
Graph-XLL: a Graph Library for Extra Large Graph
Analytics on a Single Machine

Jian Wu, Venkatesh Srinivasan, Alex Thomo
Department of Computer Science, University of Victoria

Victoria, BC, V8P 5C2, Canada
{wujian, srinivas, thomo}@uvic.ca

Abstract—Graph libraries containing already implemented
algorithms are highly desired since users can conveniently use the
algorithms off-the-shelf to achieve fast analytics and prototyping,
rather than implementing the algorithms with lower-level APIs.
Besides the ease of use, the ability to efficiently process extra
large graphs is also required by users. The popular existing graph
libraries include the igraph R library and the NetworkX Python
library. Although these libraries provide many off-the-shelf
algorithms for users, the in-memory graph representation limits
their scalability for computing on large graphs. Therefore, in this
paper, we introduce Graph-XLL: a graph library implemented
using the WebGraph framework in a vertex-centric manner,
with much less memory requirement compared to igraph and
NetworkX. Scalable analytics for extra large graphs (up to tens
of millions of vertices and billions of edges) can be achieved on
a single consumer grade machine within a reasonable amount
of time. Such computation would cause out-of-memory error if
using igraph or NetworkX.

Index Terms—graph analytics, scalability, centrality

I. INTRODUCTION

Graph analytics are becoming increasingly important since
graphs are a proper abstraction for complex systems and thus
can be used in many areas such as social network analysis,
neural network analysis, public transportation routing, epi-
demiology [1]–[4], etc.

Notably, the Best-Paper-Award of VLDB 2018 was given
to the work of Sahu et. al. [5], which conducted a thorough
study of the needs of industry practitioners working with graph
data. Some of their most important findings, which motivate
our work, were as follows.

1) Many graphs are quite large, often containing more
than a billion edges. Namely, they found that these
graphs represent an enormously wide range of entities
and are used by organizations from small businesses to
large enterprises. They emphasize that this finding runs
counter to a common assumption that large graphs are
problematic only for large organizations such as Google,
Facebook, and Twitter.

2) The survey also found that scalability is the most press-
ing challenge faced by users and the ability to process
very large graphs efficiently is among the biggest limi-
tation of existing software.

3) The most common request they found was the addition
of algorithms that users could use off-the-shelf. Most
of software products provide lower-level programming
APIs using which users can compose graph algorithms.

However, they found that users of these software prod-
ucts find more value in directly using an already im-
plemented algorithm than implementing the algorithms
themselves.

The igraph R library and the NetworkX Python library
are some of the most popular existing graph libraries due to
their easy-to-use off-the-shelf feature [6], [7]. Both libraries
have implemented important algorithms which can be used
with simple function calls. However, they do not scale to
large graphs. The main reason for this is their assumption
that the graphs and their auxiliary data structures fit in main
memory. This unfortunately is not true for large graphs. Such
large graphs cannot be processed by igraph or NetworkX on
commodity machines which are ubiquitous among researchers
and small to medium businesses.

In this paper, we introduce Graph-XLL (https://graph-
xll.github.io), a graph library written in Java, with emphasis
on the scalability for extra large graph analytics. To address
the large memory footprint issue faced by igraph and Net-
workX, we use the WebGraph framework for the underlying
graph representation. WebGraph is a highly efficient graph
compression framework [8]. Instead of loading the complete
graph into the memory, WebGraph stores a memory-mapped
compressed graph on the hard drive. Furthermore, in Graph-
XLL, we implement the algorithms in a vertex-centric manner.
The vertex-centric method performs the graph computation
from the perspective of a single vertex and represents graph al-
gorithms as a sequence of iterations, or supersteps [9]. Vertices
can be processed independently, such as updating the values
by receiving the messages from the previous superstep and
“broadcasting” the values or messages for the next superstep.
In this computation model the computation can be performed
locally and does not require global information. Moreover,
vertices can be processed in parallel within each superstep,
which can greatly improve the performance.

While we have implemented a multitude of algorithms
in Graph-XLL, we focus in this paper on graph central-
ity measures. Namely, we showcase our implementations
for eigenvector, hub, authority, PageRank, and betweenness
centralities using the vertex-centric model. Other scalable
algorithms that we have implemented in Graph-XLL compute
triad-enumeration, core-decomposition, truss-decomposition,
feedback-arc-set, influential-users, and importance-based-
communities. There are no algorithms yet implemented for

the last four concepts in igraph or NetworkX despite them
being immensely popular concepts in graph analytics (cf. [10]–
[15]). For the description of our scalable algorithms for these
concepts, we refer the reader to [16]–[25]. On the other hand,
Graph-XLL still misses a few algorithms for computing the
diameter of the graph, cliques, and closeness. While igraph
and NetworkX have algorithms for them, they are not scalable.
The quest for scalable algorithms for computing the diameter,
cliques, and closeness is part of our future work.

The contributions of this work are summarized as follows:

• We implement various graph algorithms for centrality
analysis (e.g., eigenvector, hub and authority, PageRank
and betweenness) with the emphasis on the scalability to
achieve extra large graph processing up to tens of millions
of vertices and billions of edges.

• We perform a thorough experimental study to investigate
the scalability using different datasets and compare our
implementation with igraph and NetworkX in terms of
performance and memory consumption.

• We show that our implementation is capable of efficiently
analyzing extra large graphs on a single consumer-grade
machine.

II. ALGORITHMS IMPLEMENTATION

This section describes the algorithms implemented in
Graph-XLL. We focus on centrality algorithms since they are
the most commonly used algorithms for graph analytics. We
implement the algorithms in a vertex-centric manner. Compu-
tations are broken down to vertex level and are performed in
parallel.

A. Eigenvector, Hub, Authority and PageRank

The eigenvector centrality [26] is defined as a measure of
the influence of a vertex in a network.

Definition 1: Eigenvector Centrality (EC) of a vertex vi
in a graph G = (V,E) is defined as

EC(vi) =
1

λ

∑
vj∈IN(vi)

EC(vj), (1)

where IN(vi) is the set of v′is in-neighbours (vertices with
links to vi) and λ is a constant.

Similar measures of the influence of a vertex includes hub
centrality [27], authority centrality [27], and PageRank [28],
which are initially used to rate the importance of web pages.
The mathematical definitions are shown below.

Definition 2: Hub Centrality (HC) of a vertex vi in a graph
G = (V,E) is defined as

HC(vi) =
1

λ

∑
vj∈ON(vi)

∑
vk∈IN(vj)

HC(vk), (2)

where ON(vi) is the set of v′is out-neighbours (vertices with
links from vi), IN(vj) is the set of v′js in-neighbours (vertices
with links to vj), and λ is a constant.

Algorithm 1 PageRank Compute Function
1: function COMPUTE(G)
2: if superstep = 0 then
3: for v ∈ V do
4: PRprev[v] ← 1

n

5: residual← 1√
n

6: while residual > tolerance do
7: superstep← superstep+ 1
8: for v ∈ V do
9: sum← 0

10: for u ∈ IN(v) do
11: sum← sum+ PRprev[u]/out degree[u]

12: PRcurr[v]← 1−d
n + d · sum

13: residual← ‖PRcurr − PRprev‖
14: for v ∈ V do
15: PRprev[v]← PRcurr[v]

Definition 3: Authority Centrality (AC) of a vertex vi in
a graph G = (V,E) is defined as

AC(vi) =
1

λ

∑
vj∈IN(vi)

∑
vk∈ON(vj)

AC(vk), (3)

where IN(vi) is the set of v′is in-neighbours (vertices with
links to vi), ON(vj) is the set of v′js out-neighbours (vertices
with links from vj), and λ is a constant.

Definition 4: PageRank (PR) of a vertex vi in a graph
G = (V,E) is defined as

PR(vi) =
1− d
n

+ d
∑

vj∈IN(vi)

PR(vj)

D(vj)
, (4)

where d is the damping factor (around 0.85), n is the total
number of vertices, IN(vi) is the set of v′is in-neighbours
(vertices with links to vi), and D(vj) is the out-degree for vj .

The above equations show the intrinsic vertex-centric fea-
ture. The value of a vertex is only influenced by its neighbors
close to it. We present the pseudocode for PageRank com-
putation in Alg. 1. Other centrality computations are similar
to PageRank computation. All vertices are initialized with the
value of 1/n at superstep 0. n is the total number of vertices in
the graph. For the subsequent supersteps, each vertex will sum
all the messages (value divided by out-degree) received from
its neighbours and update its value by Eq. 4. We maintain
two arrays to record the vertex values for the previous and
current supersteps in the program. We first update the current
vertex value as shown in Step 10. Then Step 13 calculates
the Euclidean distance between the two arrays as the residual.
Lastly, Steps 14 and 15 update the previous vertex value using
the current value, which will be read for the next superstep.
The program stops if the residual is below the predefined
tolerance.

B. Betweenness Centrality
The vertex-centric implementation of betweenness centrality

is more involved and as such we need a more detailed

description of its components. To the best of our knowledge,
there is no work that describes the details of a VC algorithm
for computing betweenness centrality.

Betweenness centrality [29] is a measure of a vertex’s
centrality based on shortest paths. It represents, for each
vertex, the number of shortest paths passing through the vertex.
The formal definition is shown below.

Definition 5: Betweenness Centrality (BC) of a vertex v
in a graph G = (V,E) is

BC(v) =
∑

s,t∈V,s 6=t6=v

δst(v), (5)

where δst(v) is called pair-dependency of vertex v given a
pair (s, t), and is defined as

δst(v) =
σst(v)

σst
, (6)

in which σst(v) denotes the total number of the shortest paths
from s to t that pass through v, and σst denotes the total
number of the shortest paths from s to t.

We use Brandes’ algorithm [30] to compute betweenness
centrality. Brandes’ algorithm is currently the fastest algorithm
for exact betweenness computation, which is based on the
dependency of a source vertex on a given vertex and can
be implemented in a vertex-centric manner.

Definition 6: Given a graph G = (V,E), the dependency
of a source vertex s ∈ V on a vertex v ∈ V is

δs(v) =
∑

t∈V,s6=t6=v

δst(v). (7)

Based on Definition 5, the BC value of vertex v is

BC(v) =
∑
s6=v

δs(v). (8)

The algorithm uses a recursive way to calculate the BC
value of v, by introducing predecessors of v.

Definition 7: Given an unweighted graph (V,E), the pre-
decessors of a vertex v ∈ V on a shortest path from s to v is
a subset Ps(v) ⊆ V s.t.

t ∈ Ps(v)⇒ (d(s, v) = d(s, t) + 1) ∧ (t, v) ∈ E,

where d(s, t) denotes the length of a shortest path from s to
t.

Brandes’ algorithm is based on the following theorem:
Theorem 1: Given a graph (V,E), for any s, v ∈ V , we

have
δs(v) =

∑
t∈V s.t.v∈Ps(t)

σsv
σst

(1 + δs(t)). (9)

in which σsv denotes the total number of the shortest paths
from s to v and σst denotes the total number of the shortest
paths from s to t.

Brandes’ algorithm can be summerized as follows:
1) For each vertex s ∈ V , we calculate the number of

shortest paths from s to all the other vertices, i.e., using
breadth-first search for unweighted graphs, the running
time is bounded by O(|E|+ |V |).

2) For each vertex s ∈ V , traverse the vertices in descend-
ing order of their distances from s, and accumulate the
dependencies by Theorem 1. Each traversal takes O(|E|)
time.

Therefore, the time complexity for Brandes’ algorithm is
O(|V | × (|E| + |V |) + |V ||E|) = O(|V ||E|) for unweighted
graphs.

Theorem 1 shows that the dependency can be computed in a
vertex-centric manner and the betweenness can be obtained by
summing up the dependency values. The computation can be
broken down to two stages: single-source shortest-path (SSSP)
computation to count the number of shortest paths from the
source to other vertices and the accumulation computation to
obtain the dependency values. We present the pseudocode for
betweenness computation in Alg 2. Supersteps are delimited
by the minimum step distance from the source vertex. For
example, superstep 2 means we are processing vertices that
are 2 steps away from the source vertex. The total number of
superstpes is limited by the longest shortest path of the graph.
Betweenness is initialized to 0. We use a dist array to record
the distance between the source and other vertices and a σ
array to record the number of shortest paths from the source
vertex to the target vertex. The SSSP process (Steps 5 – 20)
starts from the source vertex and traverses the graph layer by
layer until reaching the farthest vertices. Along the way, we
count the number of shortest paths from the source to a certain
vertex. The accumulation process (Steps 22 – 29) starts from
the farthest vertices and traverses vertices in the descending
order of their distances from the source, and accumulates the
dependency values along the way. For each source vertex, the
computation will contribute a summand to betweenness array.
The final betweenness array will be obtained after executing
such computation (SSSP with accumulation) on all vertices.

Although Brandes’ algorithm is the fastest algorithm on
computing the exact BC values, the time complexity can
be extremely high for large graphs. This motivates us to
investigate the BC approximate computation by implementing
two approximation algorithms: uniformly random sampling
[31] and adaptive sampling [32].

1) Uniformly Random Sampling: According to Theorem
1, the exact computation consists of solving n single-source
shortest-paths (SSSP) problems, one for each vertex, and each
SSSP contributes one summand to the result. This contribution
is the one-sided dependency of the source δs(v) for between-
ness. The vertices for which an SSSP is solved are called
pivots. The basic idea for approximate computation is that the
exact centrality value can be estimated by extrapolating the
contributions obtained from just a few SSSP computations,
i.e. from a small set of pivots selected uniformly at random.
The pseudocode for uniform random sampling is shown in Alg
3.

2) Adaptive Sampling: Instead of setting the number of
pivots k as one of the input parameters in uniformly random
sampling algorithm, the adaptive sampling technique deter-
mines the actual number of pivots k through each sampling.
There is no need to predefine k′s value. The basic idea is

Algorithm 2 Betweenness Compute Function
1: function COMPUTE(G)
2: for v ∈ V do BC[v] = 0

3: for s ∈ V do
4: /∗ single-source shortest-path ∗/
5: if depth = 0 then
6: dist[s]← 0;σ[s]← 1
7: for t ∈ V, t 6= s do
8: dist[t]← −1;σ[t]← 0; δ[t]← 0

9: while does not reach the farthest vertex do
10: for v at depth away from s do
11: for w ∈ ON(v) do
12: /∗ path discovery∗/
13: /∗ w visited for the first time ∗/
14: if dist[w] = −1 then
15: dist[w]← depth+ 1

16: /∗ path counting∗/
17: /∗ edget(v, w) on a shortest path ∗/
18: if dist[w] = depth+ 1 then
19: σ[w]← σ[w] + σ[v]

20: depth← depth+ 1

21: /∗ accumulation ∗/
22: while depth > 0 do
23: depth← depth− 1
24: for w at current depth do
25: for v ∈ IN [w] do
26: /∗ v is a predecessor of w ∗ /
27: if dist[v] = depth− 1 then
28: δ[v]← δ[v] + σ[v]

σ[w] · (1 + δ[w])

29: if w 6= s then BC[w]← BC[w] + δ[w]

30: /∗ rescaling ∗/
31: scale← 1/((n− 1) · (n− 2))
32: for v ∈ V do BC[v]← BC[v] · scale

Algorithm 3 Betweenness (Uniformly Random Sampling)
1: function COMPUTE(G)
2: P ← sample k vertices as pivots uniformly at random
3: for s ∈ P do
4: single-source shortest-path (same as Alg. 2)
5: accumulation (same as Alg. 2)
6: /∗ rescaling ∗/
7: scale← n/((n− 1) · (n− 2) · k)
8: for v ∈ V do BC[v]← BC[v] · scale

to repeatedly sample a vertex vi ∈ V , perform SSSP from
vi, and maintain a running sum S of the dependency scores
δvi(v). Sample until S is greater than cn for some constant
c ≥ 2. Let the total number of samples to be k. The estimated
centrality score of v,BC(v) is given by nS

k . In the practical
implementation, we only focus on the vertices v with the
high centrality scores (BC(v) ≥ cn). Therefore, we need to
specify the number of the top-score vertices topK as one input

Algorithm 4 Betweenness (Adaptive Sampling)
1: function COMPUTE(G)
2: k ← 0
3: while k < cuttoff do
4: s← sampling a vertex as the pivot
5: single-source shortest-path (same as Alg. 2)
6: accumulation (same as Alg. 2)
7: k ← k + 1
8: count ← number of vertices with betweenness

larger than cn
9: if count > topK then End While

10: /∗ rescaling ∗/
11: scale← n/((n− 1) · (n− 2) · k)
12: for v ∈ V do BC[v]← BC[v] · scale

parameter. We use cutoff to specify the maximum number
of pivots. The pseudocode for adaptive sampling is shown in
Alg. 4.

In Graph-XLL, we implement Brandes’ algorithm for exact
betweenness computation, as well as the uniformly random
sampling and adaptive sampling algorithms for betweenness
approximation.

III. EXPERIMENTAL SETUP

We implement algorithms in Graph-XLL in Java 8 and use
parallel stream to achieve parallel computation. Experiments
are conducted on a machine with Intel quad-core i7, 2.6
GHz CPU, 32 GB RAM, and 500 GB SSD hard drive,
running Ubuntu 17.10. The cost for this machine is less than
1,500 Canadian dollars, thus qualifying as a consumer-grade
machine.

We perform experiments on seven different datasets ob-
tained from http://law.di.unimi.it/datasets.php. Characteristics
of the datasets are summarized in Table 1.

TABLE I
SUMMARY OF DATASETS

Graph |V | |E|

cnr-2000 325,557 3,216,152
eu-2005 862,664 19,235,140
in-2004 1,382,908 16,917,053
ljournal-2008 5,363,260 79,023,142
eu-2015-host 11,264,052 386,915,963
arabic-2005 22,744,080 639,999,458
twitter-2010 41,652,230 1,468,365,182

IV. MAIN RESULTS

We investigate the scalability of the algorithms in Graph-
XLL using different datasets. We select PageRank results as
the representative since PageRank shares the same nature as
eigenvector, hub and authority centralities.

Fig. 1 shows the Euclidean distance of PageRank between
two consecutive iterations after a certain number of iterations
for different graphs. The Euclidean distance can be used as
the convergence condition. If we choose 10−14 as the criterion

20 40 60 80 100 120 140 160 180 200 220
1E-18

1E-14

1E-10

1E-6
Eu

cl
id

ea
n

di
st

an
ce

 (a
.u

.)

number of iteration

 cnr-2000
 eu-2005
 in-2004
 ljournal-2008
 eu-2015-host
 arabic-2005
 twitter-2010

PageRank

Fig. 1. Euclidean distance of PageRank between two consecutive iterations
after a certain number of iterations for different graphs.

for convergence, the numbers of iterations required to achieve
convergence are ∼150 for cnr-2000, in-2004 and arabic-2005,
∼140 for eu-2005 and eu-2015-host, ∼135 for ljournal-2008,
and ∼130 for twitter-2010, respectively.

Fig. 2. Runtime comparison of computing PageRank for different datasets
using igraph, Graph-Xll and NetworkX. Graph-XLL is able to process large
graphs up to twitter-2010 while the largest graph that igraph can process is
ljournal-2008 and in-2004 for NetworkX.

Fig. 2 compares the runtime of computing PageRank for
different datasets using igrpah, Graph-XLL and NetworkX,
respectively. igraph fails to compute eu-2015-host or any larger
graphs due to the out-of-memory error. NetworkX fails to
compute ljournal-2008 or any larger graphs due to the same
error. By contrast, Graph-XLL is able to process extra large
graph such as twitter-2010, showing much better scalability
than igraph and NetworkX.

Fig. 3 compares the memory consumption of computing
PageRank for different datasets using igraph, Graph-XLL and
NetworkX, respectively. NetworkX shows the worst scalability
as the memory consumption is high even for small-sized
graphs. The largest graph that NetworkX can process is in-
2004. igraph shows better scalability as the slope of the trend

Fig. 3. Memory consumption comparison of computing PageRank for
different datasets using igraph, Graph-Xll and NetworkX. Graph-XLL is able
to process large graphs up to twitter-2010 while the largest graph that igraph
can process is ljournal-2008 and in-2004 for NetworkX.

is smaller. Even so, igraph fails to process graphs larger than
ljournal-2008. The large memory footprint is caused by the
graph representation strategy which fits the complete graph
into the memory and the auxiliary data structures used by
these two libraries. Fitting the complete graph into the memory
would inevitably increase the memory footprint as the size
of the graph grows, limiting the scalability of igraph and
NetworkX. Besides the graph representation strategy, the data
structures used also affect the memory footprint. For exam-
ple, NetworkX uses hash maps (dictionaries in Python) for
graph representation. The large overhead of the auxiliary data
structures would increase the memory footprint significantly as
well. Graph-XLL shows the best scalability as the slope of the
trend is the smallest. For computing twitter-2010, the largest
graph in the datasets, Graph-XLL only needs 4 GB memory.
When compared to the size of twitter-2010 (the edge list file
is over 20 GB), Graph-XLL shows great memory efficiency
for processing such large graphs.

Due to the high time complexity for large graphs, we com-
pute the exact betweenness centrality for small and medium-
sized graphs (cnr-2000, eu-2005 and in-2004). The exact be-
tweenness centrality is compute-intensive. For example, using
Graph-XLL, the runtime of computing the exact betweenness
takes 5 h for cnr-2000, the smallest graph in the datasets.
Both igraph and NetworkX suffer from the same problem. To
address the time-consuming issue, in Graph-XLL, we provide
two approximation algorithms (uniformly random sampling
and adaptive sampling), which can reduce the runtime signif-
icantly. Neither igraph nor NetworkX provides such approxi-
mation algorithms.

Fig. 4 shows the Euclidean distance of betweenness central-
ity between the estimation by uniformly random sampling and
the exact computation as a function of the number of samples.
Sampling is without replacement. If the number of samples
equals the number of vertices in the graph, the approximation
computation becomes the exact computation. The idea of the

102 103 104 105
1E-3

0.01

0.1

1

Eu
cl

id
ea

n
di

st
an

ce
 (a

.u
.)

namber of samples

 cnr-2000
 in-2004
 eu-2005

uniformly random sampling

Fig. 4. Euclidean distance of betweenness centrality between the estimation
by uniformly random sampling and the exact computation as a function of
the number of samples.

random sampling is to approximate the betweenness score
distribution for all vertices by using a randomly sampled
small subset of vertices. More accurate approximation can
be achieved by increasing the number of samples. However,
the runtime will increase as the number of samples increases.
Choosing an appropriate number of samples can achieve both
high accuracy and low runtime. We investigate the accuracy as
a function of number of samples plotted in Fig. 4. If we choose
the difference of the Euclidean distance below 0.01 to be the
criterion of good approximation, the number of samples should
be larger than 104. The runtime can be reduced to 488 s, 2804
s and 5781 s, for cnr-2000, in-2004 and eu-2005, respectively.

2 4 6 8 10
0.008

0.012

0.016

0.020

c

E
uc

lid
ea

n
di

st
an

ce
 (a

.u
.)

2000

4000

6000

8000

10000

12000

 num
ber of sam

ples

in-2004
adaptive sampling
topk = 1000

Fig. 5. Euclidean distance (black curve) of betweenness centrality between
the estimation by adaptive sampling and the exact computation as a function of
the constant C (required by the adaptive sampling algorithm). The blue curve
shows the actual number of samples by adaptive sampling as a function of
the constant C.

The adaptive sampling algorithm does not require the pre-
defined number of samples. The algorithm itself determines
when to stop the program and the actual number of samples
needed. In Fig. 5, the black curve shows the Euclidean distance
of betweenness centrality between the estimation by adaptive
sampling and the exact computation as a function of the
constant C for in-2004. The blue curve shows the actual
number of samples by adaptive sampling as a function of the

constant C. Since the adaptive algorithm does not specify the
number of samples to run, constant C balances the approxi-
mation accuracy, which is shown by the Euclidean distance,
with the runtime which is affected by the number of samples
to run. Choosing a proper value for C can avoid excessive
computation and can still achieve good approximation of
betweenness. According to Fig. 5, 6 might be a heuristic value
for C, with which the actual number of samples needed can
be reduced to 6000 with 1728 s runtime and the Euclidean
distance difference can still be maintained around 0.013.

V. DISCUSSION

In terms of scalability, Graph-XLL outperforms igraph and
NetworkX by adopting a much better graph representation
strategy, which avoids fitting the complete graph into the
memory. This strategy equips Graph-XLL with the ability to
process extra large graphs with up to ten million vertices
and one billion edges (e.g., twitter-2010 with an edge list
file of over 20 GB). In order to perform computation, igraph
and NetworkX need to load the complete graph into the
main memory. With the large overhead of the auxiliary data
structures, the actual memory needed by igraph and NetworkX
is sometimes multiple times of the size of the graph’s edge list
file. For example, ljournal-2008 has an edge list file of 1 GB.
NetworkX fails to process ljournal-2008 even on a machine
with 32 GB memory while igraph needs 5 GB to perform
computation. By contrast, Graph-XLL only needs less than 1
GB memory. By extrapolation, if we want to use igraph to
process twitter-2010, a machine equipped with at least 100
GB memory should be required, which is still not common
for average users. Graph-XLL can scale smoothly with the
increasing graph size since the programs only load the needed
fraction of the graph into the memory during computation,
which decreases the memory footprint significantly.

For compute-intensive algorithms such as betweenness cen-
trality, besides the memory footprint, the runtime of a program
may deserve more consideration. Since the exact computation
of betweenness centrality is extremely time consuming, we
implement the approximation algorithms in Graph-XLL to
decrease the runtime. Neither igraph nor networkX provides
such approximation algorithms. The idea is to approximate
the distribution of betweenness scores for all vertices by
only performing computation based on a small fraction of
randomly selected vertices. There is a trade-off between the
accuracy of approximation and the runtime of the approxi-
mation algorithms. Heuristics can be used to achieve both
acceptable approximation accuracy and reasonable runtime
when executing these approxiamtion algorithms.

VI. CONCLUSIONS

We presented our implementations of various graph algo-
rithms for centrality analysis, which can be used off-the-shelf
as a graph library, Graph-XLL, with the focus on the scalabil-
ity. We showed that Graph-XLL can efficiently process extra
large graphs with up to tens of millions of vertices and billions
of edges on a single consumer-grade machine. Other existing

graph libraries designed for single machine such as igraph
and NetworkX cannot process computations of such scale,
thus demonstrating significantly better scalability of Graph-
XLL. Other scalable algorithms that we have implemented in
Graph-XLL compute triad-enumeration, core-decomposition,
truss-decomposition, feedback-arc-set, influential-users, and
importance-based-communities. There are no algorithms
yet implemented for truss-decomposition, feedback-arc-set,
influential-users, and importance-based-communities in igraph
or NetworkX despite these being immensely popular concepts
in graph analytics. On the other hand, Graph-XLL still misses
a few algorithms for computing analytics present in igraph
and NetworkX, such as diameter of the graph, cliques, and
closeness. Devising scalable algorithms for computing the
diameter, cliques, and closeness is part of our future work.

REFERENCES

[1] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proceed-
ings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 29–42.

[2] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nature reviews neuro-
science, vol. 10, no. 3, p. 186, 2009.

[3] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson,
V. Raychev, and F. Viger, “Fast routing in very large public trans-
portation networks using transfer patterns,” in European Symposium on
Algorithms. Springer, 2010, pp. 290–301.

[4] M. V. Marathe and A. K. S. Vullikanti, “Computational epidemiology,”
in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp. 1969–1969.

[5] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The
ubiquity of large graphs and surprising challenges of graph processing,”
Proceedings of the VLDB Endowment, vol. 11, no. 4, pp. 420–431, 2017.

[6] G. Csardi, T. Nepusz et al., “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[7] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[8] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in Proceedings of the 13th international conference on
World Wide Web. ACM, 2004, pp. 595–602.

[9] J. Lu and A. Thomo, “An experimental evaluation of giraph and
graphchi,” in 2016 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM). IEEE, 2016, pp.
993–996.

[10] V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for
large sparse networks with small maximum degree,” Social networks,
vol. 23, no. 3, pp. 237–243, 2001.

[11] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in Advances in neural information processing systems,
2006, pp. 41–50.

[12] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[13] P. Charbit, S. Thomassé, and A. Yeo, “The minimum feedback arc set
problem is np-hard for tournaments,” Combinatorics, Probability and
Computing, vol. 16, no. 1, pp. 1–4, 2007.

[14] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2003, pp. 137–146.

[15] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” Proceedings of the VLDB Endowment, vol. 8, no. 5,
pp. 509–520, 2015.

[16] Y. Santoso, A. Thomo, V. Srinivasan, and S. Chester, “Triad enumeration
at trillion-scale using a single commodity machine,” in EDBT, 2019, pp.
718–721.

[17] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decom-
position of large networks on a single pc,” Proceedings of the VLDB
Endowment, vol. 9, no. 1, pp. 13–23, 2015.

[18] J. Wu, A. Goshulak, V. Srinivasan, and A. Thomo, “K-truss decompo-
sition of large networks on a single consumer-grade machine,” in 2018
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 2018, pp. 873–880.

[19] F. Esfahani, V. Srinivasan, A. Thomo, and K. Wu, “Efficient computation
of probabilistic core decomposition at web-scale,” in EDBT, 2019, pp.
325–336.

[20] F. Esfahani, J. Wu, V. Srinivasan, A. Thomo, and K. Wu, “Fast truss
decomposition in large-scale probabilistic graphs,” in EDBT, 2019, pp.
722–725.

[21] M. Simpson, V. Srinivasan, and A. Thomo, “Efficient computation of
feedback arc set at web-scale,” Proceedings of the VLDB Endowment,
vol. 10, no. 3, pp. 133–144, 2016.

[22] ——, “Clearing contamination in large networks,” TKDE, 2016.
[23] D. Popova, A. Khot, and A. Thomo, “Data structures for efficient

computation of influence maximization and influence estimation,” in
EDBT, 2018, pp. 505–508.

[24] D. Popova, N. Ohsaka, K.-i. Kawarabayashi, and A. Thomo, “Nosingles:
a space-efficient algorithm for influence maximization,” in Proceed-
ings of the 30th International Conference on Scientific and Statistical
Database Management. ACM, 2018, p. 18.

[25] S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient computation
of importance based communities in web-scale networks using a single
machine,” in Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 2016, pp. 1553–
1562.

[26] P. Bonacich, “Some unique properties of eigenvector centrality,” Social
networks, vol. 29, no. 4, pp. 555–564, 2007.

[27] J. M. Kleinberg, “Hubs, authorities, and communities,” ACM computing
surveys (CSUR), vol. 31, no. 4es, p. 5, 1999.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[29] M. Barthelemy, “Betweenness centrality in large complex networks,”
The European physical journal B, vol. 38, no. 2, pp. 163–168, 2004.

[30] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[31] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
betweenness centrality,” in International Workshop on Algorithms and
Models for the Web-Graph. Springer, 2007, pp. 124–137.

[32] S. Ji and Z. Yan, “Refining approximating betweenness centrality based
on samplings,” arXiv preprint arXiv:1608.04472, 2016.

