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Abstract. The analysis of characteristics of large-scale graphs has shown
tremendous benefits in social networks, spam detection, epidemic disease
control, analyzing software systems and so on. However, today, process-
ing graph algorithms on massive datasets is not an easy task not only
because of the large data volume, but also the complexity of the graph
algorithm. Therefore, a number of large-scale processing platforms have
been developed to tackle these problems. GraphChi is a popular system
that is capable of executing massive graph datasets on a single PC. Some
researchers claim that GraphChi has the same or even better perfor-
mance, compared with distributed graph-analytics platforms such as the
popular Apache Giraph. In this paper, we implement a well-optimized
k-core decomposition algorithm on Giraph. Then we provide a compar-
ison of the performance of running the k-core decomposition algorithm
in Giraph and GraphChi using various graph datasets.
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1 Introduction

Graphs are widely used as a data structure for representing relationships between
different objects or people. In many applications it is of great benefit to discover
graph structure and analyse it. For example, advertisement companies utilize
social network structure to find targeted communities in order to spread their
commercials [6]; by detecting densely connected networks among web links, an
organization can facilitate combating spam [24]; as another example, people
simulate infectious disease spread by using graph structure in order to be better
prepared to stop an epidemic [4]; software engineers use graphs to extract and
analyse large-scale software systems so that the complexity of the systems is
tackled more effectively [31].

In all these applications, the graphs are grouped into different subgraphs
where some are dense and the others are sparse. Intuitively, nodes in a dense
network have close ties with each other. So detecting those dense subgraphs in
real-life networks is an important task in graph analytics. There are already
many early studies on finding dense components such as in [25], [15], and [7].
One popular study is the k-core decomposition which attempts to find all the
maximal connected subgraphs of a graph so that all vertices within it have



at least k neighbors. In another dense graph searching study, [29] proposed a
novel density measure that extracts optimal Quasi-Cliques and returns denser
subgraphs with smaller diameters.

However today, graphs with millions of nodes and billions of edges are very
common, and thus, doing analytics on large graph datasets is challenging due
to the sheer size and complexity of graph computations. For example, in April
2017, the Facebook social network graph has over 1.97 billion monthly active
users and more than 140 billion friendship connections, followed by Whatsapp
and WeChat, with 1.2 billion users and 889 millions users, respectively [27].

Pregel [19], developed by Google in 2010, is a scalable and fault-tolerant
platform that provides APIs for supporting large graph processing.

This model provides a vertex-centric computation model which enables users
to only focus on programming itself without knowledge of the mechanisms be-
hind it. The Pregel vertex-centric (VC) model has been implemented by several
open source projects, for example, Apache Giraph is a framework designed to
process iterative graph algorithms that can be parallelized across multiple com-
modity machines. Giraph became popular after careful engineering by Facebook
researchers in 2012 to scale the computation of PageRank to a trillion-edge graph
of user interactions using 200 machines [1].

Systems like Apache Giraph and Pregel require a distributed computing clus-
ter to process large scale graph data quickly and effectively. Although distributed
computing facilities such as cloud computing clusters are becoming more com-
mon and accessible, nevertheless, the question of how to process large scale graph
data effectively without distributed commodity computing clusters is an inter-
esting avenue for a data analyst who may need to analyze a large graph dataset
but is unable to access a distributed computing cluster. GraphChi proposed by
Kyrola and Guestrin [5] is a disk-based, vertex-centric system, which segments
a large graph into different partitions. Then, a novel parallel sliding window al-
gorithm is implemented to reduce random access to the data graph. Graphchi
can process hundreds to thousands of graph vertices per second. GraphChi be-
came popular, around the same time in 2012, as it made possible to perform
intensive graph computations in a single PC in just under 59 minutes, whereas
the distributed systems were taking 400 minutes using a cluster of about 1,000
computers (as reported by MIT Technology Review [23]). Since then, new ver-
sions of GraphChi and Apache Giraph have been released, where new ideas and
optimizations have been implemented. Therefore, one needs to validate again the
claims made several years ago. In [17], Lu and Thomo present a detailed evalua-
tion of computing PageRank, shortest-paths, and weakly-connected-components
on Giraph and GraphChi. In this work, we embark in computing k-core decom-
position using a vertex-centric algorithm on Giraph and GraphChi. We adapt
for this the algorithm of Montresor et. al. [22]. The latter was implemented and
optimized for GraphChi by Khaouid et. al. in [12].



2 Graphs and Cores

We consider undirected and unweighted graphs. We denote a graph by G =
(V, E), where V denotes the set of n vertices and E denotes the set of m edges
linking the vertices. The neighbors of a vertex v are denoted by N¢g(v), and the
degree of this vertex is denoted by dg(v).

Let K C V be a subset of vertices of a graph G = (V,E). We have the
following definitions.

Definition 1 Graph G(K) = (K, Fk), where Ex = {(u,v) € E : u,v € K} is
called the subgraph of G induced by K.

Definition 2 (k-core): Graph G(K) is a k-core if and only if for each v € G(K),
da(ry(v) > k, and G(K) is a mazimum size subgraph with this property.

The process of finding the k-core of a graph is to recursively prune all ver-
tices that have degree less than k until converging to a subgraph in which all
the vertices have degrees greater or equal to k.

Definition 3 (Coreness): A vertex has a coreness of k if it is in the k-core but
not in the k + 1-core.

Fig. 1. Example Graph (top). The 3-core of the graph(bottom) [12].



For an example see Figure 1 (from [12]). By definition cores are nested,
meaning 3-core also belongs to 2-core and 1-core. Each of the vertices in the
graph is in 2-core and no vertices have coreness greater than 4. Even though
vertices such as b, ¢, and ¢ have a degree of 4 or more, their neighbours have
degree less than 4, thus they do not belong in 4-core.

2.1 Pseudocode

[12] implements and optimizes an algorithm from [22] on GraphChi. It takes
advantage of the vertex-centric programming model proposed in Pregel [19].

This model requires programmers to “think like a vertex” that can send
messages to its neighbours by writing on to outgoing edges and receive messages
from incoming edges, that is, in a graph, when computing an update function
on a vertex, it enables the value on the vertex to be sent to its adjacent vertices.
The computations in the update function go on iteratively until there are no
more messages sent by vertices.

Computing the k-core decomposition becomes very natural in the vertex-
centric model. First all vertices store an estimation of their coreness number
in their vertex value, which initially is their degree. Messages can be used to
propagate the estimation from the vertex itself to its neighbours using outgoing
edges. Algorithm 1 and Algorithm 2 show the flow of the computation in the
vertex-centric Giraph model. They are adaptations of corresponding GraphChi
algorithms in [12]. Even though both Giraph and GraphChi follow a vertex-
centric model, there are differences in the way operations are expressed in each
of them.

In Algorithm 1, the first superstep is a special case, where each vertex ini-
tializes its vertex value with its degree number which equals the number of its
out-going edges. Then it sends this value to all its neighbours. Any vertex that
is not being halted will be rescheduled to the next superstep (Lines 2-5).

In the next superstep, a function that computes an upper bound of the
coreness of the vertex is assigned to a local estimate called localEstimate. The
vertex value will be updated to the local estimate if the vertex value is greater
than the upper bound of the vertex. In such a case, this new vertex value will
also be sent to all the neighbours of the vertex (Lines 7-10).

The vertex will have a chance to lower its core estimate if any of its neigh-
bours has a lower coreness value, then this vertex will be scheduled to the next
superstep. Otherwise, this vertex will not be scheduled, and then it can switch
to inactive state by voting to halt (Lines 11-20).

Algorithm 2 displays the details of the computation of a tighter upper bound
of the vertex. It uses a count array which is indexed by the value of the upper
bound of its neighbours. The value of each element is the number of the neigh-
bours which have an estimate equal to the index. The largest index of the count
array is the value of the vertex’s the current coreness estimate. Any neighbour
that has an upper bound greater than the current vertex value will be added to
the last element of the array (Lines 5-8).



Algorithm 1 Update function running at a vertex

1: function UPDATE(Vertex vertex, Iterable messages)
2: if superstep = 0 then

3: vertex.value < vertex.numQutEdges
4: sendMessageToAllEdges(vertex, vertex.value)
5: else
6: local Estimate <—computeUpperBound(vertex, messages)
T if local Estimate < vertex.value then
8: vertex.value < local Estimate
9: sendMessageToAllEdges(vertex, vertez.value)
10: end if
11: halt < true
12: for all message in messages do
13: if verter.value > message then
14: halt < false
15: break
16: end if
17: end for
18: if halt = true then
19: vertex.voteToHalt()
20: end if
21: end if

22: end function

In order to compute the new upper bound of the vertex, a loop is used to
add the array elements beginning from the largest index down to 2 until the
summation of the array elements is greater or equal to the corresponding index.
This index is the new coreness estimate for the vertex in the superstep (Lines
9-15).

3 Experimental Evaluation

All the experiments are conducted on Amazon Web Services (AWS) using the
Amazon Elastic Compute Cloud (EC2) platform. We configured twenty-one vir-
tual machines, with one master machine and twenty slaves. All of the virtual
machines have two cores, Intel Xeon Family, 2.4 GHz CPU with 8GB RAM
running Ubuntu Linux System.

To explore the relationship between the number of the slaves and the running
time, we respectively use two, five, ten, fifteen, and twenty slaves to handle dif-
ferent datasets. The datasets we used in this experiment were chosen from Stan-
ford Large Network Dataset Collection. They are Astro Physics (ca-AstroPh),
Gnutella P2P network (p2p-Gnutella3l), Amazon product co-purchasing net-
work (amazon0601), California road network (roadNet-CA), and Live-Journal
social network (soc-LiveJournall). The detailed information of these datasets is
described in Table 1. From the table, we can observe that the first two datasets
are small; they only have few thousands of nodes and a hundred thousands of



Algorithm 2 computeUpperBound function for a vertex
1: function COMPUTEUPPERBOUND(Vertex vertex, Iterable messages)

2: for all i + 1 to vertex.value do
3: cli] <0

4: end for

5: for all message in messages do
6: J <min(message, vertex.value)
7 cljl++

8: end for

9: cumul < 0

10: for all i + vertexr.value to 2 do
11: cumul < cumul + cli]

12: if cumul > i then

13: return ¢

14: end if

15: end for

16: end function

edges. The medium sized datasets are amazon0601 and roadNet-CA with around
three million edges. The largest dataset is soc-LiveJournall, which has 4.8 mil-
lion nodes and approximately 69 million edges.

Table 1. Datasets used for the experiments

Dataset Name |Numbers of NodesNumbers of Edges
ca-AstroPh 18,772 198,110
p2p-Gnutella3l 62,586 147,892
amazon0601 403,394 3,387,388
roadNet-CA 1,965,206 2,766,607
soc-LiveJournall 4,847,571 68,993,773

Results for the Giraph implementation are shown in Table 2. Column “Sent
Messages” gives the total numbers of messages that were sent during the whole
computation. Column “Update Times” gives the average vertex update times
for each dataset. “K-Max” and “K-Ave” are the maximum and average k-core
numbers for each dataset. From the table, we can observe that the number of
sent messages and vertex update times are not only dependent on the size of the
datasets, but also on K-Max and K-Ave. The larger the latter numbers are, the
more frequent the message sending and vertex updates will be.

Figure 2 (left) shows the number of iterations executed on Giraph and GraphChi.
The reason why the iteration numbers for the same dataset are different is that
we cannot control the order of running each vertex in distributed cluster-based
Giraph. However, because of the selective scheduling feature, the order is fixed
when running GraphChi on a single machine. Except for the largest dataset and



Table 2. Results for the Giraph implementation

Dataset Name V] |E|[Sent Messages|Update Times(ms)|K-Max|K-Ave
ca-AstroPh 18.7 K[198.1 K 5,104,983 5414 17 2.01
p2p-Gnutella3l (62.6 K[{147.9 K 322,906 280 50| 1.143
amazon0601 04 M| 24 M 12,122,458 2284 10f 2.51
roadNet-CA 2.0M| 2.8M 11,035,492 785 6| 1.999
soc-LiveJournall| 4.8 M| 43.1 M| 888,141,866 3507 434| 1.689

the smallest dataset, Giraph needs fewer iterations than GraphChi with its ad-
vantage of running on multiple machines. The percentage of updated nodes over
several iterations is shown in Figure 2 (right).
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Fig. 2. Number of iterations (left). Percentage of updated vertices in Giraph vs. number
of iterations (right).

Figure 3, left and right, shows the running time (in milliseconds) of Giraph
versus the number of slave machines used. In the left, we see that with the
increase in the number of machines, the running time also increased. The more
machines we have, the fewer the number of tasks assigned to each one are.
However, the more machines we have, the more the amount of time spent on
communication is. That is why the running time does not decrease when we
configure more machines for Giraph. For the largest dataset shown in the right,
we can notice that Giraph with two slave machines needs the most running time
for the computation, which is around 800 seconds. On the contrary, it takes the
least running time with ten machines, which can finish the computation within
around 700 seconds.

To compare the running time with Giraph and GraphChi, we select the least
running time with the proper number of machines for each dataset for Giraph.
Figure 4 shows the running time comparisons between Giraph and GraphChi.
Giraph spent more time than GraphChi on running the algorithm for all datasets.
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Fig. 3. Running time (ms) in Giraph vs. number of machines.

To be specific, the running time of Giraph and GraphChi are very close when
dealing with medium data amazon0601 and roadNet-CA. However, GraphChi is
more efficient in computing k-core for the small size and large size datasets on
a single machine than Giraph with multiple machines.

However, the conclusion is that the performance of Giraph, with a relatively
small number of machines, is quite close to the performance of GraphChi. This
is in contrast to what was reported in 2012 in [23], where the situation was quite
different. Then, a cluster of 1000 machines was an order of magnitude slower
than GraphChi running on a single machine.

Running Time
600K - & Giraph
00K & GraphChi
400K -
300K A
200K A
100K -
K
3 N "%
@Q \\.5,‘? 0@
¥ S e
4 &
& Qp @6@
&

Fig. 4. Running time (ms) in Giraph compared to GraphChi.



4 Related Work

The Pregel distributed graph processing framework was introduced by Malewicz
et. al in [19]. Apache Giraph (http://giraph.apache.org) is an open source im-
plementation of Pregel based on Hadoop. An excellent reference on Giraph is
the recent book by Martella, Shaposhnik, and Logothetis [20].

GraphChi was created by Aapo et. al [16]. Its excellent speed compared to
distributed vertex-centric systems at the time (2012) was commented with awe
at MIT Technology Review [23].

Around the same time, a group of Facebook researchers introduced several
optimizations to Giraph [1]. These and other optimizations to Giraph are de-
scribed in a recent paper by Ching et. al in [2].

Thorough analysis of distributed vertex-centric systems have been presented
by Han et. al [10] and Lu et. al in [18]. A recent survey of vertex-centric frame-
works is by McCune et. al [21].

5 Conclusions

From the experiments for k-core computation on Giraph and GraphChi, we
observe that Giraph is suitable for analyzing medium- and large-size data since
it can synchronously implement the computation by assigning the tasks to each
slave. We observe that the performance of Giraph for computing k-core using a
relatively small number of machines is in the same range as the performance of
GraphChi for the same vertex-centric algorithm. As such, this is in contrast to
the situation described in [23], where a cluster of 1000 machines was slower by
an order of magnitude than GraphChi running on a single machine.

As future work, we would like to analyze more specialized graphs with their
edges being labeled and/or weighted (c.f. [8,9]). It will be interesting to see how
to devise vertex-centric algorithms for computing k-core on such graphs. Also,
adapting the algorithms for environments with many machines failures (c.f. [26,
28]) is another avenue to explore. Finally, we would like to explore the behaviour
of Giraph vs. single machine systems for computing other complex graph ana-
lytics, such those for trust propagation and probabilistic graph summarization
(c.f. [3,14,11]), as well as, complex analytics for special kind of graphs, e.g.
user-item bipartite graphs for recommendation systems (c.f. [5,13, 30]).
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