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Abstract—Autism Spectrum Disorder (ASD) affects a large
portion of the global population both directly and indirectly. The
biological etiology of the disorder is not sufficiently understood,
and current diagnoses rely on behavioural indicators which do
not provide a reliable basis for diagnosis until about 2 years
of age. Identifying a biological marker of ASD would aid in
understanding the disorder and potentially allow for earlier, more
objective diagnoses and treatments to improve the quality of
life of individuals possessing ASD. The analysis of functional
connectivity in the brain using functional Magnetic Resonance
Imaging (fMRI) has been identified as a promising method for
discovering such biological markers.

This study recreated a prominent state-of-the-art work in
explainable classification of brain networks, but found results
inconsistent with what was claimed. The methods were modified
in various ways to improve accuracy and performance. A new,
simpler method named Discriminative Edges (DE) was developed
which achieved similar accuracies with improved performance
and explainability. DE was also adapted to receive raw correlation
matrices as well as thresholded correlation matrices representing
brain networks, and it was found that raw correlation matrices
provided more useful information for classification. An imple-
mentation package was provided to aid future researchers in
validating and improving upon these results. Suggestions for
future work based on the findings of this study were provided,
the most important being to procure more datasets, discover
data-driven subcategories of ASD, and maintain reproducibility
in studies.

Index Terms—neuroimaging, fMRI, machine learning, diagno-
sis, brain networks

I. INTRODUCTION

Reliably diagnosing and understanding Autism Spectrum
Disorder (ASD) from a biological perspective poses a difficult
challenge due to the disorder’s complexity and varied forms
of expression [1]–[4]. The criteria for diagnosing ASD, as
given by the DSM-5, are vague compared to other neurological
disorders [5] and even underwent significant changes in 2013
[6]. Moreover, the disorder is common and affects a large
portion of the population [7].

ASD is currently diagnosed by observing behaviour [5]
and cannot reliably be diagnosed until an individual reaches
about 2 years of age [8]. An early diagnosis can be crucial
to getting proper support for an individual and providing
caretakers with an understanding of the condition that will
improve the individual’s quality of life [9]. However, in many
cases, a diagnosis is not given until much later.

If features of the brain during early development could
reliably identify an individual with ASD, it would not only
provide the early diagnoses sought after, but it would help
neuroscientists gain a better understanding of what causes
ASD biologically, which could lead to a plethora of methods
for improving the quality of life and healthy development of
such individuals.

Unfortunately, such features of the brain have been elusive
to researchers despite the surge of effort in this area in recent
years [10]–[13]. Thus, the search continues in order to address
this important issue and gain a better understanding of the
pervasive, yet misunderstood disorder.

The focus of this study is to work towards a better method
of identifying and diagnosing ASD without relying on be-
havioural information, but rather by using brain imaging data.

A common approach for deriving useful information from
brain scans, such as those produced by fMRI, is to divide the
brain into regions of interest (ROIs) based on their function-
ality and construct a graph whose nodes correspond to ROIs
and whose edges correspond to correlations of brain activity
between ROIs. This turns the problem of classifying fMRI
scans into a graph classification problem.

Machine learning (ML) and artificial intelligence (AI) have
been shown to out-perform humans significantly in a multitude
of domains [14]–[17], and the domain of graph classification
is no exception [18]. But how is performance measured for
graph classification? Metrics such as accuracy, precision, and
recall are essential for evaluating any classifier [19], and there
is no doubt that ML and AI models can achieve impressively
high scores in such areas. However, recently there has been a
trend towards explainability in the AI world [20], [21].

This is because industries, governments, and organizations,
especially those that deal with critical decision making such as
the medical field, are hesitant to adopt prediction models with-
out knowing how and why they make decisions, regardless of
how accurate these models are reported to be [22]. Moreover,
emphasizing explainability can provide insights that may not
have been detected through classical methods and may lead to
further advancements in research. Therefore, it is increasingly
important to find classification models that are explainable
and simple to understand, while also achieving high accuracy,
precision, and recall scores.



In their paper, “Explainable Classification of Brain Net-
works via Contrast Subgraphs”, Lanciano et al. proposed a
method for translating the previously described brain networks
into two-dimensional vectors with a simple interpretation [23].
This translation of a graph into a simpler representation is
known as a graph embedding [24]. The graph embedding
employed by Lanciano et al. involves thresholding correlation
values of constructed brain networks and the use of contrast
subgraphs (CSs).

This study sought to assess the current state of research in
this area, improve upon existing methods, and provide insights
regarding possible directions of future work. The following
contributions were made:

• A replication of the novel CS method by Lanciano et al.
along with various modifications to the CS method.

• A new approach to the problem named Discriminative
Edges (DE) which provides a simpler solution with a
fraction of the running time of the CS method.

• An implementation of an effect size thresholding ap-
proach for comparison [25] with our DE method.

• An implementation package to recreate all the work done
in this study1 with suggestions for the future of this area
of research.

II. RELATED WORKS

The problem of classifying ASD using fMRI data has
been studied intensively over the past decade [10]–[13], [26],
[27]. Constructing correlation matrices (or brain networks)
from blood-oxygen-level-dependent (BOLD) signals in fMRI
images, as seen in Figure 1, is fairly common in this area
of research [18], [28]–[31]. This is because the raw four-
dimensional fMRI data is too large to be useful for most
ML strategies. Thomas et al. attempted to reduce the size of
the data by collapsing the temporal dimension using various
metrics such as regional homogeneity. Their accuracies on the
full ABIDE I datasets reached about 66% [32].

Subah et al. report a high accuracy of 88% on the ABIDE I
dataset using a Dense Neural Network (DNN) and the BASC
brain atlas [29], however, they do not focus on explainability or
utilize feature engineering which can be useful for understand-
ing as well as performance [30]. Many other studies using deep
learning (DL) models similarly focus on fine-tuning model
architectures rather than feature engineering [31] or they use
complex feature selection techniques that are not interpretable
to individuals that are not machine learning experts [27], [30].

On the other hand, Kong et al. use a measure called F-
score to select the top 3000 correlation values as features.
They use a DNN and a small subset of the ABIDE I dataset
and claim an accuracy of 90% [18]. Similarly, Iidaka uses
effect-size thresholding to select features before employing a
Probabilistic Neural Network (PNN) for classification. They
also use a subset of the ABIDE I dataset (individuals under
20 years of age) and claim about 90% accuracy [25].

1https://github.com/keanelekenns/brain-network-classification

Fig. 1: This matrix contains the pairwise Pearson correlation
coefficients of every ROI in the brain of an individual from the
ABIDE I dataset using the AAL brain atlas [1]. The matrix
is symmetric, and the main diagonal contains zeros as the
correlation of each ROI to itself is irrelevant. This can be
viewed as a weighted, undirected brain network where edges
represent the strength of functional connections in the brain.

It has been found that studies, such as the previously
mentioned studies, done on small subsets of data report
higher accuracies than those that use larger datasets, and more
specifically, the difference has been noted between single-site
and multi-site studies, possibly due to varying experimental
conditions and extraction methods [33]. It is also likely that
over-fitting occurs in studies with small datasets; such models
are not extensible to new datasets.

Many approaches rely on a single brain atlas to abstract
raw fMRI data. However, there is no single brain atlas that is
considered superior. In a recent study, Epalle et al. successfully
utilized information from multiple brain atlases simultaneously
to generate predictions on the ABIDE I dataset [34]. For
each atlas, they followed a similar approach to others with
respect to generating correlation matrices from the BOLD time
series of ROIs. They then selected a fixed-size set of edges
in the correlation matrices derived from each atlas and fed
them into a multi-input single-output deep neural network.
Their experiments showed an improvement in performance
over similar deep-learning pipelines using fewer atlases.

There has been a recent trend towards more explainable
AI (sometimes referred to as XAI) [35] and some tools are
available for explaining the predictions of black-box models
[20], [21], but they have various limitations, primarily in
the form of computational complexity. Perotti et al. created
a tool for deriving SHAP values in the domain of graph
classification by using motifs as features [36], but determining
these explanations is computationally expensive. Similarly,
Abrate and Bonchi employed a strategy to find counterfactual

https://github.com/keanelekenns/brain-network-classification


graphs to help explain black-box classifiers, but the process is
computationally expensive and only reflects what the classifier
deems as important information whether that information is
truly useful for classification or not [37].

The present study was heavily influenced by the work of
Lanciano et al. as it began with a replication of their paper
[23]. They claim an accuracy of 86% on a subset of the ABIDE
I dataset comprised of children. They focus on explainability
and simplicity of features to assist neuroscientists in inter-
preting the findings rather than creating a highly accurate
classifier that is difficult to understand. The emphasis on
explainability is maintained in this study, because, while early
diagnosis is the primary goal of this research, neuroscientists
and field experts need to be able to interpret the predictions
of automated classifiers before they can trust them and learn
from them.

III. CONTRAST SUBGRAPHS

In 2020, Lanciano et al. sought to find subgraphs in brain
networks called Contrast Subgraphs (CSs) that could be used
to discriminate between the two classes (i.e. ASD and the
typically developed control group labelled TD). A CS is
defined as a subset of vertices that induces a dense subgraph
in one graph and a sparse subgraph in another, assuming that
the graphs share a common vertex set (which is the case for
ROIs of brain networks defined on a common brain atlas).

The first step of the approach is to reduce the noise in
the input data by applying a threshold to each correlation
matrix which causes the brain networks to become unweighted
compared to the raw correlation matrices.

In order to derive class specific information, summary
graphs are defined for each class over the common set of
ROIs representing nodes of the graphs. These are the graphs
from which the CSs are discovered. The edge weights in the
summary graphs represent the percentage of brain networks in
the corresponding class that possess the corresponding edge.
For example, if half of the brain networks in the ASD class
contain edge e, then edge e will have a value of 0.5 in the
ASD summary graph.

In the context of Lanciano et al.’s work, finding a contrast
subraph between the two summary graphs is equivalent to
finding a dense subgraph in their difference. Therefore, a
difference network is obtained by subtracting one summary
graph from another. Two such difference networks can be
created by reordering the subtraction.

Finding dense sugbraphs is a common problem in graph
theory, and as such, Lanciano et al. repurposed the work of
Cadena et al. to identify dense subgraphs in the difference
networks using a semi-definite programming (SDP) solver
[38]. The solver approximates the optimal solution based on
their definition of density and a local search algorithm adapted
from the work of Tsourakakis et al. is used to further refine
the solution [39]. The result is a set of nodes that comprises
a dense subgraph in a difference network, which represents a
CS in this context.

Fig. 2: A group of brain networks plotted in two dimensions
based on their features derived from the CSP1 approach.

A CS is found for both of the difference networks, hence
each CS represents a group of ROIs that were found to be
more connected in one class than the other. Finally, each brain
network is translated into a two-feature vector by counting
the overlap between each CS as shown in Figure 2. The brain
networks used for training are translated first and used to train
a classifier, and the remaining brain networks are translated
after and predicted using the classifier.

Lanciano et al. also define a symmetric variant of the
problem. We refer to the already described approach as CSP1,
and the variant CSP2. In CSP2, a single CS is found in the
difference network containing absolute valued edge weights.
The CS is used to induce subgraphs in both of the summary
graphs as well as each individual brain network. The distances,
computed as the L1 norms, from the induced brain networks to
each induced summary graph are then used as the two features
for this approach.

For further details about the CSP1 and CSP2 approaches,
we refer the reader to Lanciano et al.’s paper. During the
replication of their work, however, some modifications were
made to their approaches to achieve better computational
performance. The modifications include using a quadratic
programming (QP) solver rather than an SDP solver when
approximating the densest subgraph, improving the logical
implementation of the local search algorithm used to refine
the solution, and finding multiple contrast subgraphs for each
class rather than one. The first two improvements serve to
decrease the computation time, while the third improvement
utilizes more information from the correlation matrices.

IV. DISCRIMINATIVE EDGES

Explainability is the major advantage of the contrast sub-
graph approach. There are only two features, which makes it
easy to visualize the representation of each brain network. In
turn, the decisions made by a classifier can be understood by
humans.



A disadvantage is made apparent when considering the
usefulness of CSs in light of how difficult they are to find.
In Section 5.1 of their paper, Lanciano et al. showed that the
weighted degrees of the nodes in each of the classes’ summary
graphs were nearly identical [23]. This indicated that there
was no clear difference in network structure when looking at
the connectivity of certain nodes. The important information
comes from the strength of the connections (i.e. the weight of
the edges) in the summary graphs. However, CSs are defined
as sets of nodes, meaning there could be unimportant edges
included within the CSs when inducing a subgraph with them,
and those edges are given equal importance in the calculation
of the features used for discriminating between the classes.

A simple approach was developed in this study to address
this issue. The approach is named Discriminative Edges (DE)
because it uses the most important edges, or connections in
the brain, for discriminating between the two classes. It has
the following key features:

• It focuses on connections that discriminate between the
classes rather than ROIs, so as not to include unimportant
connections in the decision making.

• It has only a linear time complexity for identifying the
important edges, and is therefore much faster than the
contrast CS approach as well as many others.

• The calculations are simple to understand and trace: it
uses dot products and Euclidean vector distances.

• It appropriately weights connections based on their im-
portance.

• It can perform classification on both thresholded or raw
correlation matrices.

In the DE approach, a difference network is obtained from
two summary graphs, just as in the CS approach. However,
rather than approximating the solution to a complex opti-
mization problem by choosing a set of nodes that maximizes
an objective function, it simply selects the n most positively
weighted edges and n most negatively weighted edges in the
difference network (where n is a chosen hyperparameter).
Performing this partitioning operation is only linear in time
complexity. Note that the magnitudes of the values in the
difference network are used to measure the importance or
discriminative power of the edges.

In the case of thresholded brain networks, like the ones
derived by Lanciano et al., the calculation is very simple. In
order to utilize the information of absent edges, each brain
network is transformed to have a value of -1 where there is no
connection, and 1 where there is a connection. A dot product
is then taken between the n positive edges in the individual
brain network and the summary graph, and similarly between
the n negative edges.

The approach requires slightly different calculations in the
case of using raw correlation matrices or weighted brain
networks. The summary graphs are calculated by averaging
the correlation values of each class’s brain networks. Because
the networks contain correlation values rather than simple
indicators of each connection’s presence, it is important to
measure similarity to the class’s average correlation values

rather than whether the values are more positive or negative
as in the unweighted case.

Therefore the graphs are treated like vectors and relative
similarities are measured with euclidean distances. Let A be
the summary graph of the positive class (i.e. the first class in
the subtraction to obtain the difference network) and let B be
the summary graph of the negative class. Also, let the subscript
K denote a set of k edges that induces a subgraph in a brain
network or summary graph. Then the relative similarity of an
individual brain network i to the positive class is calculated
as:

||BK − iK || − ||AK − iK ||
||BK − iK ||+ ||AK − iK ||

× 100% (1)

In order to account for the relative importance of each
edge, the vectors are scaled using the corresponding difference
network values. Finally, the similarity of a brain network with
the positive class is calculated by setting K to be the n most
positive edges and n most negative edges in the difference
network.

Though the two features used for DE provided useful
information for classifying brain networks, some information
was not being utilized, namely all of the edges between the
top and bottom n most discriminative edges. Therefore a
third feature was derived for each case: the whole network
similarity.

This feature is calculated in a nearly identical way as the
first two features in both the unweighted and weighted cases,
but it uses every edge to measure an individual brain network’s
similarity to the positive class. This has the additional benefit
of allowing the 2n discriminative edges to be compared by
their relative importance.

V. EXPERIMENTS

The experiments in this study were conducted on datasets
derived from the ABIDE I initiative. The datasets were
provided by the Preprocessed Connectomes Project (PCP),
which performed preprocessing of the ABIDE I datasets using
a variaty of pipeline tools and parameters. The DPARSF2

pipeline was used with band-pass filtering and global signal
regression, and the version of the AAL3 brain atlas provided
by the PCP was chosen. A description of the categorization
and counts of subjects can be found in Table I.

To ensure all approaches were evaluated fairly, a com-
mon framework was developed to run the experiments. This
framework was implemented similarly to the pipeline module
provided by scikit-learn.

The steps of the pipeline consist of a series of transformer
classes, each possessing fit and transform functions,
followed by a classifier class, possessing fit and predict
functions.

To limit the variability between approaches, it was decided
that their pipelines would only vary in their first step, which

2http://preprocessed-connectomes-project.org/abide/dparsf.html
3http://preprocessed-connectomes-project.org/abide/Pipelines.html#

regions of interest

http://preprocessed-connectomes-project.org/abide/dparsf.html
http://preprocessed-connectomes-project.org/abide/Pipelines.html#regions_of_interest
http://preprocessed-connectomes-project.org/abide/Pipelines.html#regions_of_interest


TABLE I: Subject counts by category, file type, and class.
The first four categories are defined exactly as in the work of
Lanciano et al. [23]. The “other” category includes subjects
that were not included in any of the first four categories. The
“all” category includes all unique subjects. The “Lanciano
(thresholded)” column corresponds to the thresholded brain
networks provided by Lanciano et al. in their repository.
The “Raw Correlation” column corresponds to the correlation
matrices derived from the PCP-provided BOLD time series.

Category Lanciano (thresholded) Raw Correlation
ASD TD ASD TD

children 49 52 40 39
adolescents 116 121 114 122
eyesclosed 136 158 141 165

male 420 418 443 455
other 0 0 27 49

all (unique) 457 462 504 551

would receive the brain networks as input and output the
feature vector specific to each approach. The second step of
the pipeline was the StandardScaler class, which standardizes
features by removing the mean and scaling them to unit
variance in each dimension. This serves to give each feature
of the outputted feature vector a more equal importance in
the classification (especially when used in conjunction with a
classifier that uses spatial algorithms). Finally, the classifier
used for each approach was the SVC4 model from scikit-
learn’s SVM module using an RBF kernel.

An additional module was made for performing grid
searches for tuning hyperparameters in conjunction with cross-
validation and nested cross-validation. In their paper, Lanciano
et al. describe a nested cross-validation approach with hyper-
parameter optimization [23]. It was not clear how the hyperpa-
rameters were selected, both with respect to the mechanism for
choosing hyperparameters and for evaluating what makes them
the “best”. Therefore a standard grid search was conducted
over the parameters for both the transformer class of the
specific approach and the SVC class, which takes two primary
hyperparameters: C and gamma. Furthermore, the maximum
average accuracy achieved by a given set of hyperparameters
over the 5 inner folds of cross-validation on the training data
was used to determine the best set of hyperparameters.

A variety of metrics and useful information are outputted
for each outer fold of the experiments. These include the
following:

• The parameter grid used,
• The chosen parameters,
• The confusion matrix resulting from the predictions,
• Basic metrics such as accuracy, precision, and recall, and
• Average runtimes for various stages of the experiments.
Additionally, for the methods that can be plotted in two or

three dimensions (namely the CS methods and DE), three plots
are generated from each of the outer folds with the following
information:

1) Training points according to their class labels.

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

2) Test points according to their class labels.
3) Test points according to the predictions that are made.

VI. RESULTS

Much effort was put into reproducing the results of Lanciano
et al.’s work, however, the results came short of those claimed
in their paper. Table II shows the results of running 5-fold
cross-validation using the approaches described by their work
and the best hyperparameters reported in Appendix A of their
paper.

TABLE II: Replication results. This is modelled after Table 2
in Lanciano et al.’s paper [23] and reports average accuracies
with their relative standard deviation in percentages.

Children Adolescents EyesClosed Male
CSP1 73.5 ± 13.5 60.8 ± 15.6 58.5 ± 9.0 59.3 ± 4.3
CSP2 65.6 ± 14.7 63.7 ± 9.5 58.5 ± 7.6 61.9 ± 4.9

The goal of this study was not exclusively to replicate
Lanciano et al.’s work. The approaches that were experimented
with include the following:

• CSP1-SDP-N1 - The recreation of CSP1 from Lanciano
et al.’s work. SDP specifies the solver used, and N1
specifies the number of contrast subgraphs used for each
feature.

• CSP2-SDP-N1 - The recreation of CSP2 from Lanciano
et al.’s work.

• CSP1-QP-N3 - The CSP1 approach with modifications.
QP specifies the solver used, and N3 specifies the number
of contrast subgraphs used for each feature.

• CSP2-QP-N3 - The CSP2 approach with modifications.
• DE - The Discriminative Edges approach.
• Iidaka - A partial recreation of the effect-size thresholding

approach of Iidaka [25].
The approaches for CSP1 (both the original and modified

versions) can only receive thresholded, unweighted brain net-
works as input, as it was unclear how to extend the technique
to the weighted scenario without changing it significantly. DE
and the approaches for CSP2 (both the original and modified
versions) can receive both unweighted brain networks and raw
correlation matrices. The effect size thresholding approach can
only receive raw correlation matrices as input. Hence, there
were two kinds of experiments conducted: those receiving
unweighted brain networks as inputs (provided by Lanciano
et al.) and those receiving raw correlation matrices (generated
from downloaded BOLD time series in this study).

Numerous empirical experiments were conducted during
this study. However, due to the excessive computation time
required to evaluate the recreation of Lanciano et al.’s methods
(which were empirically found to be about four times faster
than the original implementations), it was not possible to com-
pare the results of more rigorous experiments such as leave-
one-out cross-validation for all methods. The time-consuming
approaches were manually tested over smaller parameter grids
until an appropriately sized grid could be found that took a
reasonable amount of time to run, but gave the approaches

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Fig. 3: Experimental results including accuracies and training times for each of the studied approaches.

a fair chance at performing well. It was also ensured that
the parameters listed in their paper were included in the grid
search.

All of the experimental results can be seen in the provided
replication package. Figure 3 provides the average prediction
accuracies (with standard deviations) as well as the average
training runtimes for the nested and non-nested cross vali-
dation experiments. Several observations can immediately be
made after inspecting these charts:

1) None of the accuracies are particularly high in the

context of a medical diagnosis. Because the class distri-
bution is approximately half and half, a simple classifi-
cation model that always predicts a certain class would
achieve about 50% accuracy. These results are clearly
above that (for the most part), meaning some differences
in the classes are certainly detectable when using fMRI
data, but they are not accurate enough for an expert in
the field to trust their predictions.

2) The approaches of Lanciano et al. and Iidaka do not
achieve the results claimed by the respective authors.



(a) TD: Axial (b) TD: Sagittal (c) ASD: Axial (d) ASD: Coronial

Fig. 4: The most discriminative edges of the corresponding classes. The range of edge weights is indicated by the scales for
each class. Edge weights represent the absolute value of the respective sum of the difference network edges when each edge
was selected during the 50 test folds.

3) No single approach outperforms all others in every
experiment with respect to accuracy.

4) The accuracies of the approaches using the thresholded
correlation matrices are generally lower than those using
raw correlation matrices as inputs.

5) DE consistently outperforms all other approaches in
terms of training runtimes.

6) The approaches involving the SDP solver take a sig-
nificant amount of extra computational time with little
return in terms of accuracy.

As mentioned previously, the parameter grids used for each
approach are documented along with the precise values of the
results in the experiments directory of this study’s repository5.

An experiment was also conducted to visualize the con-
nections deemed most important by the DE approach. The
entire group of raw correlation matrices was divided into
5 folds to simulate 5-fold cross-validation, then the 5 most
positive and negative connections in the difference network
for each fold were selected according to the DE algorithm
and were accumulated into an adjacency matrix for each class
(i.e. ASD and TD). This process was iterated 10 times to
determine which edges would be deemed most important by
the DE algorithm for the positive class (ASD in this case)
and the negative class (TD in this case). The accumulated
adjacency matrices represented the discriminative power of
each edge that was chosen at least once in the 50 folds. The
adjacency matrices were then thresholded to show only the
most discriminative edges. These connections were visualized
with the BrainNet Viewer [40] as seen in Figure 4.

VII. DISCUSSION AND CONCLUSIONS

The problem of identifying and diagnosing Autism Spec-
trum Disorder through resting state fMRI data alone is dif-
ficult. The highest classification accuracies reported on the
ABIDE I dataset are not adequate to be trusted in practice
in most fields, let alone the medical field.

5https://github.com/keanelekenns/brain-network-classification

The current definition of ASD may be a source of difficulty
in this problem. The disorder varies widely in severity and
expression. This seems to indicate that a binary diagnosis is
not sufficient, and that training data should at least include the
severity levels associated with ASD diagnoses, though it would
also likely be useful to include specific symptom expressions
or even develop data-driven definitions of subcategories within
ASD to aid in classification and treatment.

Some challenges were also discovered while attempting
to replicate the work of others. It was identified that this
field of research would benefit from studies that emphasize
reproducibility, not just explanations of methodologies, but
providing software and resources to quickly and easily recreate
the experiments and results described. This will lend credibil-
ity to the research done and lead to the earlier adoption of
new techniques and tools.

Most prominently, however, the problem suffers from a lack
of data availability. It is difficult to determine whether the low
accuracies of the approaches experimented with are caused
solely by the approaches themselves or by a lack of data.
Obtaining more data could potentially overcome the multitude
of confounding factors that come as a result of the uniqueness
of each individual’s brain depending on their environment, age,
sex, or other factors.

Unfortunately, obtaining such data is expensive and time-
consuming with the current state of brain imaging technologies
such as fMRI, and the preprocessing for such data requires
expertise that is not common among researchers with back-
grounds in machine learning and artificial intelligence.

Furthermore, identifying ASD in children under 2 years old,
who typically cannot be diagnosed behaviourally, poses an
even bigger challenge due to additional difficulties in obtaining
data for younger subjects.

The easiest way to alleviate this issue in the short term is
to perform similar preprocessing on the ABIDE II dataset as
the Preprocessed Connectomes Project has done for ABIDE I
to make it more accessible to the wider research community,

https://github.com/keanelekenns/brain-network-classification


though this does not help in the area of providing more data
for younger subjects, and more data is certainly needed for
subjects of all ages.

The work done to provide earlier, more reliable and accurate
ASD diagnoses using brain imaging data will advance our
understanding of ASD and improve the quality of life of
many members of society. It is hoped that our findings and
suggestions will aid in future efforts to meet this goal.
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