
Vectorising k-Truss Decomposition for
Simple Multi-Core and SIMD Acceleration

Amir Mehrafsa
Department of Computer Science

University of Victoria
Victoria, BC

mehrafsa@uvic.ca

Sean Chester
Department of Computer Science

University of Victoria
Victoria, BC

schester@uvic.ca

Alex Thomo
Department of Computer Science

University of Victoria
Victoria, BC

thomo@uvic.ca

Abstract—
In this paper we tackle truss decomposition of large graphs,

which is one of the popular tools for discovering dense hierar-
chical subgraphs in social and web networks; such subgraphs
form the basis of community discovery, one of the cornerstones
of modern graph analytics. Our goal is to offer a simple
vectorisation approach which can be easily implemented in widely
popular Python vector libraries, such as NumPy. This way
has two advantages: (1) non-experts with basic knowledge of
Python can implement our algorithm, and (2) they can obtain
multi-threaded and SIMD parallelism “for free” without them
needing to know about computer architecture or sophisticated
C++ libraries for multi-threaded processing. We believe this is
an important paradigm setting approach that opens the way for
applying similar techniques to other problems that might seem
at first remote to vectorisation and/or parallelisation.

Index Terms—graph analytics, k-truss decomposition, parallel
algorithms, vectorization, SIMD, Python, Numpy

I. INTRODUCTION

One of the most important graph analytics tasks for so-
cial and web networks is identifying dense subgraphs. Such
subgraphs can reveal important information about networks,
for example communities of tightly connected users or sites,
important influential groups of nodes, and robustness of the
network. There are several notions of dense subgraphs and
among those, the notion of truss is particularly popular for
extracting a hierarchical structure of dense subgraphs.

Specifically, the k-truss of a graph G is defined as the
largest subgraph Hk such that each edge is part of at least
k triangles. A triangle is clique on three vertices. If an
edge (a, b) is part of a triangle 〈a, b, c〉, we can think of
node c as “endorsing” the connection between a and b. The
highest value of k for each an edge is part of the k-truss is
called truss value of that edge. The collection of of all k-
trusses for different k comprises the truss decomposition of
the graph. Truss decomposition enables a hierarchical structure
the truss subgraphs for different k because Hk ⊂ Hk−1 for
all k > 1. Truss decomposition has been used in several
important applications, such as community discovery, network
visualization, clique computation, etc.

The standard approach to computing truss decomposition is
the edge peeling process, which continuously removes edges
with less than k triangles. Deleted edges can cause other edges
to have less than k triangles, so peeling for a given k goes

in waves until all remaining edges have k or more triangles.
At this point, the edges with precisely k triangles have a truss
value of k. This process is repeated after incrementing k until
no edges remain, which results in finding the truss values of
each edge. Then the k-truss can be formed by collecting all
the edges with truss value equal or greater than k.

The complexity of this process is O(E1.5), which is chal-
lenging for large graphs. Notably, there have been several
works proposing to parallelize the computation of truss de-
composition (cf. [1]–[3]). They are based on C/C++ libraries
for multithreading, such as OpenMP.

In this work we follow a different approach. We take the
classical peeling framework and vectorise it by expressing
the whole process as a series of vector operations. By doing
so we can re-purpose well-know matrix libraries to compute
truss decomposition. We note that NumPy primitive operations
are vectorised and parallel [4]–[6]. These primitive APIs are
implemented efficiently in compiled languages like C, C++,
and Fortran with SIMD (Single Instruction/Multiple Data) and
multi-threading enabled [4], [7]. This way we obtain SIMD
and multi-threading parallelism “for free” without the need
to program in lower-level languages such as C/C++. Such an
approach allows non-experts in parallel computing to benefit
from multi-core and SIMD modern computer architectures.
This is important because it is a well-known fact that peo-
ple’s experience with parallel programming is often quite
frustrating to the point they want to avoid completely low-
level multi-threaded programming and not have to deal with
race conditions and other challenges associated with parallel
programming. Their conclusion is that parallel programming is
one of the most difficult and frustrating forms of programming
they know of [7].

In order to make the implementation barrier as low as pos-
sible, we decided to use the most basic matrix Python library,
NumPy, which is ubiquitous in most Python installations. Of
course, there are other matrix libraries in Python, such as
Numba and PyTorch, on which we can run our vectorised
algorithm “as is” and benefit more from parallelisation, espe-
cially if a GPU is available (see our previous work [8] on a
related problem). However, here we wanted to show that even
using the most basic matrix library in Python we are still able
to achieve substantial parallelism using a multi-core machine.

II. BACKGROUND

We represent networks using undirected graphs. We denote
an undirected graph by G = (V,E), where V is the set of
vertices, and E is the set of edges. We set n and m to be |V |
and |E|, respectively.

For a vertex u ∈ V , the set of its neighbors is NG(u) =
{v : (u, v) ∈ E}. A triangle, ∆uvw, in G is a set of three
vertices {u, v, w} ⊆ V such that all three edges (u, v), (v, w)
and (u,w) exist in E. The support of an edge e = (u, v) in
G, denoted by supG(e), is defined as the number of triangles
in G containing e. Formally, supG(e) = |NG(u) ∩NG(v)|.

The k-truss of G is defined as the largest subgraph H of G
in which each edge e has supH(e) ≥ k. The set of all k-trusses
forms the truss decomposition of G, where 0 ≤ k ≤ kmax,
and kmax is the largest support of any edge in G.

The truss value of an edge e, κ(e), is the largest integer k
for which e belongs to a k-truss.

Proposition 1. The k-truss of G is the subgraph H of G
containing all and only the edges e in G with κ(e) ≥ k.

Based on the above proposition, in this paper, we focus on
finding the truss values of all the edges in an input graph. Then
the k-truss for any k is constructed by collecting all edges e
with κ(e) ≥ k.

III. EXISTING APPROACHES

There are two independent steps to perform truss decompo-
sition; triangle enumeration or support initialization for edges
and then converging to truss values by methods like peeling.
There are several approaches for each step, and numerous
works are available based on the approach selected for each.
Most of the state-of-the-art approaches start by initial counting
of triangles with set intersection operator and then use an
iterative approach to converge to the truss values [9].

Parallel processing via shared-memory is often chosen
by researchers to speedup the truss decomposition [1], [3].
Authors of [1] showed that their PKT approach outperforms
other approaches in a 24-core platform. Recently, Saryice et
al. [2] generalized the shared memory approach parallelism
for extracting hierarchical dense subgraphs. They used an
effective approach for extracting triangles [10], [11] and then
generalize the method of iterative h-index computation (cf.
[12]) to find the truss value of each edge. Che et. al. in [13]
introduced optimizations for accelerating truss decomposition
in a CPU-GPU heterogeneous platforms. All these methods
have C/C++ implementations that are not directly amenable
to vectorisation.

Support initialization or triangle enumeration has a very
high work efficiency and therefore there are two general
categories of approaches for this step. In the first category,
the graph is converted to an oriented graph by replacing the
undirected edges with directed ones (typically from lower
degree to higher degree node) and counting each triangle only
once [14], [15]. The second category is merge-based or hash-
based set intersection counting. The hash-based approaches

Algorithm 1: Vectorized K-Truss algorithm.
input : S,E,D,O, P, P1, H, I
output: K

1 P10 = cuckoo0(P1); P11 = cuckoo1(P1)
2 // Cuckoo hash functions applied on

every element of P1 in vectorized
way

3

4 C0 = H[0][P10]− P1; C1 = H[1][P11]− P1
5 // Zeros in C0 and C1 indicate the

intersection of P1 and P and hence
give the triangles in the graph

6

7 T0 = I[0][P10][C0 == 0]; T1 = I[1][P11][C1 == 0]
8 T = merge(T0, T1)
9 // Edge indices of the triangles we

find.
10

11 G0, G1, G2 = extract edges(T)
12 // Edge indices of the triangles in

the graph. G0, G1, G2 have all
lengths equal to the number of
triangles

13

14 K = bincount(G0)
15 // Initial support count of edges
16

17 while No triangle is left do
18 // Peeling process, see

Section IV-D

materialize a hash table then they scan for the common
neighbors in the hash table [16].

IV. PROPOSED APPROACH

Our algorithm uses hash values of pairs of nodes in the
graph to extract triangles. We generate two flat vectors of hash
values. The first hash vector is simply computed by connected
node pairs that form the edges in graph. In other words, each
edge is going to have a hash value in the vector. The second
hash vector is generated by values of node pairs that are
connected to each other with one hop. A hash value that exists
in both vectors implies an existing triangle in our graph. We
store some metadata about the index of hashed values next
to hash keys (see Section IV-B), so that we can compute the
triangle count for each edge.

For the second step of k-truss computation, we follow the
iterative peeling paradigm by removing edges and updating the
support value of edges in each iteration to the number of the
remaining support triangles. We continue the iterations until
they converge to the actual support value. The main task of the
proposed algorithm is to enumerate the number of triangles
for edges and update the support values. Peeling off edges

translates into deleting hash values from our flat hash vectors
and then re-scanning them to find matches on both vectors.

We used the available Numpy array API to apply parallelism
and employ SIMD techniques when deleting and looking up
in hash vectors. Algorithm 1 describes the overall procedure,
but we break down the whole procedure into five subsections
to simplify the explanation.

The algorithm requires six vectors as input, of which, four
of them represent a flattened adjacency list. Vectors S and E
are vectors of Origin (Source) and Destination nodes and are
of length m.

Vector D is of length n and contains the degree of each
vertex. Vector O (Offset Indices) is also of length n and
provides the index in E where each vertex’s neighbours begin.
Vector P contains the Cantor function values for the edges
in S and E. Cantor function maps two values into one and
it will be explained in Section IV-A. Vector H contains the
initial values of Cuckoo hashing we do on vector P and this
will also be explained later, in Section IV-B.

A. Pre-processing and Creating Input Vectors

The pseudo-code for pre-processing is given in Algorithm 2.

Algorithm 2: Pre-processing step.
input : S,E, h = 1.2
output: O,D,P,H, I, P1

1 S,E = remove duplicates(S,E)
2 S,E = remove selfloops(S,E)
3 O,D = unique(S)
4 S,E,D = oriented(S,E,D)
5 P = cantor(S,E)
6 H[], I[] = cuckoo(P, h)
7 S1, E1 = neighbors of one hop(S,E)
8 P1 = cantor(S1, E1) // P1 is subset of P

We assume there is no duplicate edge as well as self loops
in the graph. Line 1 and 2 remove duplicates and self-loops
from the given graph. Line 3 creates the Offset Indices O and
Degree D vectors. Line 4 converts the dataset to an oriented
graph. Recall that the graph is converted to an oriented graph
by replacing the undirected edges with directed ones from
lower degree to higher degree nodes.

In our algorithm we need to map a pair nodes to a unique
number. We use for this Cantor Pairing Function [17]. We
store the results of the Cantor function over vectors S and E
in vector P . This is done in Line 5. Other hashing functions
like [18] could be used in this step as an alternative.

The problem with the Cantor function is that it produces
very large numbers. Using these generated large numbers in
array primitive operations, for example, using them as indices,
will have a significantly bad performance effect. As such, in
our algorithm we used Cuckoo hashing in order to store the
values produced by the Cantor pairing function in a much
smaller vector. In Line 6, as the last step of pre-processing,
we initialize the Cuckoo hashing object. The initialization of

Cuckoo hashing object creates two hash vectors of size h.
Value h is a factor of n and in our proposed algorithm we
choose this factor to be 1.2. In case of collisions during the
pre-processing step, a greater value can resolve the collision
issue. However the greater the value of this factor, the more
space the data will take, and the greater the runtime will be.
Please see Section IV-B for more details on Cuckoo hashing
we use.

B. Cuckoo hashing
As we described above, we use the Cantor pairing function

in order to hash two integer values into one number and then
employ Cuckoo hashing to map these numbers into smaller
range.

Cuckoo hashing exhibits worst-case constant lookup time.
Its name derives from the Cuckoo bird behavior, where the
cuckoo chick kicks its young out of the nest when a younger
bird is born; analogously, inserting a new key may kick out
an older key to a different hash location.

Cuckoo hashing requires two hash functions and two tables.
In Pseudocode 1, these functions are noted by cuckoo0()
and cuckoo1(). The size of the tables will directly affect
the runtime of the algorithm, since it affects the locality and
proximity of the values to the CPU. On the other hand, bigger
tables will have less chance of hash collisions. The smaller
the table sizes, the higher the risk of having collisions in
our hashing scheme. In case of collisions, we can consider a
greater size for the two vectors storing the hash values. In our
experiments, for our datasets, we were able to apply Cuckoo
hashing without collisions when the table sizes were just 1.2
times the actual edge size, i.e. hash table size = 1.2× |E|.

When inserting a new key key in the hash structure, we first
try to insert it into the first table using the first hash function. If
the slot is available, we put it there. If not, the key occupying
the slot, key′, is removed and key takes its place. Now we
attempt to insert key′ into the other table using the other hash
function employing the same procedure, which by nature is
recursive and continues until an empty slot is found for the
dislocated keys or a predetermined recursion depth is reached.

We choose a lazy hash function as our first hashing function
in order to speedup the hashing. This function takes the
modulo of the input value to the size of the hash table. Since
we used a lazy hash function for the first hash, the second hash
function needs to have a very good statistical distribution. We
choose an improved version of MurmurHash 3 as our second
hash function.

Pseudocode 3 and 4 show the process of cuckoo hashing.
In our algorithm, we use twice as many vectors as in the
original Cuckoo hashing. We used the extra vectors to store
the values for each key, which in our case are the indices of
values from vector S and E that represent edges; this provides
us an efficient way to retrieve those indices without extra
computation.

C. Finding triangles of each edge
Figure 1 shows a simple graph. In this graph the edge

connecting nodes 0 and 1 participates in forming two triangles

Algorithm 3: Cuckoo hashing Place function
input : key, idx, tableId, nRecursiveCall
output: H[], I[]

1 if nRecursiveCall > maxAllowed then
2 throwError
3 // Failed to handle collision,

select higher h and rehash
entries

4 pos = hash(key)
5 if available(pos, tableId) then
6 H[tableId][pos] = key
7 I[tableId][pos] = idx
8 // idx is the value we store for key

9 else
10 key′ = H[tableId][pos]
11 idx′ = I[tableId][pos]
12 H[tableId][pos] = key
13 I[tableId][pos] = idx
14 place(key′, idx′, (tableId+

1)%2, nRecursiveCall + 1)

Algorithm 4: Cuckoo hashing initialization
input : P
output: H[], I[]

1 // H and I contain two flat vectors
each

2 idx = 0
3 for key in P do
4 Place(key, idx, 0, 0)
5 idx = idx+ 1

(0, 1, 3) and (0, 1, 2). When an edge is part of a triangle it
means that there is an edge directly connecting two nodes,
stored in the edge list file (or in other words in the S and
E vectors) and there are two other edges connecting these
nodes with one hop only. So we need to find all the one-hop
neighbors. The steps for this section can be done as follows:

1) Find and store one-hop pairs in vector P1 (see Line 8
in Algorithm 2).

2) Compute the intersection of P1 and P . In fact we
perform this intersection using our Cuckoo hashing
tables.

0

1 23

Fig. 1. Example graph

In Figure 1, the original direct pairs are:

(0, 1), (0, 2), (0, 3), (1, 0), (1, 2),

(1, 3), (2, 0), (2, 1), (3, 0), (3, 1)

(1)

and the one-hop pairs for nodes 1 and 2 are:
(0, 2, 1), (0, 3, 1), (1, 2, 0), (1, 3, 0)
which will give intersection pairs:
(0, 1), (0, 1), (1, 0), (1, 0).

In the main algorithm, the above intersection pairs will be
stored in vector C. The support count for edges (1, 2) and
(2, 1) should equal to 2. In our simple example:

S = [0 0 0 1 1 1 2 2 3 3]

E = [1 2 3 0 2 3 0 1 0 1]

D = [3 3 2 2]

O = [0 3 6 8]

D[E] = [3 2 2 3 2 2 3 3 3 3]

O[E] = [3 6 8 0 6 8 0 3 0 3]

P = [2 5 9 1 8 13 3 7 6 11]

(2)

In order to achieve this in a vectorised way, we use
the multi-arange operation defined and implemented in [8].
Namely, the multi-arange operation, �, is a binary operation
that transforms two equal-length vectors, S and C, into an out-
put vector of length Σc∈Cc. Vector S denotes a set of start in-
dices and vector C denotes a set of counts. For each (si, ci) ∈
(S,C), it generates the series si, si+1, . . . , si+ci−1. For ex-
ample, [2 4 1] � [2 1 3] = [2 3 4 1 2 3]. This function is used
in our algorithm to generate the indices of one hop neighbors
and store those nodes in vector E1. We generate these multiple
series with the start index of destination nodes, retrieved
from O[E] and degree of destination nodes D[E], line 6
in Algorithm 1. We store the generated pairs in vectors S1
(Source Tiling) and E1 (Destination Neighbors). Vector m is
materialized while calling neighbors of one hope(S1, E1)
function and is representing the connecting node of vectors
S1 and E1.

S1 = [0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3]

m = [3 4 5 6 7 8 9 0 1 2 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5]

E1 = [0 2 3 0 1 0 1 1 2 3 0 1 0 1 1 2 3 0 2 3 1 2 3 0 2 3]

P1 =

[
0 5 9 0 2 0 2 4 8 13 1 4 1 4

7 12 18 3 12 18 11 17 24 6 17 24

]
(3)

D. Peeling Step

Pseudocode 5 shows the peeling step with detailed com-
ments. We count the number of triangles in line 3 and then

Algorithm 5: Peeling Step
input : S,E,G0, G1, G2, T
output: K

1 k = 1
2 while T.size() > 0 do
3 Tu, Tc = unique(T) // unique triangle

indices and their counts
4 while (Tc == k).any() do
5 // If there is a triangle with

count equal to k, its edges
have support of k

6 Tk = Tu[Tc == k] // obtain positions
in E of edges in triangles with
a count of k

7 Th = Tu[Tc > k] // obtain positions
in E of edges in triangles with
a count > k

8 K[Tk] = k
9 K[Th] = K[Th] + 1

10 // update support vector
11 T = update(T,G0, G1, G2, TK)
12 // Remove Tk instances from T

and recompute T

13 k + +

extract the edges with support count of k in line 8. We set the
support value of edges with k count to k in line 10 and 11.
In line 11 we update the edge list by removing the edges that
are peeled.

Observe that we stored the edge support numbers in vector
K, so this vector will contain the truss values of the edges at
the end of computation.

V. EXPERIMENTS

A. Experimental setup

1) Implementation: Our vectorized algorithm is imple-
mented using the NumPy library, version 1.19.5 with multi-
threading enabled, using Python 3.10. Our source code is
publicly available.1

2) Datasets: The datasets are real data and taken from the
Laboratory for Web Algorithmics 2 and Standford SNAP col-
lection 3. Isolated vertices have been removed and the directed
graphs transformed to be undirected. Table I summarizes the
statistical properties of the datasets.
• Amazon-2008 (AM) is a dataset of books, where a

bidirectional edge between books indicates that they are
similar.

• Blog-Catalog (BC) is a social blog directory.
• Digg (DG) is a social news website that stores all links

between users.

1https://github.com/mexuaz/ktrussvector
2http://law.di.unimi.it/datasets.php
3https://snap.stanford.edu

dataset vertices edges triangles k-max k-avg

amazon-2008 735 K 7 M 4 M 8 3.03
blog-catalog 89 K 4 M 51 M 71 33.18
digg 283 K 9 M 20 M 46 16.29
four-square 639 K 6 M 22 M 31 17.89
cit-patent 4 M 33 M 8 M 18 1.13

TABLE I
STATISTICAL PROPERTIES OF THE DATASETS

dataset 1t 32t speedup factor
amazon-2008 543 232 2.34
blog-catalog 23291 4391 5.30
four-square 48911 9233 5.29
digg 40125 29962 1.33
cit-patent 4911 1053 4.66

TABLE II
EXECUTION TIMES (SEC) FOR OUR ALGORITHM OVER SELECTED

DATASETS, USING 1 (1T) AND 32 CORES (32T)

• Four-square (FS) is a list of user-to-user links for
location-based online social network.

• Cit-Patent (CP) is Category of Citation Networks.

B. Results and Discussion

Table II shows the execution times in seconds for our
algorithm on each dataset and each applicable core count,
starting from the point that the graph has been loaded into
memory and a common, flattened adjacency list has been
created.

What we observe is that our simple Python implementation
based on our vectorisation approach of k-truss decomposition
can handle moderately large datasets and furthermore there
is substantial speedup obtained by running in multiple cores.
For example, the speedups for blog-catalog and four-square
exceed 5x.

The proposed approach is not dependent on any hardware or
operating system and the whole process is simply implemented
by less than 5% lines of code, compared to C/C++ implemen-
tations of [1], [2], [13] which can take a lot of development
time. Furthermore, we achieved parallelism “for free” by being
able to vectorise the classical peeling approach as opposed to
other approaches who needed to come up with a completely
new algorithm and employ complex C++ libraries for multi-
threading. The latter approach can generally be implemented
by experts in the field, whereas our vectorised approach is
simple to the point that a non-expert with basic Python and
NumPy experience can implement it. As such our approach
serves as an example that vectorisation can take us a long
way toward achieving parallelism for the masses who only
possess basic computing skills and could be unable to use
more complex tools and languages.

REFERENCES

[1] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,”
in 2017 IEEE 24th International Conference on High Performance
Computing (HiPC). Jaipur, India: IEEE, 2017, pp. 13–22.

[2] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms
for hierarchical dense subgraph discovery,” Proc. VLDB Endow.,
vol. 12, no. 1, pp. 43–56, Septemeber 2018. [Online]. Available:
https://doi.org/10.14778/3275536.3275540

https://github.com/mexuaz/ktrussvector
http://law.di.unimi.it/datasets.php
https://doi.org/10.14778/3275536.3275540

[3] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis,
“Truss decomposition on shared-memory parallel systems,” in 2017
IEEE High Performance Extreme Computing Conference (HPEC).
Waltham, MA, USA: IEEE, 2017, pp. 1–6.

[4] “Parallel programming with numpy and scipy,” https://scipy.github.io/
old-wiki/pages/ParallelProgramming, accessed: 2022-05-13.

[5] “Numpyseveralcpus,” https://roman-kh.github.io/numpy-multicore/, ac-
cessed: 2022-06-06.

[6] “Numpy simd optimizations,” https://numpy.org/doc/stable/reference/
simd/simd-optimizations.html, accessed: 2022-06-06.

[7] “Higher-order parallel programming,” https://futhark-lang.org/blog/
2020-05-03-higher-order-parallel-programming.html, accessed: 2022-
05-11.

[8] A. Mehrafsa, S. Chester, and A. Thomo, “Vectorising k-core
decomposition for gpu acceleration,” in 32nd International Conference
on Scientific and Statistical Database Management, ser. SSDBM 2020.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3400903.3400931

[9] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proc. VLDB Endow., vol. 5, no. 9, pp. 812–823, may 2012. [Online].
Available: https://doi.org/10.14778/2311906.2311909

[10] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts,” in Proceedings of
the 24th International Conference on World Wide Web, ser. WWW
’15. Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2015, pp. 495–505. [Online].
Available: https://doi.org/10.1145/2736277.2741101

[11] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in 2015 IEEE International Conference on

Data Mining. Atlantic City, NJ, USA: IEEE, 2015, pp. 1–10.
[12] L. Lü, T. Zhou, Q.-M. Zhang, and H. Stanley, “The h-index of a network

node and its relation to degree and coreness,” Nature Communications,
vol. 7, p. 10168, 01 2016.

[13] Y. Che, Z. Lai, S. Sun, Y. Wang, and Q. Luo, “Accelerating truss
decomposition on heterogeneous processors,” Proc. VLDB Endow.,
vol. 13, no. 10, pp. 1751–1764, June 2020. [Online]. Available:
https://doi.org/10.14778/3401960.3401971

[14] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed
memory,” in 2017 IEEE High Performance Extreme Computing Confer-
ence (HPEC). Waltham, MA, USA: IEEE, 2017, pp. 1–4.

[15] R. A. Rossi, “Fast triangle core decomposition for mining large graphs,”
in Advances in Knowledge Discovery and Data Mining, V. S. Tseng,
T. B. Ho, Z.-H. Zhou, A. L. P. Chen, and H.-Y. Kao, Eds. Cham:
Springer International Publishing, 2014, pp. 310–322.

[16] A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman,
M. Kodiyath, I. Hur, F. Petrini, and G. Karypis, “Exploring opti-
mizations on shared-memory platforms for parallel triangle counting
algorithms,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). Waltham, MA, USA: IEEE, 2017, pp. 1–7.

[17] M. P. Szudzik, “The rosenberg-strong pairing function,” CoRR,
vol. abs/1706.04129, pp. 1–5, 2017. [Online]. Available: http:
//arxiv.org/abs/1706.04129

[18] F. C. Botelho and N. Ziviani, “External perfect hashing for very
large key sets,” in Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Management, ser.
CIKM ’07, vol. 1, no. 1. New York, NY, USA: Association for
Computing Machinery, 11 2007, pp. 653–662. [Online]. Available:
https://doi.org/10.1145/1321440.1321532

https://scipy.github.io/old-wiki/pages/ParallelProgramming
https://scipy.github.io/old-wiki/pages/ParallelProgramming
https://roman-kh.github.io/numpy-multicore/
https://numpy.org/doc/stable/reference/simd/simd-optimizations.html
https://numpy.org/doc/stable/reference/simd/simd-optimizations.html
https://futhark-lang.org/blog/2020-05-03-higher-order-parallel-programming.html
https://futhark-lang.org/blog/2020-05-03-higher-order-parallel-programming.html
https://doi.org/10.1145/3400903.3400931
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.14778/3401960.3401971
http://arxiv.org/abs/1706.04129
http://arxiv.org/abs/1706.04129
https://doi.org/10.1145/1321440.1321532

	Introduction
	Background
	Existing Approaches
	Proposed Approach
	Pre-processing and Creating Input Vectors
	Cuckoo hashing
	Finding triangles of each edge
	Peeling Step

	Experiments
	Experimental setup
	Implementation
	Datasets

	Results and Discussion

	References

