
PageRank for Billion-Scale Networks in RDBMS

Aly Ahmed and Alex Thomo
{alyahmed,thomo}@uvic.ca

University of Victoria, BC, Canada

Abstract. Data processing for Big Data plays a vital role for decision-
makers in organizations and government, enhances the user experience,
and provides quality results in prediction analysis. However, many mod-
ern data processing solutions make a significant investment in hardware
and maintenance costs, such as Hadoop and Spark, often neglecting the
well established and widely used relational database management sys-
tems (RDBMS’s). PageRank is vital in Google Search and social net-
works to determine how to sort search results and how influential a per-
son is in a social group. PageRank is an iterative algorithm which imposes
challenges when implementing it over large graphs which are becoming
the norm with the current volume of data processed everyday from so-
cial networks, IOT, and web content. In this paper we study computing
PageRank using RDBMS for very large graphs using a consumer-grade
server and compare the results to a dedicated graph database.

Keywords: PageRank · One Billion Graph · RDBMS · Graph Database
· Big Data · Matrix partitioning

1 Introduction

With the amount of data produced daily, one of the main challenges facing big
data is filtering out data and identifying the wheat from the precious. As search
results tend to be in millions of pages, ranking search results becomes very
crucial, however ranking pages tends to be one of the most difficult problems
as the search engine is required to present a very small subset of results and
order them by relevance. A variety of ranking features such as page content or
hyperlink structure of the web are used by Internet search engines to come up
with a good ranking. Many algorithms have been proposed to sort query results
and return the most relevant pages first. Among them are PageRank [12], HillTop
[4] and Hypertext Induced Topic Selection (HITS) algorithms [6].

PageRank [5, 12] developed by the Google founders is based on the hyperlink
structure and on the assumption that high ranked pages usually contain links
to useful pages, therefore giving more weight to pages that have more inbound
links from high weighted paged. PageRank is an iterative algorithm and executed
on the whole graph, which, in Google’s case, is very large. Algorithms such as
PageRank for big data sets require extensive hardware setups and, in many cases,
distributed computing, such as Hadoop [14] and Spark [13]. This is because we



2 A. Ahmed et al.

cannot fit the whole data set in one machine’s memory. Building such a setup
comes with significant investment and continuous running costs.

Nevertheless, some of the existing systems such as Relational Database Man-
agement Systems (RDBMS’s) are still widely used and will not be deprecated in
the future as the amount of investments on them is growing over the years. More
specifically, RDBMS’s have been around for over half-century [7] and proven to
provide consistent performance, stability, and concurrency control. RDBMS’s
are currently the backbone of the IT industry and have been evolving over the
past few decades for better performance.

On the other hand, using dedicated graph databases for graph processing is
presumed to provide better performance and scalability over relational databases
(c.f. [3]), however, graph databases still have a long way to reach the level of
maturity of RDMBS’s. From this prospective, using an RDBMS to implement
graph algorithms seems logical and in fact more efficient. However computing
graph algorithms using SQL queries is challenging and requires novel thinking.
As such, there is active research on the use of novel methods to compute graph
analytics on RDBMS (c.f. [1, 2, 9, 11]). These works have shown that RDBMS’s
often provide higher efficiency over graph databases for specific analytics task.

This paper presents a PageRank algorithm implementation using RDBMS
with table partitioning and compares it with the implementation provided by a
dedicated Graph Database.

The rest of this paper is organized as follows. A brief background review of
the PageRank algorithm is given in Section 2. Our PageRank implementation
using RDBMS with table partitioning is given in Section 3. Section 4 shows the
results of the experiments. Section 5 concludes the paper.

2 Preliminaries

We denote by G = (V,E) a graph with V as a set of vertices, and E as the set
of edges. For each vertex v there will be a non-negative initial PageRank value
PR(v) and for each edge e = (u, v) there is a weight of 1/n assigned to it, where
n is the number of outgoing links from u.

We can use the following relational tables to store a graph. The TE table
contains ∀e = (u, v) ∈ E along with their weights, where u is denoted by fid,
and v by tid and w(u, v) by cost. We can construct a unique index on (fid,tid).

The TV table contains ∀u ∈ V in the graph, denoted by id along with its
rank PR(u), denoted by pagerank. We can also construct a unique index on id.

The PageRank algorithm assigns a weight value to each page in the web or
vertex in a graph; the higher the weight of a page or vertex, the more important
it is. Web pages are represented as a directed graph where pages are vertices and
links are edges. Below is an example of how we calculate PageRank for a small
graph.

The graph in Figure 1 has four vertices representing four web pages. Page 1
has links to each of the other three pages; page 2 has links to 1 and 3 only; page
0 has a link only to 1, and page 3 has links to 2 and 0 only. Let us assume a



PageRank for Billion-Scale Networks in RDBMS 3

Fig. 1: Simple Directed Graph

random user is visiting page 1; this user will have a probability of 1/3 for each
link (0,2,3) to follow and visit a next page. If the user is visiting page 0, then he
will have a probability of 1 to visit page 1 as this is the only link available. If we
follow the same logic, we will have a probability of 1/2 for each link on page 2 and
page 3. The probability value for each link is the weight for each link, and based
on this, we could build an adjacency matrix for the graph as a square matrix
M with a number n of columns and rows. The PageRank algorithm proceeds in
the following steps.

– Set an initial PageRank value for each page
– Repeat until convergence: compute PageRank using Equation 1

PR(A) =

n∑
i=1

PR(i)

C(i)
(1)

where PR(A) is the PageRank value of vertex A, PR(i) is the PageRank value
of vertex i, and C(i) is the number of outbound links (edges) of vertex i. Vertices
i for i ∈ [1, n] are all the vertices of the graph that contain links pointing to A.
Usually, there is also a damping factor present in the computation of PageRank
values but we ignore it in this paper for simplicity and because all techniques
we present can be extended easily to that case.

The link probabilities (1/C(i)), as described above, could be represented as
a matrix M . For the graph in Figure 1, the matrix will be as follows.

M =


0 1/3 0 1/2
1 0 1/2 0
0 1/3 0 1/2
0 1/3 1/2 0


Regarding the PR(i) values, we can represent them all by a PageRank vector

V . Then the computation given by Equation 1 can be written as M · V , which
captures the computation of PR values for all the vertices of the graph at the
same time. We denote by Vt the version of V at iteration t. Then, PageRank is
iteratively computed using equation 2, by multiplying matrix M and vector Vt

and repeating until convergence.

Vt+1 = M · Vt (2)



4 A. Ahmed et al.

where Vt+1 is the new vector holding the newly computed PageRanks for all the
vertices. In each iteration, the newly computed PageRank values will get closer
to the final PageRank values. We stop when PageRank values do not change
much.

Observe that the PageRank value of a vertex A is dependent on the value
of PageRank of vertices pointing to it. However, we do not know the Pagerank
value of inbound vertices till we calculate the ones pointing to them and we will
not know the Pagerank values of them till we calculate the PageRank values of
vertices pointing to them too and this keeps on. So, to overcome this starting
problem, we initially set an estimated PageRank value for each vertex. This can
be represented as a vector

V0 = [1/n, 1/n, · · · , 1/n]

where n is the number of vertices in the graph.

3 PageRank in RDBMS

Representing the graph in a square matrix, M requires quadratic size. Comput-
ing Pagerank in its matrix representation requires the matrix to be fully loaded
in memory; however, loading the graph into memory might not be possible for
large graphs like the Google web or Facebook. However, since the matrix is very
sparse, all the implementations exploit sparsness and do not materialize the ma-
trix as is. Instead only the non-zero entries are stored in the format (i, j,mij).

Using RDBMS is quite efficient in this regard. First, matrix M could be
saved as tuples (i, j,mij) of only connected vertices. Second, when computing
PageRank for a vertex A, the edges that need to be considered are only those
pointing to vertex A. This is a tiny subset of the matrix.

Figure 2 shows the SQL statement used to compute Pagerank using equation
2, where TE stores graph edges and TV stores vertices’s Pagerank estimates. If
we run this SQL query, it will produce the result of multiplying the matrix with
the vector Vi. The multiplication is very efficient as we only do the calculation
for existing edges in the matrix.

Fig. 2: Compute Pagerank For one Iteration

Figure 3 shows the full SQL statement using the new Merge SQL [8] oper-
ation, which is very efficient in saving SQL results. This way, we save the new
Pagerank estimate so that it can be used in the next iteration. The query will
do a full table scan or index scan based on the table setup. RDBMS will need



PageRank for Billion-Scale Networks in RDBMS 5

to load parts of the table into memory to compute Pagerank. This process is
acceptable when the loaded parts could be loaded into memory but cumbersome
when graph size is hugely larger than available memory, which inevitably will
lead to use data swap and, as a result, diminish the performance dramatically. In
the following section, we solve the graph size problem by using table partitioning
based on partitioning the matrix M and vector Vi into parts that can be loaded
into memory.

Fig. 3: Compute Pagerank and update vector V

3.1 Table Partitioning

To overcome the matrix size problem, we partitioned both the matrix and the
vector into k parts and saved each part in a separate table, TVi, and TEi, where
i ∈ [1, k]. We divide the matrix into stripes of almost equal size, and we create
vectors to have only the vertices that are needed to compute Pagerank for each
matrix stripe.

Figure 4 shows how the matrix and vector are partitioned. Each matrix stripe
will have a full set of inbound edges for a set of vertices and matched with a
vector containing all the fid’s that exist in the partitioned matrix. This way, we
will be able to compute Pagerank for the set of vertices of interest. A similar
matrix partitioning scheme is also described in the Map-Reduce chapter of [10].

The main goal is to create as many stripes as needed so that the portions of
the matrix in one partition can fit conveniently into memory. We used the SQL
statements in Figure 5 to build the partitioned tables based on matrix partitions.
Each TEi table will have a subset of vertices along with all inbound edges, and
each table TVi will have all fid’s that exist in TEi.



6 A. Ahmed et al.

Fig. 4: Matrix and vector partitioning into k stripes.

Fig. 5: Creating partition tables TVi and TEi for i ∈ [1, k].

4 Experimental Results

4.1 Setup Configurations

We executed the experiments on a consumer-grade server with Intel Core i7-2600
CPU @3.4 GHz 64 bit Processor, 12 G of RAM and running Windows 7 Home
Premium, using Java JDK SE 1.8.

As RDBMS’s we used the latest versions of a commercial database (which
we anonymously call CD) and an open-source database (which we anonymously
call OD). As graph database, we used the latest version of a graph database
(which we anonymously call GD). We refrain from using the real names of these
databases for obvious reasons.

We used four real datasets from Stanford’s Data collection and a one-billion-
edge graph from The Laboratory for Web Algorithmics. By default, we used
three table partitions in the case of table partitioning experiments except stated
otherwise. All the results shown are based on computing one Pagerank itera-
tion. The real datasets are Web-Google, Pokec, Live-Journal and Orkut (from
http://snap.stanford.edu), and UK 2005 (from http://law.di.unimi.it/webdata).
Table 1 shows statistics about the datasets used.

4.2 Results

We observed that in all the datasets we used, OD and CD clearly out-perform
GD significantly. Figure 6 shows how GD performs poorly with large datasets,



PageRank for Billion-Scale Networks in RDBMS 7

Table 1: Graph Datasets
Data Set Nodes# Edges#

Web-Google 875,713 5,105,039

Pokec 1,632,803 30,622,564

Live Journal 4,847,571 68,993,773

Orkut 3,072,441 117,185,083

UK 2005 39,459,921 936,364,282

IT 2004 41,291,594 1,150,725,436

such as Live Journal (LJ) or Orkut. Orkut was the largest data set that GD
could manage to process without crashing out.

4 13
33

57

3 11
27

52

9
35

84

191

0

50

100

150

200

250

Google Pokec LJ Orkut

Ti
m
e(
se
co
nd
s)

OD

CD

GD

Fig. 6: Results of running PageRank using GD, CD, and OD.

Using table partitioning gives significant enhancement in managing memory
load which in turn boosts PageRank processing time especially with large data
sets such as LJ, Orkut and the large graph UK-2005. Figure 7 shows big perfor-
mance differences between the GD processing time and both RDBMS approaches
using table scan and table partitioning. The impact of table partitioning starts
to appear once the datasets become larger, as shown in the chart. Table parti-
tioning significantly improved over the approach of table scan especially for LJ
and Orkut.

In our experiments we also wanted to decouple the processing time of com-
puting PageRank from the time to save the results, hence we ran two separate
experiments; one with saving the outcome and the other without saving the out-



8 A. Ahmed et al.

3 11
31

70

3 11
27

52

9
35

84

191

0

50

100

150

200

250

5 30 67 117

Ti
m

e(
se

co
nd

s)

Data Sets Size(M)

Table Scan

Table Partition
GD

Fig. 7: Results of PageRank in RDBMS CD using Table Scan, Table Partitioning
and GD. We show here only the dataset sizes as opposed to their names. The
names are as in Figure 6.

come. Figure 8 compares the results of the experiments. We noticed that CD did
a better job than OD in both operations and the time taken for saving data was
noticeably shorter. We relate this to the Merge operation which exists in CD
but does not in OD. The Merge operation showed to have superior performance
over regular insert/update operations.

In addition to the above, OD performs poorly in computing PageRank using
a non-clustered index scan. Figure 9 shows a big jump in time when we used
non-clustered index scan in large data sets, in contrast to a clustered index scan
or table scan. We relate this to the OD optimizer not being good enough in
planning and executing the queries. Also the I/O cost was high which indicates
the data retrieval process included high random access. Such random access
was reduced significantly when the table was reordered as part of building the
clustered index, hence the processing time was also reduced significantly.

Figure 10 shows the processing time in the case of using table scan and clus-
tered index scan. Using an index did not help that much in reducing processing
time and the results were very comparable to just table scan and differences
were not noticeable. We relate this to the fact that the query used to calculate
PageRank requires a full table retrieval hence using an index will not make that
big of a difference.



PageRank for Billion-Scale Networks in RDBMS 9

0

20

40

60

80

100

120

140

160

180

GooglePokec LJ Orkut GooglePokec LJ Orkut

Ti
m

e(
se

co
nd

s)
CD Merge

CD Query

OD Merge

OD Query

Fig. 8: Show the difference between the time taken to only calculate PageRank
without saving the results and the time taken to do the same with saving the
results.

6.3
37

170

360

4 19
36

75

4.5 15
38

90

0

50

100

150

200

250

300

350

400

Google Pokec LJ Orkut

Ti
m

e(
Se

co
nd

s)

Non-Cluster index

Cluster Index
Table San

Fig. 9: OD performs poorly in the case of non-clustered index vs table scan or
clustered index.

4.3 Experiments on Billion-Scale Networks

Here we show our experiments on two very large datasets, namely UK-2005 and
IT-2004, the latter with more than a billion edges. They represent the web net-



10 A. Ahmed et al.

0
20
40
60
80

100
120
140
160
180
200

Google Pokec LJ Orkut Google Pokec LJ Orkut

Ti
m

e(
se

co
nd

s)

OD

Index

No Index

CD

Fig. 10: Results of using table scan vs index scan in OD and CD

work of UK and Italy in 2005 and 2004. The precise number of nodes and edges is
given in Table 2. We ran the PageRank algorithm using table partitioning. Both
data sets were partitioned into 12 partitions and we sum up all the processing
time to compute PageRank for each partition.

Figure 11 shows the runtime for each of the datasets. We used CD as it
showed superiority over OD in I/O and memory management. GD could not be
a part of the experiment as it failed to process any graph bigger than Orkut in
our test environment setup. As Figure 11 shows, even with over one billion graph
size, we managed to get a good processing time. More specifically, for IT-2004,
we were able to complete the computation of PageRank for all the partitions in
about 10 min (600 sec).

Table 2: Billion-size Datasets
Data Set Nodes# Edges#

IT 2004 41,291,594 1,150,725,436

UK 2005 39,459,921 936,364,282

5 Conclusion

We presented the implementation of the PageRank algorithm over RDBMS using
different options, such as table-scan, non-clustered-index, clustered-index, and



PageRank for Billion-Scale Networks in RDBMS 11

420

600

0

100

200

300

400

500

600

700

UK2005 IT2004

Ti
m

e(
Se

co
nd

s)

Very Large Data Sets

Fig. 11: Results of calculating PageRank on very large data sets, IT 2004: 1.15
billion edge graph and UK 2005:0.93 billion edge

table-partitioning. We showed that RDBMS’s could perform better than GD
and could process very big datasets in a consumer-grade server.

The experiments showed that the OD optimizer was not good enough for our
task. For instance, it was not able to determine that using a non-clustered index
is not a good choice for our queries. The OD clustered index behaved better
but still there was no improvement compared to simple table-scan without any
indexing at all. The CD commercial query optimizer is more intelligent than its
open-source counterpart.

We observed that manually partitioning tables gives a significant improve-
ment in the execution time of our queries. This tells us that RDBMS optimizers
of today, even after many decades of development, still can be improved further
in order to handle heavy analytical queries such as those computing PageRank.

CD did not consume significant processing time in order to merge the data
but OD in large datasets consumed significant processing time, in some cases
double the query time. We clearly observed that both RDBMS’s we use, without
using any indexing or partitioning still dramatically outperform graph database
GD. This comes as a surprise because the latter was designed for handling graphs
from the ground up. Therefore we conclude that specialized graph databases still
have a lot of ground to cover in order to be good competitors to RDBMS engines
for large datasets.



12 A. Ahmed et al.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-
spective. IEEE transactions on knowledge and data engineering, 5(6):914–925,
1993.

2. A. Ahmed and A. Thomo. Computing source-to-target shortest paths for complex
networks in rdbms. Journal of Computer and System Sciences, 89:114–129, 2017.

3. R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1):1–39, 2008.

4. K. Bharat and G. A. Mihaila. When experts agree: using non-affiliated experts to
rank popular topics. In Proceedings of the 10th international conference on World
Wide Web, pages 597–602, 2001.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
1998.

6. S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Kleinberg. Mining the web’s link structure. Com-
puter, 32(8):60–67, 1999.

7. E. F. Codd. A relational model of data for large shared data banks. In Software
pioneers, pages 263–294. Springer, 2002.

8. A. Eisenberg, J. Melton, K. Kulkarni, J.-E. Michels, and F. Zemke. Sql: 2003 has
been published. ACM SIGMoD Record, 33(1):119–126, 2004.

9. J. Gao, J. Zhou, J. X. Yu, and T. Wang. Shortest path computing in relational
dbmss. IEEE Trans. Knowl. Data Eng., 26(4):997–1011, 2014.

10. J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive data sets. Cam-
bridge university press, 2020.

11. C. Ordonez and E. Omiecinski. Efficient disk-based k-means clustering for re-
lational databases. IEEE Transactions on Knowledge and Data Engineering,
16(8):909–921, 2004.

12. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

13. M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine
for big data processing. Communications of the ACM, 59(11):56–65, 2016.

14. P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise
class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.


