
query by consulting the views as far as possible, and by accessing the database
only when necessary.
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Formally, let V = {V1, . . . , Vn} be a set of view definitions, and let Ω =
{v1, . . . , vn} be the view alphabet as before. We define the view-graph V to be a
database over (D, Ω) induced by the set

⋃

i∈{1,...,n}
{(a, vi, b) : (a, b) ∈ ans(Vi, DB)}.

of Ω-labeled edges.
It has been shown in [4] that, given a query Q, if the MCRV(Q) is exact,

then ans(Q, DB) = ans(MCRV(Q), V). However, the cases when we are able
to obtain an exact complete rewriting of the query using the views could be rare
in practice. In general, we have in the views only part of the information needed
to answer the query. In the following, we will use exact partial rewritings not to
completely avoid accessing the database, but to minimize such access as much
as possible. We can use an exact partial rewriting Q′ to evaluate the query on
the view-graph, accessing the database in a “lazy” fashion only when necessary.

The intuition behind our algorithm is that we use the view-graph as it was
the database, and we extend it “on demand” as the navigation, guided by an
automaton for Q′, requires. In fact, if we need to access a node in the database,
we add to the view graph all (not only what we need) the outgoing edges and
the neighboring nodes. This was motivated by considering the database as a set
of HTML (or XML) pages related to each other through links. Accessing a page
in the web could be time consuming, but subsequently, parsing the page text
in the main memory for finding the links and the addresses, where these links
point, is efficient. Since our queries could be recursive, a page (node) could be
visited many times, and if it has already been fetched before from the database,
along with all of its links, then there is no need to consult the database again.
So, during the execution of the algorithm, for each page x that we fetch from
the database, we create a flag Expandedx and set it to true, meaning that now
we have full local information for this page.

Algorithm 1
Input: An exact partial rewriting Q′ for a query Q and a database DB .
Output: The answer to the query Q on database DB .
Method: First construct an automaton AQ′ for Q′. Let s0 be the initial state in
AQ′ . Then, for each node a ∈ N , we compute a set Reacha as follows.

1. Initialize Reacha to {(a, s0)}.

2. For each transition s0
R−→ s in AQ′ , access DB and add to V the subgraph of

DB induced by all the edges originating from the nodes b, which have some
outgoing edges R. For each such node b, create a flag Expandedb, and set it
to true.

3. Repeat 4 until Reacha no longer changes.
4. Choose a pair (b, s) ∈ Reacha.

a) If there is a transition s
vi−→ s′ in AQ′ , and there is an edge b

vi−→ b′ in
V, then add the pair (b′, s′) to Reacha.
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b) Similarly, if there is a transition s
R−→ s′ in AQ′ , and there is an edge

b
R−→ b′ in V, then add the pair (b′, s′) to Reacha.

c) Otherwise, if there is a transition s
R−→ s′ in AQ′ , but there is not an

edge b
R−→ b′ in V, and there is not a flag Expandedb = true, then access

the database and add to V the subgraph of DB induced by all the edges
originating from b. Create a flag Expandedb, and set it to true.

Set eval(Q′, V,DB) = {(a, b) : (b, s) ∈ Reacha, and s is a final state in AQ′}. ��
It is easy to see that the following theorem is true.

Theorem 6. Given a query Q and a set V of exact cached views, using an exact
partial rewriting Q′, we have that

eval(Q′, V,DB) = ans(Q,DB).

6 Optimizing Conjunctive Regular Path Queries

A conjunctive regular path query (CRPQ) Q is an expression of the form

Q(x1, . . . , xl) : −y1E1z1, . . . , ykEkzk,

where x1, . . . , xl, y1, . . . , yk, z1, . . . , zk are (not necessarily all distinct) variables
over the universe of objects D, such that all the distinguished (head) variables
x1, . . . , xl occur in the body, i. e. each xi is some y or z, and E1, . . . , Ek are
regular languages (or regular path queries, RPQ) over the database alphabet ∆.
We call the conjunctions yEz of a CRPQ, regular path atoms, or simply atoms.

The answer set ans(Q,DB) to a CRPQ Q over a database DB = (N, E) is
the set of tuples (a1, . . . , al) of nodes of DB, such that there is a total mapping τ
from y1, . . . , yk, z1, . . . , zk to N with τ(xi) = ai for every distinguished variable
xi of Q, and (τ(y), τ(z)) ∈ ans(E,DB) for every atom yEz in Q.

We say for an atom yEz, when τ(y) = a and τ(z) = b, that y and z have
been bound to the objects a and b respectively.

Suppose now, that we have available a set V = {V1, . . . , Vn} of conjunctive
regular path views, which are defined as

Vi(xi1, . . . , xili) : −yi1Ei1zi1, . . . , yikiEikiziki ,

for i ∈ [1, n]. Let E be the set of all Eij above, for i ∈ [1, n], and Ω be a set of
eij 	∈ ∆ corresponding symbols. Then, we define the conjunctive exact partial V-
rewriting, or CEPRV(Q), of a CRPQ Q with respect to a set V of conjunctive
regular path view definitions, as

CEPRV(x1, . . . , xl) : −y1E
′
1z1, . . . , ykE′

kzk,

where E′
i, for i ∈ [1, k], is an exact partial rewriting of the regular language Ei

with respect to E, with Ω as the corresponding set of special symbols.
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Suppose that the sub-mechanism for answering the regular path atoms of
the CRPQ’s remembers the regular expressions and caches the corresponding
answer sets of the regular path atoms in the recently processed CRPQ’s. Observe
that the cached answer sets of the regular path atoms Eij do not necessarily
contain the full set ans(Eij ,DB), but only those pairs that were called for, by
the sideways information passing mechanism used. To formalize the “fullness”
of a cached answer set, we introduce the notions of the “global completeness”
and “local completeness,” for the subsets of ans(E, DB), for some E.

Let P be a subset of ans(E, DB), for some E and DB . Then P is said to be
globally complete if P = ans(E, DB). On the other hand, P is locally complete
with respect to a node a, if P ⊇ σ$1=a(ans(E, DB)). If P is locally complete wrt
all nodes in π$1(P ), we say that P is locally complete2.

We observe that, if the query processor can traverse the database graph only
in the forward direction (as is the case in the web, see [2]), then the cached
answer set of any atom yEijz, for which z is not already bound to some objects,
is locally complete. For simplicity, we call the atoms locally complete, when we
have computed for them locally complete answer sets. As we will see, the locally
complete atoms can be very useful in the query optimization.

Now, let’s consider the atoms, which have the z variable already bound to
some objects. We observe that, for such atoms, we could have computed locally
incomplete answer sets. In order to see this, suppose for example, that the vari-
able z has been bound to the objects b and c. Then, if the variable y bounds to
an object, say a, the RPQ answering sub-mechanism using “cut”-like constructs,
can stop the evaluation after computing in the answer, starting to navigate from
a, the objects b and c. But, the object a could be connected with paths spelling
words in the same regular language, to other database objects besides b and c.

However, if the variable z has been also bound to another object, say d,
which cannot be reached from a, by following a path spelling a word in Eij , then
we inevitably have to compute a locally complete answer set for the (sub)atom
aEijz, in order to reject the pair (a, d). I such a case, the “cut”-like constructs
do not have have a chance to execute. So, aEijz is locally complete, and we
cache its answer set for future optimizations.

Now, let’s see how we can optimize the answering of the conjunctive regular
path queries using conjunctive exact partial rewritings.

Consider the regular path atom yEijz in some recently processed view Vi.
As explained before, if the variable z is not bound to some database object,
then yEijz is locally complete. Otherwise, we consider all the (sub)atoms aEijz,
which are locally complete. Let’s denote with cacheij , the cached answer set of
the locally complete atom yEijz, or if otherwise, the union of the cached answer
sets of its locally complete (sub)atoms. Then, we define the atom-view-graph V
to be a database over (D, Ω) induced by the set

2 We consider for the simplicity of notations a set of object pairs as a binary relational
table.
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⋃

i∈{1,...,n}
{(a, eij , b) : (a, b) ∈ cacheij}.

of Ω-labeled edges.3

The evaluation will alternate between the database-graph and atom-view-
graph. Suppose that we want to answer the atom yEz and y has already been
bound to a node, say a. We now need to compute the nodes reachable from a, by
a path spelling a word in E. Recall that for E we have computed a corresponding
exact rewriting E′. We start by answering aE′z on DB. Intuitively, when during
the navigation we are in a node b, and the regular expression for E′ requires
an Ω-symbol, say eij , to be matched, then we look at the atom-view-graph V.
If there is a node b in V, and in that node we find outgoing eij edges, then we
advance the navigation in the atom-view-graph. Since the cached answer for Eij

is locally complete, we are sure that we get all the answers had we answered Eij

directly in the database starting from b.
On the other hand, if we do not find an object b in V, or even if we find b in

V, but there are no outgoing edges labeled with eij , then we evaluate Eij , start-
ing from b in the database graph, and enrich the atom-view-graph accordingly.
Clearly, we do not add by this operation any overhead for answering parts of
some new ∆∗ word, that is not in E, because the rewriting is exact. Formally,
we have the following algorithm for answering aEz on the basis of E′.

Algorithm 2
Input: An exact rewriting E′ for the (sub)atom aEz, and a database DB .
Output: The answer to the (sub)atom aEz on database DB .
Method: First construct an automaton AE′ for E′. Let s0 be the initial state in
AE′ . We compute the set Reacha as follows.

1. Initialize Reacha to {(a, s0)}.
2. Repeat 3 until Reacha no longer changes.
3. Choose a pair (b, s) ∈ Reacha.

a) If there is a transition s
eij−→ s′ in AE′ , and there is an edge b

eij−→ b′ in
V, then add the pair (b′, s′) to Reacha.

b) Otherwise, if there is a transition s
eij−→ s′ in AE′ , but there is not an

edge b
eij−→ b′ in V, answer bEijz on DB and enrich V accordingly.

c) If there is a transition s
R−→ s′ in AE′ , and there is an edge b

R−→ b′ in
the database DB , then add the pair (b′, s′) to Reacha.

Finally, set eval(E′, a,DB) = {(a, b) : (b, s) ∈ Reacha, and s is a final state in
A}. ��

It is easy to see that the following theorem is true.

3 From another point of view, we can also see that a regular path atom (or (sub)atom),
along with its locally complete answer set, is nothing else but a local node constraint
as defined in [2].
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Theorem 7. Given a CRPQ Q and a set V of views as above, using the rewrit-
ing CEPRV(Q), we have that for some regular atom E in Q, the answer to aEz
equals eval(E′, a,DB).

Now, for the case of regular path atoms aEz, where the variable z has already
been bound to some objects, we slightly modify the above algorithm to evaluate
the answer to such atoms as well. For this, let B be the set of objects where
z has been bound. Then, in the above algorithm we incrementally compute in
each step the set eval(E′, a,DB) and change the loop (2) to

Repeat 3 until Reacha no longer changes or π$2(eval(E′, a,DB)) equals B.

We note that, the second condition of the loop termination is there for re-
stricting the search space, in case we find (or verify) that we can reach from a
all the objects in B by following paths, which spell words in E. Clearly, in this
case, the answer set of the atom aEz equals a × B. On the other hand, we also
stop if Reacha reaches a fixed point, and in this case the answer to the atom
aEz equals a × (π$2(eval(E′, a,DB)) ∩ B). In such a case, although the variable
z had already been bound, the set eval(E′, a,DB)) is fully computed and so, it
is locally complete.

Finally, if we set B = ∅, when the variable z has not been already bound
to some objects, then we can have a single RPQ-answer-and-cache algorithm.
This algorithm would compute the answer set to an atom yEz, by iterating over
all the objects a, where the variable y could be bound, and compute aEz by
using an exact partial rewriting aE′z, as described above. At the end, we check
whether the set Reacha has reached a fixed point. If yes, then we cache the
locally complete eval(E′, a,DB)), for future RPQ optimizations.

7 Complexity Analysis

Theorem 8. Given a language L and an ε-free language M both of them over
an alphabet ∆, the problem of generating the MPRM (L) is in 3EXPTIME.

From the above theorem, we can easily derive the following corollary, regard-
ing the upper complexity bound for the generation of the MPRV(Q) of a query
Q, with respect to a set V = {V1, . . . , Vn} of view definitions.

Corollary 3. Given a language Q and a set V = {V1, . . . , Vn} of view defini-
tions, the problem of generating the MPRV(Q) is in 3EXPTIME.

We emphasize here that the above complexity analysis is a worst case anal-
ysis. In fact, the above complexity comes from possible DFA’s state “blow up.”
However, despite these worst case possibilities, experimental results in [8], for
converting graphs into DFA’s, are encouraging, indicating that for the majority
of the cases, the running time is very reasonable and the resulting DFA’s are
significantly smaller than their sources. Also, observe that if the probability of
getting an exponential size DFA for an NFA is p << 1, then the probability of
getting a triple exponential “blow up” in our case would roughly be p3, which is
very small.
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Now, in order to prove that the above established upper bound is essentially
optimal we will need the following constructions and theorems. Consider the set

(T (Qc))c ∩ (
(∆ ∪ Ω)∗ (V1 ∪ . . . ∪ Vn)(∆ ∪ Ω)∗)c

,

where the transducer T is defined as in Theorem 5. This is in essence the ex-
haustive lower partial rewriting, or ELPRV(Q) of [11], which is also discussed
in Section 3. It is the set of all “mixed” words W on the alphabet Ω ∪ ∆, with
no subword in V1 ∪ · · · ∪ Vn, such that their substitution by def is contained
in the query Q. Obviously, def (ELPRV(Q)) ⊆ Q and we are interested in the
complexity of testing its exactness with respect to the query Q 4. We prove the
following theorem regarding the upper bound of the above exactness problem.

Theorem 9. Given a query Q and a set V = {V1, . . . , Vn} of view definitions,
the problem of testing def (ELPRV(Q)) = Q is in 2EXPSPACE.

Proof. By Theorem 8 the automaton (T (Qc))c can exponentially “blow up” and
namely be of doubly exponential size. The automaton for

(
(∆ ∪ Ω)∗ (V1 ∪ . . . ∪ Vn)(∆ ∪ Ω)∗)c

can also exponentially “blow up” but its size can be up to single exponen-
tial. So, in total the automaton for ELPRV(Q) can be of up to doubly ex-
ponential size. Now, let’s consider def (ELPRV(Q)). For the substitution def
there exists a polynomial size transducer Tdef such that def (ELPRV(Q)) =
Tdef (ELPRV(Q)) [19,10]. Thus, the size of the automaton Tdef (ELPRV(Q))
will be polynomial on the size of the automaton for ELPRV(Q) i.e. it can be
doubly exponential on the size of the automaton for Q. Now, to test the exactness
def (ELPRV(Q)) = Q is in PSPACE with regard to the size of the automaton
for ELPRV(Q). So, in total we have that testing the exactness of ELPRV(Q)
is in 2EXPSPACE. ��

For the lower bound of the exactness def (ELPRV(Q)) = Q we will use the
maximally contained rewriting, MCRV(Q) of [3]. As mentioned in Section 2, the
MCRV(Q) is the set of all words W in Ω∗, such that def (W ) ∈ Q. In [3], the
exactness problem for the MCRV(Q) is proven to be 2EXPSPACE complete.
We will give in the following a reduction of the exactness problem for MCRV(Q)
to the exactness problem for ELPRV(Q).

Consider a query Q and a set V = {V1, . . . , Vn} of view definitions. Now,
consider the set V′ = {V ′

1 , . . . , V ′
n} of new view definitions, where V ′

i = $Vi$ for
i = [1, n] and $ 	∈ ∆∪Ω. Regarding the query Q, we will transform it into a new
query Q′ through a transduction. For this we construct the following transducer.

Let Ai = (Si, ∆, δi, s0i, Fi), for i ∈ [1, n] be n nondeterministic finite au-
tomata that accept the corresponding Vi languages. Let us consider the finite
transducer: T$$ = (S1 ∪ . . . ∪ Sn ∪ {s′

0}, ∆, ∆ ∪ {$}, δ′, s′
0, {s′

0}), where

δ′ = {(s, R, s′, R) : (s, R, s′) ∈ δi, i ∈ [1, n]} ∪
4 The complexity bounds for testing the exactness ELPRV(Q) are not discussed in

[11].
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{(s′
0, ε, s0i, $) : i ∈ [1, n]} ∪

{(s, ε, s′
0, $) : s ∈ Fi, i ∈ [1, n]}.

The transducer T$$ performs the following task: given a language L as input,
it produces as output all the words of L having inserted in them the symbol $
to mark the beginning and the end of a subword that belongs to Vi for some
i ∈ [1, n]. Moreover, only the words of L, which we can divide into a sequence
of subwords, such that each belongs to some view language, are transduced. All
the other L words are filtered out. Formally,

T$$(L) = {$U1$$U2$ . . . $Uk$ :
for some U in L, U = U1U2 . . . Uk

and ∀i ∈ [1, k] ∃j ∈ [1, n] such that Ui ∈ Vj}.

Theorem 10. Consider a query Q and a set V = {V1, . . . , Vn} of view defini-
tions. Construct Q and V′ = {V ′

1 , . . . , V ′
n} as above. Let Ω′ = {v′

1, . . . , v
′
n} and

def ′ be the usual view substitution on Ω′, i.e. def ′(v′
i) = V ′

i , for i ∈ [1, n]. Also,
let def $→ε be the substitution that erases the symbol $ from some language on
∆ ∪ {$}. Then, the following is true: the MCRV(Q) is exact if and only if

1. def $→ε(Q′) = Q, and
2. ELPRV′(Q′), with respect to V′ = {V ′

1 , . . . , V ′
n}, is exact.

Based on the above theorem we give the following theorem regarding the
optimality of the construction given in Theorem 9 for testing the exactness of
the ELPR of a query Q.

Theorem 11. Given a query Q and a set V = {V1, . . . , Vn} of view definitions,
the problem of testing def (ELPRV(Q)) = Q is 2EXPSPACE complete.

Finally, the following theorem shows the optimality of our algorithm for com-
puting the MPR of a query using a set of view definitions.

Theorem 12. The algorithm presented in Theorem 5 for computing the rewrit-
ing MPRV(Q) of a query Q given a set V = {V1, . . . , Vn} of view definitions,
is essentially optimal.

Proof. Consider the ELPRV(Q). Recall that this is the set of all “mixed” words
W on the alphabet Ω ∪ ∆, with no subword in V1 ∪ · · · ∪ Vn, such that their
substitution by def is contained in the query Q. So, such words qualify for in-
clusion in MPRV(Q). Hence, we have that ELPRV(Q) ⊆ CEPR(Q). On the
other hand, observe that if ELPRV(Q) is exact then we must have ELPRV(Q)
= MPRV(Q). Now, we can test the exactness of ELPRV(Q) by testing the
condition MPRV(Q) ⊆ ELPRV(Q), which is equivalent with the non empti-
ness of MPRV(Q) ∩ (ELPRV(Q))c. Since, by Theorem 9, we get a DFA for
ELPRV(Q), to complement does not add anything to the complexity of test-
ing the emptiness of the above intersection. Now, if we were able to generate
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the MPRV(Q) in, say, 2EXPTIME, and since we are able to generate the
ELPRV(Q) in 2EXPTIME, then we could test the exactness of ELPRV(Q)
in 2EXPTIME, which is impossible by Theorem 11, unless 2EXPTIME =
2EXPSPACE. ��
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