
Computing Source-to-Target Shortest Paths for
Complex Networks in RDBMS

Aly Ahmed, Alex Thomo
University of Victoria, BC, Canada
{alyahmed,thomo}@uvic.ca

ABSTRACT
How do we deal with the exponential growth of complex
networks? Are existing algorithms introduced decades ago
able to work on big network graphs? In this work, we focus
on computing shortest paths (SP) from a source to a target
in large network graphs. Main memory algorithms require
the graph to fit in memory and they falter when this re-
quirement is not met. We explore SQL-based solutions us-
ing a Relational Database Management System (RDBMS).
Our approach leverages the intelligent scheduling that a
RDBMS performs when executing set-at-a-time expansions
of graph vertices, which is in contrast to vertex-at-a-time
expansions in classical SP algorithms. Our algorithms per-
form orders of magnitude faster than baselines and even
faster than main memory algorithms for large graphs. Also,
we show that our algorithms on RDBMS outperform coun-
terparts running on modern native graph databases, such
as Neo4j.

1. INTRODUCTION
Large graphs are everywhere nowadays. They model so-

cial and web networks, knowledge networks, and product
co-purchase networks, to name a few. We label these net-
works “complex” to distinguish them from “spatial” net-
works, such as road networks that have been studied ex-
tensively.Our focus in this paper is on complex networks.

Many classical graph algorithms face challenges when
the graph is large. This is because they need random ac-
cess to the vertices of the graph and their adjacency lists,
and random access is expensive. While this is significantly
more pronounced for data residing in external storage, it
is also true for data that can fit in main memory (see [22]
for discussions and experiments). For complex networks
the situation is even more challenging because many op-
timization ideas for spatial networks are not applicable to
complex networks (see [37] for a survey on shortest path
approaches for different kinds of networks).

One family of graph algorithms that we identify as par-
ticularly demanding for random-access is graph search.
Graph search algorithms seek subgraphs that satisfy some
property, such as the shortest paths between a source and
destination [7], the minimum spanning tree rooted at a
vertex [30], the connected component containing a vertex
[19], and so on. Most algorithms of this family have an
expand-and-explore nature that exhibits an intensive ran-

dom access pattern. Therefore, they are good candidates
for re-engineering so that random access is reduced.

In this paper, we focus on source-to-target (s-t) shortest
path queries (or simply s-t queries), also known as point-
to-point queries in literature. These queries are central
in social network analysis. For instance, graph distance
(often referred to as social distance) can play an impor-
tant role in deriving insights on user search in Linkedin,
Facebook, and other social networks (see [20, 21, 38] for
examples of using social distance). S-t queries have also
been used to leverage trust in social links in online mar-
ketplaces [41] and shown to be an integral part of location
and social aware search [36, 44].

S-t queries have a “local search” nature that is in con-
trast to the source-to-all queries which have a “global search”
nature. As such, s-t queries are not a good fit for Pregel-
like systems (such as Graphchi in [26]) which access the
whole graph in each pass.

The approach we follow for computing s-t queries is to
use relational databases as pioneered by [9]. Relational
databases are a mature technology representing more than
40 years of active development. What relational databases
offer is a set-at-a-time mode of operation, which allows
data-access scheduling for grouping requests to disk blocks
and thus reducing random access.

However, the main algorithm for finding shortest paths,
the Dijkstra’s algorithm, follows a vertex-at-a-time approach;
it seeks to expand only the best vertex (path) discovered so
far. On the other hand, other search algorithms, such as
breadth first search (BFS), expand a set of vertices (paths)
in each iteration, thus making possible to use the set-at-a-
time mode of operation that a relational database offers.
One can use BFS for s-t queries, however, the discovered
paths might not be the best (shortest), and we need to
re-expand vertices many times until we find the shortest
paths.

The authors of [9] propose Bidirectional Restrictive BFS
(B-R-BFS) which is an adaptation of BFS to reduce the
number of vertex re-expansions. This is achieved by parti-
tioning the table of graph edges into multiple tables based
on the weights of edges. The algorithm is also bidirec-
tional, meaning that it runs both from the source and the
target until the two searches meet. The performance im-
provements over the Dijkstra’s algorithm and pure BFS are
impressive. However, deciding termination in B-R-BFS is
challenging, and the condition proposed in [9] for checking
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termination is unfortunately not complete.
Our contributions in this paper are as follows.
First, we show the problem with termination in B-R-BFS

and then propose a new termination algorithm. In general,
in any bidirectional s-t algorithm that starts two search
processes, one forward from s and the other backward
from t, we need to determine whether both processes have
finalized the distance of a vertex v from s and t, respec-
tively. In such a case, we can successfully terminate the
algorithm. In B-R-BFS, deciding whether a vertex v has its
distance finalized is not easy as v can be expanded mul-
tiple times using different edge tables. The solution we
propose is based on determining lower bounds for vertex
distances and inferring a termination condition based on
these bounds.

Second, we propose another algorithm, Bidirectional
Level-based Frontier BFS (B-LF-BFS), for computing s-t
queries in a set-at-a-time fashion. Differently from B-R-
BFS, we achieve restrictive BFS not by splitting the edge
table, but by selecting only a part of the visited vertices as
a frontier to be expanded. The frontier contains only those
vertices that have a distance estimate less than a “level”
value. We show that, if the frontier is iteratively expanded
until no more expansion is possible, then the distances of
the vertices expanded during the current level are final.
We, then, increase the current level to the next one (by
adding a step value) and repeat the process. Since we
have an explicit way to determine when vertices are final-
ized, we obtain a much simplified termination procedure.

Third, we enhance B-LF-BFS to use a graph representa-
tion where the neighbors of each vertex and their respec-
tive edge costs are compressed in an inverted-index style.
We call this enhanced algorithm B-LF-BFS-C. We borrow
ideas from Information Retrieval practice to perform com-
pression by encoding the differences in neighbor ids using
variable-byte encoding. The compression achieved is such
that B-LF-BFS-C is able to handle graphs of an order of
magnitude bigger than what B-R-BFS and B-LF-BFS can.

Finally, we present a detailed experimental study on real
and synthetic datasets. We observe that all the above three
algorithms outperform the vertex-at-a-time Dijkstra’s algo-
rithm in RDBMS by orders of magnitude. This strongly af-
firms the benefit of the set-at-a-time mode of operation of-
fered by RDBMSs. Furthermore, we show that B-LF-BFS-C
outperforms even a memory implementation of the Dijk-
stra’s algorithm for a relatively large graph (Live Journal).
We also show that B-LF-BFS-C can easily handle very large
graphs, such as UK 2005, with close to one billion edges.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss other systems for graph management
and processing. In Section 3, we present preliminaries and
explain the challenges of computing shortest path queries
on RDBMS. In Section 4, we describe the problem with ter-
mination detection in B-R-BFS and the proposed solution
to fix it. In sections 5 and 6, we present the B-LF-BFS and
B-LF-BFS-C, respectively. In Section 7, we present our ex-
perimental results. In Section 8, we describe the related
works. Finally, Section 9 concludes the paper.

2. OTHER SYSTEMS FOR GRAPH MAN-
AGEMENT AND PROCESSING

Systems that allow for the storage and random access of
big graphs are (native) graph databases. One of the main
graph databases is Neo4j1. To make random access feasi-
ble, Neo4j builds indexes to quickly zoom in to a vertex and
its neighborhood. A good index makes random access fast.
However, if there are massive requests for random access
during the execution of an algorithm, the performance will
still suffer. As we show in our experiments, Neo4j is con-
siderably slower than the proposed algorithms on RDBMS;
it even fails to return results for our larger graphs.

A very different approach is followed by the systems
geared towards graph analytics. As representatives of such
systems, we mention Pregel [27] for a distributed setting
and GraphChi [26] for a single machine. They do not offer
random access to a graph. Instead, they present a vertex-
centric (VC) computation paradigm [27] where each vertex
independently runs the same algorithm and sends and re-
ceives messages to and from its neighbors. VC systems for
a single machine, such as GraphChi, significantly reduce
random access to only a negligible amount. The tradeoff
is multiple sequential passes over the graph. VC computa-
tion is quite good for some problems. Global graph search
can be nicely implemented as a VC computation (see [26]
for a discussion). For instance, finding the shortest paths
from a source vertex to all the other vertices of a graph
or finding all the connected components of a graph can be
efficiently done as VC computations [26]. However, a VC
computation is not a good fit for more local graph search,
such as finding s-t shortest paths. The latency is too high
as the whole graph will be accessed.

Our goal in this paper is to provide algorithms for s-t
shortest paths with a latency in the order of a few seconds
(on a consumer-grade machine).

3. PRELIMINARIES
We denote a directed, edge-weighted graph by G = (V,

E, C), where V is the set of vertices, E ⊆ V × V is the set
of edges, and C : E → {x ∈ R : x > 0} is the edge-weight
(or cost) function.

Let p = [(u0, u1), . . . , (uk−1, uk)], where (ui−1, ui) ∈ E
for i ∈ [1, k], be a path from u0 ∈ V to uk ∈ V . We denote
by cp =

∑k
i=1 C(ui−1, ui) the length (or cost) of p.

Given two vertices s and t, we denote by d(s, t) the length
of the shortest path from s to t.

In this paper, we are interested in source-to-target (s-
t) queries which specify a vertex pair s, t and ask for the
shortest path from s to t.

3.1 Graphs and Shortest Paths in RDBMS
We store the edges of a graph in a RDBMS in a table

TE with three columns, fid, tid, and cost, for the source
vertex id, target vertex id, and weight (cost) of an edge,
respectively. We also construct indexes on fid and tid. For
the ease of exposition, we will blur the distinction between
a vertex and its id.

1http://neo4j.com
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SP algorithms start out from the source vertex s and
expand it by reaching its neighbors. One or more of the
neighbors are expanded in turn, and we continue like this
until we reach the target vertex t.

To accommodate expansions, we need a table, called TA,
which stores the set of vertices that have been visited so
far. Table TA has four columns: (1) nid for the id of a
vertex we have visited, (2) d2s for the length of the best
path we have discovered so far from s to nid, (3) p2s for
the id of of the vertex coming before nid in this path, and
(4) f for flagging nid as finalized (the best path from s to
nid has been discovered) or not. When a node u is final-
ized it means that the shortest path from source node s to
u has been determined and the discovered distance esti-
mate will not change to a lower value in a later iteration.
The main goal of the shortest path problem is to finalize
target node t. The computational challenge is to finalize t
as quickly as possible.

Table TA is typically much smaller than TE , usually by
one or two orders of magnitude. We do not create an index
for TA as it is frequently updated.

In each iteration, we select from TA a set F of vertices
for expansion. Vertex expansion is computed by joining
F with TE . The newly visited vertices are merged into
TA. Depending on the algorithm, a vertex can be visited
multiple times. Each visit can (possibly) cause an update
or insert into TA. We handle both cases using the MERGE
operator in SQL.

Initially, (s, 0, s, 0) is inserted into TA. At the end of an
SP algorithm, we should have (t, d(s, t), uk, 1) in TA. Upon
termination of the algorithm, we output the shortest path
by following backwards the chain of tuples (t, d(s, t), uk, 1),
. . . , (u1, d(s, u1), s, 1) in TA, where s, u1, . . ., uk, t are the
vertices along this path.

In order to speed up the computation, we can do bidi-
rectional search and expansions. We start simultaneously
from s in the forward direction and from t in the backward
direction and discover paths that eventually meet at some
intermediate vertex. We need two TA tables for bidirec-
tional search, TAf and TAb. Also we refer to the F sets
in the forward and backward directions as F f and F b, re-
spectively.

Dijkstra’s Algorithm on RDBMS Dijkstra’s algorithm only
expands one vertex at a time; the one with the smallest d2s
value. The expansion joins are fast individually as each one
only involves one tuple from TAf (or TAb) that needs to be
joined with TE . Unfortunately, these joins are too many
and the overall latency is high.

Termination. For the bidirectional Dijkstra’s algorithm,
the termination condition is when the forward search final-
izes a vertex that has also been finalized by the backward
search (or vice-versa). A vertex is finalized in the forward
(backward) direction when it is selected to be in F f (F b).

3.2 Set-at-a-time Evaluation
One of the strengths of an RDBMS is its set-at-a-time

evaluation mode. In graph search, set-at-a-time is more ef-
ficient than vertex-at-a-time because it allows the database
to perform intelligent scheduling of buffer content and disk

blocks; access requests to the same block can be bundled
and scheduled at the same time, thus allowing for a better
query evaluation plan.

Consider the join of F with TE . In the Dijkstra’s algo-
rithm, F has only one vertex. As such, the database needs
to retrieve the edges of only one vertex for each join. In
the worst case there can be n such join queries. Clearly,
a vertex-at-a-time mode of operation is quite inefficient in
this case; there will be unnecessary I/Os for retrieving the
edges of different vertices when they can happen to be
in the same block. In contrast, in a set-at-a-time mode, a
block can be read once and serve many vertex expansions.

On the other hand, there is significant overhead if the
set-at-a-time strategy is taken to the limit, which, in our
case, translates to pure breadth-first-search (BFS). In BFS,
all newly visited vertices are selected to be in F , and the
expansion of all these vertices is achieved with a single join
operation. However, BFS may expand the same vertices
multiple times, thus incurring significant overhead in the
number of expansions compared to Dijkstra’s algorithm.
Therefore, we need to strike a balance between pure BFS
and Dijkstra’s algorithm.

In [9], the strategy proposed is a restrictive BFS. Simi-
lar to BFS, multiple vertices are selected to be in F . How-
ever, in each iteration, only a subset of edges is allowed
to be used for expansion. More specifically, vertices are
expanded first using the lightest edges, then using more
heavier edges, and so on.

However, when performing bidirectional search under a
BFS-like strategy, deciding termination becomes compli-
cated. This is because when the two searches meet at
some vertex v, we do not know whether v is finalized or
not. Therefore, there is no guarantee that the path dis-
covered is the shortest. In contrast, in the Dijkstra’s algo-
rithm, we have an easy way to finalize a vertex; this hap-
pens when the vertex is selected to be in F f (F b). This is
not true for a BFS-like strategy.

3.3 Bidirectional Restrictive BFS
(B-R-BFS)

Bidirectional Restrictive BFS (B-R-BFS) operates in set-
at-a-time mode and performs much better than the Dijk-
stra’s algorithm, however, its termination decision is not
complete. In this section, we give an overview of B-R-BFS.
In the next section, we show the problem with its termina-
tion and then present a correct termination procedure.

Partitioning the edge table. B-R-BFS starts by partition-
ing the TE table based on the edge weights. Formally it is
done as follows.

Let pts be the desired number of partitioned tables and
[wmin, wmax] be the range of edge weights. We denote by
[w0, . . . , wpts] the edge-weight partitioning vector, where
w0 = wmin, wpts = wmax + ε,2 and wi < wi+1 for 0 ≤ i <
pts− 1. We create pts partition tables, TE0, . . . , TEpts−1.3

For each edge e in the graph, if wi ≤ C(e) < wi+1, then e
is put into partition table TEi.
2ε represents a very small number.
3In [9], the partition tables are numbered from 1 to pts.
We choose to number them from 0 to pts − 1 in order to
simplify the exposition of results later.
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High-level overview of the algorithm. Recall the TAf

and TAb tables we use for the forward and backward search,
respectively. These tables, instead of the f column, will
now have a different last column, fwd for TAf and bwd for
TAb. fwd and bwd store the number of iteration during
which the tuple was inserted or updated in TAf or TAb,
respectively.

During an iteration, a vertex will only be expanded us-
ing one partition table. Once a vertex is selected to be in
F f (or F b), it remains there for pts iterations until it is ex-
panded using each of the partition tables. Initially, in the
forward expansion, table TAf will have the source node s.
In the first iteration, s is selected to be in F f and subse-
quently expanded using TE0. The neighbors of s reachable
using TE0 are added in TAf . Let the set of these neighbors
be N0

s . In the second iteration, we have F f = {s} ∪ N0
s ,

and try to expand s using TE1 while the vertices in N0
s us-

ing TE0. In general, consider a vertex v that enters F f in
iteration i (a vertex enters F f in the next iteration after it
is inserted or updated in TAf ). In iterations i, i + 1, . . . ,
i + (pts − 1), vertex v will be expanded using tables TE0,
TE1, TEpts−1, respectively. An analogous logic is followed
for the backward direction as well. In other words, a ver-
tex can have delayed expansions during the pts iterations
it remains in F f (F b).

4. TERMINATION PROCEDURE FOR
B-R-BFS

In this section we present a correct termination proce-
dure for B-R-BFS.

Consider table TAf (or table TAb). We call a d2s (d2t)
value in table TAf (TAb) a distance estimation (DE). This
is because it can (possibly) be lowered and become a real
distance later on during the execution of the algorithm.

Definition 1. Let v be a visited vertex in the forward
direction and (v, d2sv, p2sv, fwdv) be its tuple in TAf at the
end of iteration i in the execution of B-R-BFS. DE d2sv is
called distance if and only if it cannot change in some later
iteration i′ > i.

An analogous definition can be stated for d2tu of a visited
vertex u in the backward direction.

Given a tuple (v, d2sv, p2sv, fwdv) in TAf or (u, d2tu,
p2tu, bwdu) in TAb, it is not easy to determine whether
d2sv or d2tu are distances.

We define bymf
i andmb

j the minimum DE’s discovered in
iterations i and j in the forward and backward directions,
respectively. Formally,

mf
i = min{d2sv : (v, d2sv, p2sv, i) ∈ TAf}

mb
j = min{d2tu : (u, d2tu, p2tu, j) ∈ TAb}.

These values can be easily obtained by simple MIN queries
on the TAf and TAb tables. We have mf

i = d2sv and
mb

j = d2tu for some vertices v and u. We might be tempted

to declare mf
i and mb

j to be distances. This is not always
true however because d2sv and d2tu can be lowered in
later iterations as result of delayed expansions.

For an example see Fig. 1 where we want to compute
the shortest path from s to t. For simplicity, we are only

Figure 1: A graph illustrating the effect of delayed expan-
sions.

considering the forward search. Suppose the partition vec-
tor is [1, 5, 10 + ε]. We have two partition tables, TE0 =
{(s, u, 1), (s, v, 4), (v, t, 4)} and TE1 = {(u, t, 6), (t, s, 10)}.

Vertex s enters F f in iteration 1, and stays there for
iterations 1 and 2. Similarly, u enters F f in iteration 2,
and stays there for iterations 2 and 3. It is in iteration 3
that we find the shortest path from s to t via u. At the end
of each iteration, F f , TAf and mf

i are as follows.

Iteration 0: F f = {}, TAf = {(s, 0, s, 0)}, mf
0 = 0

Iteration 1: F f = {(s, 0, s, 0)},
TAf = {(s, 0, s, 0), (u, 1, s, 1), (v, 4, s, 1)}, mf

1 = 1

Iteration 2: F f = {(s, 0, s, 0), (u, 1, s, 1), (v, 4, s, 1)},
TAf = {(s, 0, s, 0), (u, 1, s, 1), (v, 4, s, 1), (t, 8, v, 2)},
mf

2 = 8

Iteration 3: F f = {(u, 1, s, 1), (v, 4, s, 1), (t, 8, v, 2)},
TAf = {(s, 0, s, 0), (u, 1, s, 1), (v, 4, s, 1), (t, 7, v, 3)},
mf

3 = 7

As we can see, mf
2 = 8, corresponding to d2st, is not

a distance because d2st becomes 7 in iteration 3. Tuple
(u, 1, s, 1) is inserted into TAf in iteration 1, and enters F f

in iteration 2. However, (u, 1, s, 1) is not expanded using
edge (u, t, 7) in iteration 2. This expansion is delayed to
iteration 3.

As in [9], let lfi be the maximal distance finalized (dis-
covered) from s after the i-th forward iteration. Similarly,
let lbj be the maximal distance finalized (discovered) from t

after the j-th backward iteration. In [9], lfi is proposed to
be recursively computed as

lfi =

{
min{mf

i , w1}, if i = 1.

min{mf
i , l

f
i−1 + wi − wi−1}, i ≥ 2.

and lbj is analogously computed replacing i by j and f by
b.4

The above computations for lfi and lbj pose the follow-
ing problem: what happens when i or j are larger than
pts? In such a case, wi or wj are undefined and the above
equalities do not work. This unfortunately is not addressed
in [9].

In the following, we present another solution.It is in-
spired in part by an email communication we had with the
authors of [9].

4In [9], lfi and lbi are used to terminate the algorithm if

the following condition is met: minCost ≤ lfi + lbi , where
minCost is defined later in this section.
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In fact, what we propose is computing lower bounds to
lfi and lbj . We use llfi and llbj to denote the lower bounds for

lfi and lbj and set them to be as follows.

First, llf0 = lf0 = mf
0 (= 0), llb0 = lb0 = mb

0(= 0), and
llf1 = lf1 = mf

1 , llb1 = lb1 = mb
1.

Now, let k = min{i− 1, pts} and h = min{j − 1, pts}. For
i, j ≥ 2, we set

llfi = min{mf
i ,m

f
i−1 + w1, . . . ,m

f
i−k + wf

k} (1)

llbj = min{mb
j ,m

b
j−1 + w1, . . . ,m

b
j−h + wb

h}. (2)

Suppose, for instance that i = 2, 3, 4, 5 and pts = 3.
Then, k = 1, 2, 3, 3, and for the forward direction, we have

llf2 = min(mf
2 ,m

f
1 + w1)

llf3 = min(mf
3 ,m

f
2 + w1,m

f
1 + w2)

llf4 = min(mf
4 ,m

f
3 + w1,m

f
2 + w2,m

f
1 + w3)

llf5 = min(mf
5 ,m

f
4 + w1,m

f
3 + w2,m

f
2 + w3).

We show the following theorem.

Theorem 1. llfi ≤ l
f
i and llbj ≤ lbj .

Proof. Consider llf2 . We have that mf
2 is a distance of a

vertex v (from s) unless there exists a vertex u that has
remained with fwd = 1 after the 2nd iteration. Vertex u
did not have any luck to be expanded by edges in [w0, w1),
however, it may be expanded by edges in the next interval
and possibly cause the DE of v to get lower. In this case,
the distance of v should be at least mf

1 + w1(< mf
2 ).

Now consider llfi . We have that mf
i is a distance of a

vertex v (from s) unless there exists a vertex u that has
remained with fwd ≤ i− 1 after the i-th iteration. Suppose
u has fwd = i− 1. As such, u did not have any luck to join
with edges in [w0, w1), however again, it may be expanded
by edges in the next interval and possibly cause the DE of
v to get lower. In this case, the distance of v should be at
leastmf

i−1+w1(< mf
i ). Similarly, suppose u has fwd = i−r,

for r ∈ [1, k]. As such, u did not have any luck to join
with edges in [w0, w1),. . . , [wr−1, wr), however, it may be
expanded by edges in the next interval and possibly cause
the DE of v to get lower. In this case, the distance of v
should be at least mf

i−r + wr(< mf
i ). From all the above,

llfi ≤ l
f
i .

An analogous argument can be made for the backward
direction as well.

Remark. We would like to emphasize here thatmf
i ’s (mb

j ’s)

are each time recomputed. For example, mf
2 is recom-

puted when computing llf3 . This is because the vertex
achieving the old mf

2 might have been updated in the cur-
rent iteration and can now have fwd > 2. Therefore an-
other vertex with fwd = 2 will provide the new mf

2 . The
new mf

2 is greater than the old one.

For the termination decision we define

minCost =

{
min{d2sv + d2tv}, if TAf 1nid TA

b 6= ∅
∞, otherwise.

(3)

Now, we give the following condition that we use in the
termination procedure.

minCost ≤ llfi + llbj . (4)

If the above condition 4 is true, then by Theorem 1, the
following condition is true as well.

minCost ≤ lfi + lbj . (5)

If the last condition is true, then we can safely terminate
B-R-BFS (see [9]). Upon such termination, minCost will
be the length of the shortest path from the source to the
target vertex. In other words, even though we might not
have computed yet lfi and lbj , we can infer that Condition 5
is satisfied based on Condition 4 using the lower bounds
llfi and llbj .

With the modified termination condition provided in this
section, each vertex in the shortest path p takes pts itera-
tions to finalize, hence the algorithm is estimated to take
length(p) ∗ pts iterations.

5. BIDIRECTIONAL LEVEL-BASED- FRON-
TIER BFS (B-LF-BFS)

Here we propose another set-at-a-time algorithm for com-
puting shortest paths in RDBMS. Similarly to B-R-BFS, it
works in a set-at-a-time fashion by expanding a set of ver-
tices in each iteration. Differently from B-R-BFS, it achieves
restrictive expansions not by splitting the edge table, but
by selecting only a part of the visited vertices as a frontier
to be expanded. The algorithm performs better in practice
than B-R-BFS and it does not require partitioning the TE
table into several tables as in B-R-BFS. This can be desir-
able as it does not need extra space for partition tables and
code complexity is reduced.

The Bidirectional Level-based-Frontier BFS (B-LF-BFS)
we propose uses the TE , TAf and TAb tables as defined
before. We do not need to record the iteration number as
in B-R-BFS, and we bring back the finalization flag f in
TAf and TAb.

We define F f = F f
i , where F f

i is the set of all the ver-
tices in TAf that are not finalized and their d2s value is
less or equal to Li, where Li is a distance level. We define
F b in an analogous way.

For the sake of explanation, let us assume we are work-
ing in the forward direction and that initially we set L1 =
step, where step is a small constant. Now the algorithm
will (a) expand all the vertices in F f (i.e. unfinalized ver-
tices in TAf that have d2s ≤ L1), (b) merge all the new
vertices into TAf , then (c) iterate and do the same, until
no more unfinalized vertices with d2s ≤ L1 exist in TAf . At
this point we say that level L1 is cleared, set L2 = L1+step,
and repeat the above operations for L2.

In general, once level Li is cleared, we set Li+1 = Li +
step, and repeat the above operations for Li+1. This con-
tinues until termination is achieved. The algorithm termi-
nates when a vertex v is finalized by both the forward and
backward directions, or if there are no more unfinalized
vertices in TAf or TAb.

Now, we illustrate the algorithm with an example. For
the sake of simplicity we will explain the forward expan-
sion; the backward expansion is similar. Consider the graph
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in Figure 1 and assume step = 3. In order to calculate
the shortest distance between s and t, we initialize L1 =
step = 3, minCost = ∞, and the TAf table with the tu-
ple (s, s, 0, false). In the first iteration, the algorithm will
expand the initial tuple in TAf with d2s = 0 ≤ L1 and
f f = false. So, node s will be expanded and nodes u with
d2s=1 and v with d2s=4 will be merged into TAf and node
s will be flagged as processed (its flag f f becomes true).
The algorithm will iterate to check if there are any tuples
in TAf with d2s ≤ L1 and f f = false. Node u with d2s = 1
will be expanded and as a result node t with d2s = 6 will
be merged into TAf . At this point, no more nodes with
d2s ≤ L1 are left to be processed, hence the algorithm de-
clares that L1 is cleared and sets L2 = L1 + step = 6. As
node t is merged, the algorithm sets minCost = 6. Next,
the algorithm will expand the nodes that have not been
processed yet and have d2s ≤ L2. As a result, node v with
d2s = 4 will be expanded resulting in rediscovering node
t with higher cost d2s = 8, hence no tuple will be merged
in TAf . As no more nodes are left to process, level L2 is
cleared. At this point, node t will be flagged as finalized.

MERGE INTO TAf

USING (

WITH

--Compute frontier

F(nid,p2s,d2s) AS (

SELECT nid, p2s, d2s

FROM TAf

WHERE f_f='0' AND d2s <= Li

),

--Join frontier with the edge table

F_TE(nid,p2s,d2s) AS (

SELECT TE.tid AS nid, TE. d AS p2s, F.d2s+TE.cost AS d2s

FROM F JOIN TE ON F.nid=TE. d

),

--For each nid, select the tuple with the smallest d2s value

SELECT nid, p2s, d2s

FROM (SELECT nid, p2s, d2s,

row_number() OVER

(PARTITION BY nid ORDER BY d2s) AS rn

FROM F_TE)

WHERE rn = 1

) source

ON (TAf.nid=source.nid)

WHEN MATCHED THEN

UPDATE SET d2s=source.d2s, p2s=source.p2s, f_f='0'

WHERE source.d2s<TAf.d2s

WHEN NOT MATCHED THEN

INSERT (nid,d2s,p2s,f_f)

VALUES (source.nid, source.d2s, source.p2s, '0');

--Node �nalization

UPDATE TAf SET f_f='1' WHERE f_f='0' AND d2s <= Li;

Figure 2: SQL statements for the B-LF-BFS algorithm.

More formally, we give the following definitions for B-
LF-BFS.

Definition 2. The F f and F b sets in levels Li and Lj are

F f
i = {(nid, d2s, p2s, f f ) ∈ TAf : f f = 0 and d2s ≤ Li}

F b
j = {(nid, d2t, p2t, f b) ∈ TAb : f b = 0 and d2t ≤ Lj}.

Consider F f
i , for some i ≥ 1. The algorithm expands the

vertices in F f
i , then recomputes F f

i . We give the following
definition.

Definition 3. We say that level Li, for i ≥ 1, is cleared
in the forward direction, if F f

i is empty. Likewise, level
Lj , for j ≥ 1, is cleared in the backward direction, if F b

j is
empty.

Theorem 2. If level Li is cleared in the forward direc-
tion, then the d2s values in TAf , such that d2s ≤ Li, are
final and represent distances to the source vertex s.

Proof.
Suppose not, i.e. let us assume there exists a vertex

v ∈ V processed in level Li and assigned a d2s value d, but
in a later level, Li′ > Li, v is assigned a lower d2s value
d′ < d. Vertex v will be discovered in level Li′ through a
vertex, say u, not processed in iteration Li, which implies
that vertex u has a d2s value greater than Li, therefore
d′ > Li > d, which is a contradiction.

Similarly, we can show that

Theorem 3. If level Lj is cleared in the backward di-
rection, then the d2t values in TAb, such that d2t ≤ Lj , are
final and represent distances to the target vertex t.

Once we clear a level Li (Lj), we finalize all the vertices
in TAf (TAb) with d2s ≤ Li (d2t ≤ Lj). We finalize those
vertices by setting their f f or f b flag to 1 (true). Observe
that as we go to the next level, Li+1 (Lj+1), the set F f

i+1

(F f
i+1) will contain those vertices of TAf (TAb) that are un-

finalized and have a d2s value less than Li+1 (Lj+1). Since,
all the vertices of TAf (TAb) with d2s ≤ Li (d2t ≤ Lj)
have been finalized, we have that in level Li+1 (Lj+1), we
only process vertices of TAf (TAb) with Li < d2s ≤ Li+1

(Lj < d2t ≤ Lj+1).
In the B-LF-BFS algorithm, we have a clear way to fi-

nalize vertices, hence the termination decision becomes
easier; it happens when we find a vertex that is finalized
by both the forward and backward directions, or if there
are no more unfinalized vertices in TAf or TAb. The va-
lidity of this condition for any bidirectional shortest-path
algorithm (that finalizes vertices) is shown in [18]. In con-
trast, we did not have the ability to easily decide how to
finalize vertices in B-R-BFS, hence, we had to resort to a
much more complex termination procedure.

The computed F f and F b sets in B-LF-BFS are only a
part of the TAf or TAb tables. Therefore the joins with
the TE table are restricted in size compared to a full BFS
approach.

Whereas B-R-BFS achieves the join reduction by parti-
tioning the TE table, B-LF-BFS achieves a similar effect
by performing first a selection on the TAf and TAb tables
to generate a smaller set to join with TE .

The pseudo-code for clearing a level in B-LF-BFS in the
forward direction is given in Algorithm 1. Please refer to
Fig. 2 for the SQL statements. Once a level is cleared, we
go to the next level until no more expansions are possible.
The backward direction is analogous. B-LF-BFS alternates
between the forward and backward direction depending
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Algorithm 1 B-LF-BFS expand and merge

1: function ExpandAndMerge(TAf , TE , Li)
2: do
3: Compute F f

i (view F)
4: Join F f

i with TE (view F_TE)
5: For each nid in F_TE,
6: compute the tuple with the smallest d2s
7: Merge all the tuples thus produced into TAf

8: n← number of merged tuples
9: while n 6= 0
10: Finalize all vertices in TAf with f f = 0 and d2s ≤ Li

11: end function

on the number of tuples merged in TAf and TAb choosing
each time the direction with the fewer merges.

The computations in lines 3–7 of Algorithm 1 are imple-
mented by the SQL MERGE statement in Fig. 2. There, we
first create two views, F and F_TE.5 View F contains set
F f . View F_TE contains the join of F f with TE .

Next, for each vertex id, nid, we compute the tuple with
the smallest d2s in F_TE. For this we use the row_number()
SQL window function6. Then comes the merge of thus ob-
tained tuples into table TAf . If we obtained a tuple that
is better (with respect to d2s) than a tuple with the same
nid in TAf , then the latter will be replaced by the former.
Also, the tuples that do not have counterparts in TAf (with
respect to nid) will be simply inserted into TAf .

Finally, we finalize all the vertices in TAf with f f = 0 (f_f
= ‘0’) and d2s ≤ Li. The finalization of vertices (tuples) in
TAf is done by setting the value of their f f flag (f_f) in TAf

to 1. This is done with the last SQL statement in Fig. 2.
Now we analyze the number of iterations the algorithm

would take. Suppose first we only do forward search. Let
mc > 0 be the cost of the lightest edge in the graph. Let
mp be the cost of the shortest path from s to t. In order
to clear a level, we need dmp/stepe iterations in the worst
case. In order to discover the shortest path from s to t,
we need dmp/stepe levels in the worst case. Therefore,
we need d(mp/step)e ∗ (step/mc) iterations in the worst
case. When we do bidirectional search, we will need about
half this number of iterations. This analysis shows that
the algorithm terminates in a finite number of iterations.
Based on the above reasoning and Theorem 2, we conclude
the correctness of the algorithm.

6. B-LF-BFS WITH COMPRESSED ADJA-
CENCY LISTS (B-LF-BFS-C)

In this section, we present B-LF-BFS-C, which enhances
B-LF-BFS using a compressed representation of the input
graph.

A RDBMS often uses more space than necessary for stor-
ing numeric datatypes (cf. [22]). Also, an edge table,
such as TE , has unnecessary redundancy. For example,
if a highly connected vertex v has, say 1000 neighbors,

5We are calling F and F_TE “views”, however, they are
more precisely called “factored subqueries” (created with
the SQL keyword WITH).
6See https://en.wikipedia.org/wiki/Select_(SQL)

u1, . . . , u1000, then v’s id will repeat 1000 times to repre-
sent the 1000 edges that connect v to its neighbors, i.e. we
will have the triples (v, u1, c1), (v, u2, c2), . . . , (v, u1000, c1000).

A better alternative is to use an adjacency list of neigh-
bors and costs, e.g. for v, we would have a list such as
[u1, c1, u2, c2, . . . , u1000, c1000]. While this is an improve-
ment, we can do better than just storing the numbers in
their original form. In fact, we can compress an adjacency
list quite efficiently.

We borrow the idea of variable-byte-encoding of postings
lists from Information Retrieval practice (cf. [28, 3, 46]).
A posting list for a term is a list of documents that contain
the term. For example, for a term, say dog, we can have
a posting list like [334, 345, 350], where the numbers are
document ids containing dog. Observe that document ids
are sorted in ascending order.

There is a similarity between a posting list and an adja-
cency list; instead of document ids we have neighbor ids.

For representing a posting list, we do not store the origi-
nal document ids; rather, we store the gaps (or differences)
between document ids. So, in the previous example, the
posting list becomes [334, 11, 5], where 11 is 345− 334, and
5 is 350 − 345. Now, variable-byte encoding is used for
the modified posting list. Specifically, we need 2 bytes for
334, and only one byte for each of the other two numbers,
for a total of 4 bytes. In contrast, the original posting list,
with fixed-byte-encoded integers of, say 4 bytes, needs 12
bytes.

We applied this idea for encoding the graph adjacency
lists. We stored the obtained byte-encodings as BLOB’s
(Binary Large Objects) in the TE table. More specifically,
the TE table has now only two attributes, fid (as before)
and ncb (which stands for neighbor-cost bytestream).

The pseudo-code for encoding/decoding sorted adjacency
lists is given in algorithms 2, 3, and 4.

A number is encoded by a list of bytes. The rightmost 7
bits in a byte are content and represent a part of the num-
ber. The leftmost bit is an indicator flag. If it is 1, it means
that the byte is the last one in the number encoding. If it
is 0, it means there are more bytes following up in the en-
coding. In Algorithm 3, we encode a list of neighbor/cost
numbers. We iterate over the elements of this list in pairs
of neighbor and cost. We encode the difference of the cur-
rent neighbor from the previous one, then encode the cost
of the edge reaching the neighbor. When decoding a list of
bytes (see Algorithm 4), we check for the leftmost bit of the
bytes we read in order to detect the end of a number en-
coding. To decode a number, we extract and put together
the 7 rightmost bits of the bytes in its encoding. We also
check to see if the number we decoded is a neighbor (gap)
or a cost, and proceed accordingly.

Expansion. In the following we describe the forward ex-
pansion. The backward version is analogous. The set F f

is computed using a similar query as before (see view F in
Fig. 3). The join of F f with TE returns now a result set
of (nid, ncb, d2s) tuples. The ncb value is a list of bytes en-
coding the neighbors of nid and the costs to reach these
neighbors. The d2s value represents the distance estima-
tion of nid from the source vertex.
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Algorithm 2 Encoding of a number a

1: function encode(a)
2: bytelist ← ∅
3: do
4: bytelist ← bytelist .prepend(a & 0x7F)
5: a← a >> 7
6: while a > 0
7: bytelist [bytelist .size] = bytelist [bytelist .size] | 0x80
8: return bytelist
9: end function

Algorithm 3 Encoding of a list of neighbor/cost numbers

1: function encode(list)
2: bytelist ← ∅
3: prev_neighbor ← 0
4: for each neighbor , cost in list do
5: δ ← neighbor − prev_neighbor
6: bytelist1 ← encode(δ)
7: bytelist2 ← encode(cost)
8: bytelist .concatenate(bytelist1)
9: bytelist .concatenate(bytelist2)
10: prev_neighbor ← neighbor
11: end for
12: return bytelist
13: end function

Algorithm 4 Decoding of a list of bytes bytelist

1: function decode(bytelist)
2: list ← ∅, a← 0
3: prev_neighbor ← 0, is_neighbor ← true
4: for each byte in bytelist do
5: if byte < 0x80 then
6: a← a << 7 | byte
7: else
8: byte ← byte & 0x7F
9: a← (a << 7) | byte
10: if is_neighbor = true then
11: a← prev_neighbor + a
12: prev_neighbor ← a
13: is_neighbor ← false
14: else
15: is_neighbor ← true
16: end if
17: list .append(a)
18: a← 0
19: end if
20: end for
21: return list
22: end function

The neighbor-cost byte lists in the join result need to be
decoded first in order to obtain tuples that can be merged
into TAf . This is done by a procedure described in Al-
gorithm 5. In this procedure, we populate a new table,
EX f (nid, d2s, p2s), which will contain the tuples that will
be merged into TAf . We truncate (clean-up) this table at
each expansion round.

After performing the clean-up of EX f (first statement

in Fig. 3), then the computation of F f , and the join with
TE , the procedure proceeds with the creation of the tuples
for EX f . Specifically, for each tuple in the join result, it
decodes the ncb byte list and iterates over the produced
numbers. The iteration is done in pairs a, b to account for
neighbor id and cost (a is neighbor id, b is cost). Let t be
the current tuple being processed from the join result. The
d2s and p2s values of the new tuple we create are set to be
t.d2s+ b and t.fid, respectively.

Finally, once we populate the EX f table, we merge it
with TAf using the SQL MERGE statement in Fig. 3. Dif-
ferently from Fig. 2, the view creations in Fig. 3 are not
part of the MERGE statement. Within the MERGE state-
ment, for each nid, we first compute the tuple with the
smallest d2s in EX f . Then, we proceed with the merge of
these tuples into TAf . The vertex finalization query is the
same as in Fig. 2. The main algorithm for clearing a given
level is shown in Algorithm 6.

--Prepare the EXf table for a fresh expansion

TRUNCATE TABLE EXf;

WITH

--Compute frontier

F(nid,p2s,d2s) AS (

SELECT nid, p2s, d2s

FROM TAf

WHERE f_f='0' AND d2s <= Li

),

--Join frontier with the edge table

F_TE(nid,ncb,d2s) AS (

SELECT TE. d, TE.ncb, TA.d2s

FROM F JOIN TE ON F.nid=TE. d

),

SELECT * FROM F_TE;

--Merge into TAf

MERGE INTO TAf

USING (

--For each nid, select the tuple with the smallest d2s value

SELECT nid, p2s, d2s

FROM (SELECT nid, p2s, d2s,

row_number() OVER

(PARTITION BY nid ORDER BY d2s) AS rn

FROM EXf)

WHERE rn = 1

) source

ON (TAf.nid=source.nid)

WHEN MATCHED THEN

UPDATE SET d2s=source.d2s, p2s=source.p2s, f_f='0'

WHERE source.d2s<TAf.d2s

WHEN NOT MATCHED THEN

INSERT (nid,d2s,p2s,f_f)

VALUES(source.nid, source.d2s, source.p2s, '0')

Figure 3: SQL statements for B-LF-BFS-C.

7. EXPERIMENTAL RESULTS
Setup. All our experiments are conducted on a consumer-
grade machine with Intel i7, 3.4Ghz CPU, and 12Gb RAM,
running Windows 7 Professional. The hard disk is Sea-
gate Barracuda ST31000524AS 1TB 7200 RPM. We used
the latest versions of two commercial databases (which we
anonymously call D1 and D2) as well as PostgreSQL 9.4.4
(PG).

We performed our analysis on six real and ten synthetic
graph datasets. We show the results for the real datasets
in Fig. 4 and for synthetic datasets in Fig. 5.
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Algorithm 5 Populating expansion table EX f

1: procedure populate(EX f , TAf , TE , Li)
2: EX f ← ∅ (truncate statement in Fig. 3)
3: Compute F f

i (view F in Fig. 3)
4: Join F f

i with TE (view F_TE in Fig. 3)
5: for each t in F_TE do
6: list ← decode(t.ncb)
7: for each a, b in list do
8: nid← a, d2s← t.d2s+ b, p2s← t.fid
9: Insert (nid, d2s, p2s) into EX f

10: end for
11: end for
12: end procedure

Algorithm 6 B-LF-BFS-C expand and merge

1: function ExpandAndMerge(TAf , TE , Li)
2: do
3: populate(EX f ,TAf ,TE , Li)
4: Merge EX f into TAf (MERGE in Fig.3)
5: n← number of merged tuples
6: while n 6= 0
7: Finalize all vertices in TAf with f f = 0 and d2s ≤ Li

8: end function

The real datasets are Web-Google, Pokec, Live-Journal
(all three from http://snap.stanford.edu), and UK 2002,
Arabic 2005, UK 2005 (all three from http://law.di.unimi.
it/webdata).

The characteristics of the real datasets are as follows.

Name # of vertices # edges Diameter
Web-Google 875,713 5,105,039 21
Pokec 1,632,803 30,622,564 11
Live Journal 4,847,571 68,993,773 16
UK 2002 18,520,486 298,113,762 21
Arabic 2005 22,744,080 639,999,458 22
UK 2005 39,459,925 936,364,282 23

The last three datasets, UK 2002, Arabic 2005, and UK
2002 are significantly bigger than the first three as well as
the datasets considered in [9]. UK 2005, for instance, has
close to one billion edges. We give a bar chart of the edge
numbers in Fig. 4d.

The synthetic datasets vary in size from 1 million edges
to 15 million edges. We generated five random graphs with
sizes of 1, 2, 5, 10, and 15 million edges (denoted by 1M,
2M, 5M, and 15M), and five graphs of the same sizes using
the preferential attachment model.

In figures 5b, 5c, and 5d, we compare the performance
of B-R-BFS, B-LF-BFS, and B-LF-BFS-C on random vs. pref-
erential attachment graphs. We see that their performance
on the two types of graphs is more or less the same. There-
fore, we show results using random graphs in the rest of
the charts of Fig. 5.

For edge weights, we generated random numbers from
1 to 100 using uniform distributions for both real and syn-
thetic datasets.

Regarding indexes we experimented with clustered and
non- clustered indexes on the edge table. The results using

clustered indexes are better (see figures 5k and 5l). For
the TA tables, we did not create indexes as this slowed
down the MERGE operations and the performance of all
the algorithms suffered.

Each running time is given in seconds and obtained as
an average over 100 random s-t queries.

In the following, we give the questions we aim to address
with our experiments.

Questions.

Q1 How scalable are the algorithms we consider? How do
they compare to each other? In particular, can they
handle large and very large graphs, e.g. Live Journal
(large) and UK 2005 (very large)?

Q2 How well do the algorithms perform against baselines,
such as the following variants of the bidirectional Di-
jkstra’s algorithm: (a) in memory (when the graph
fits there), (b) in RDBMS, and (c) in a modern native
graph database (Neo4j)?

Q3 What are the best parameters for B-R-BFS, B-LF-BFS,
and B-LF-BFS-C (number of partitions, p, for the first,
and step size, s, for the second and third)?

Q4 What is the processing time trend as the size of the
dataset grows?

Q5 What is the relative cost of database operations?

Q6 Is there a notable difference in the particular RDBMS
chosen for this problem?

Answers.

Q1. In figures 4a and 5a, we show the running times of
the algorithms under their best parameter setup. For B-
R-BFS, the datasets are partitioned into 5, 10, and 15 ta-
bles (p=5, p=10, p=15), respectively, and for B-LF-BFS
and B-LF-BFS-C, step is set to 1,2 and 3 (s=1,s=2,s=3),
respectively. Fig. 4a shows the running times for the real
datasets, whereas Fig. 5a for the synthetic ones (all ob-
tained using D2).

We see that B-LF-BFS outperforms B-R-BFS on all the
datasets, with the difference being more pronounced for
the random graphs. Recall though that our main contribu-
tion in B-LF-BFS is simplicity over B-R-BFS both in terms
of algorithmic design as well as termination detection. The
fact that B-LF-BFS performs better than B-R-BFS shows
that we achieved simplicity without sacrificing performance.

B-LF-BFS-C outperforms both B-LF-BFS and B-R-BFS,
and the difference becomes quite significant for Live Jour-
nal. This behavior of B-LF-BFS-C is due to the fact that
many fewer disk blocks are needed to store the TE table
using the compression presented in Section 6. Therefore,
there are less disk blocks to read to perform the main join.
To see the compression achieved, please refer to Fig. 4l
that shows the sizes of original and compressed TE ta-
bles for various datasets (using D2, the best performing
RDBMS). The compression is quite significant for all the
datasets, and for some, such as Arabic 2005 and UK 2005,
it is by a factor of more than 20. This compression ra-
tio shows that our compression is quite efficient; it also
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(a) Algorithms under their
best parameter settings.

(b) B-LF-BFS-C, different
step sizes, big graphs

(c) B-LF-BFS-C vs. base-
lines.

(d) Graph sizes in millions
of edges (for reference).

(e) B-R-BFS, different parti-
tion numbers.

(f) B-LF-BFS, different step
sizes.

(g) B-LF-BFS-C, different
step sizes.

(h) B-LF-BFS-C {s=1}, dif-
ferent RDBMSs.

(i) B-LF-BFS-C, different
step sizes, big graphs, D1.

(j) B-LF-BFS-C, different
step sizes, big graphs, PG.

(k) Buffer size influence on
run. time (B-LF-BFS-C).

(l) Original vs. Compressed
TE (megabytes).

Figure 4: Experimental results for real datasets. All values on the vertical axes are times in seconds, except for 4d and 4l.

shows that there is a blowup factor when storing data un-
compressed in a database. For example the CSV edge file
of UK 2005 is 38 GB, which is less than half the size of the
TE table (78 GB) for the same dataset. A similar blowup
has also been observed in other works, e.g. [22].

Regarding UK 2002, Arabic 2005, and UK 2005, B-LF-
BFS-C is the only one to be able to handle them (see Fig. 4b).
In fact, B-LF-BFS-C does on UK 2005 significantly better
(by more than 27%) than what the other two algorithms
can do for Live Journal, which is an order of magnitude
smaller than UK 2005. B-R-BFS and B-LF-BFS were not
able to handle the three largest datasets in our machine
in a reasonable time; for instance, it took B-LF-BFS about
two hours to compute a single s-t query on UK 2002.

We observe that the average time for B-LF-BFS-C is only
3.7 seconds on Live Journal, and 12.4 seconds on UK 2005.
Fig. 4k shows the running time of B-LF-BFS-C on UK 2005
for different buffer allocations. We see there is only mild
improvement as the buffer size grows. This applies to all
three RDBMSs we used (D1, D2, PG). We discuss perfor-
mance comparisons among RDBMSs later in this section.

Q2. Regarding the baselines, we show the results in Fig. 4c.
We compare there the baselines against each other and
B-LF-BFS-C. As expected, the in-memory implementation
of bidirectional Dijkstra’s algorithm (B-D-InMem) is faster
than its counterparts in RDBMS (B-D) and Neo4j. Also ex-

pected is the fact that B-LF-BFS-C does quite better than
B-D and Neo4j; this is because B-LF-BFS-C benefits from a
set-at-a-time approach (see Section 3.2 for a discussion).
What is quite revealing though is that B-LF-BFS-C is a
close contender to B-D-InMem and even outperforms it on
Live Journal. This affirms the virtue of set-at-a-time eval-
uation, intelligent scheduling by the RDBMS, and graph
compression in B-LF-BFS-C.

Q3. Now we focus on what the best parameters for the
considered algorithms are. We see in Fig 4e that p = 5
is the best number of partitions for B-R-BFS in the real
datasets. This is also confirmed by Fig. 5e for synthetic
datasets. For the latter, we only show lines for p = 5 and
p = 10 as the numbers for p = 15 were too large to be
interesting. We explain this behavior of B-R-BFS as fol-
lows. While having more partitions (edge tables) helps to
potentially achieve termination faster using the early joins
(those using low-numbered edge tables), there is neverthe-
less an added penalty in terms of page scheduling by the
RDBMS, if we are to join the same part of the F set with too
many edge tables (which happens when the finalization is
delayed). In other words, joins become too-small-too-many,
and the performance suffers.

In Fig. 4f and 5f we see the B-LF-BFS performance for
different step values on the real and synthetic datasets, re-
spectively. We see that s = 1 is the best value for B-LF-BFS.
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(a) Algorithms under their
best parameter settings.

(b) B-R-BFS, pref. attach-
ment and random graphs.

(c) B-LF-BFS, pref. attach-
ment and random graphs.

(d) B-LF-BFS-C, pref. at-
tach. and rand. graphs.

(e) B-R-BFS, different par-
tition numbers.

(f) B-LF-BFS, different
step sizes.

(g) B-LF-BFS-C, different
step sizes.

(h) B-LF-BFS-C, window
functions vs. classical
SQL.

(i) B-LF-BFS, different
RDBMSs.

(j) B-LF-BFS-C, different
RDBMSs.

(k) B-LF-BFS, non-cluster.
and cluster. ind.

(l) B-LF-BFS-C with non-
cluster. and cluster. ind.

Figure 5: Experimental results for synthetic datasets. All values on the vertical axes are times in seconds.

Whereas the differences in running time for s = 1, 2, 3 are
not big for the real datasets, they become quite noticeable
for the synthetic datasets. For the latter, the performance
for s = 1 is significantly better than for s = 2, 3. Recall that
the greater the step size, the bigger the F sets become,
and the more the B-LF-BFS gets closer to BFS. For B-LF-
BFS-C, on the other hand, we find that s = 3 is the best
value for the three big real datasets (Fig. 4b), whereas s =
1 is the best value for the medium real datasets (Fig. 4g)
and synthetic datasets (Fig. 5g). This suggests that some
parameter tuneup is needed depending on the graph.

The tuneup of the step size can be performed by ran-
domly selecting a set of source-target pairs as we are doing
in our experiments. Then, we test different values for step
starting from a value equal to the cost of the lightest edge
and incrementing it by this amount each time. What we
look for is some value for the step size such that the set-at-
the-time evaluation has an opportunity to better schedule
disk accesses while not doing too much non-optimal work.
As our experiments show, moderate values for the step size
give a good balanced evaluation.

Q4. In Fig. 5a, we see that the curve for B-R-BFS, even for
p = 5, grows faster compared to B-LF-BFS and B-LF-BFS-
C. This trend for B-R-BFS is more pronounced in Fig. 5e for

p = 10. The curve for B-LF-BFS grows in general mildly,
unless its step value is not tuned properly (see Fig. 5f).
Finally, B-LF-BFS-C has the mildest growing curve of the
three algorithms and is somewhat “forgiving” even when s
is not tuned to the best value (see Fig. 5g).

Q5. The experiments in Fig. 6 were conducted using syn-
thetic data sets (random graphs of 1-15 million edges) with
step = 3. Fig. 6a shows the relative time for finding fron-
tier nodes versus and the time taken for executing the
join queries in B-LF-BFS. The Merge time was not consid-
ered in the figure as it was insignificant. We can see that
the processing time is mainly consumed by join queries.
Fig. 6b shows the relative time for B-LF-BFS-C to decode
compressed tuples in table TE, find frontier nodes, and
execute join queries. We can see that decoding did not
consume the significant portion of the whole processing
time. It is still the join time that dominates.

Q6. Figures 4h and 5j show the performance of differ-
ent RDBMSs when running B-LF-BFS-C (best algorithm).
We allocated the same amount of buffer space, 6G, and
created the same index setup for all three of RDBMSs we
used. We see that D1 and Postgres performed similarly,
however, D2 significantly outperformed both of them. A
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Figure 6: Relative cost of different database operations.

similar behavior can also be observed when running B-LF-
BFS (see Fig. 5i).

To better see the performance of B-LF-BFS-C on differ-
ent RDBMSs, we also give figures 4i (for D1) and 4j (for
Postgres), which should be compared with Fig 4b (for D2).

These results suggest that even though well-developed
RDBMSs (such as those we consider) are close competitors
in well-known benchmarks, when it comes to handling spe-
cialized workloads (such as graph operations), they show
noticeable differences.

8. RELATED WORK
Computing s-t queries on large complex networks has

received considerable attention from the research com-
munity (cf. [1, 2, 23] and [6, 15, 29, 31, 42]). The first
and second group of works compute exact and approxi-
mate answers, respectively. As we provide exact answers
to s-t queries, our work is more related to the first group.
The works in the first group achieve very good scalabil-
ity, but focus on unweighted graphs, which is an easier
problem to tackle. In unweighted graphs, the length of
a path amounts to the number of its edges. Since so-
cial and web graphs have typically a small diameter, com-
puting s-t shortest paths on unweighted graphs does not
need to travel more than few hops. On the other hand,
if edge weights are taken into consideration, the small
diameter of the graphs is not that important anymore as
shortest paths can contain an arbitrary number of edges,
hence, many more expansions are needed. In this paper,
in contrast with the aforementioned works, we focus on
weighted graphs, which are more general and challenging
to handle. While we do not show experimental results
for unweighted graphs, we mention that we tested exten-
sively with such graphs in RDBMS and our performance
was considerably better than for weighted graphs.

Bidirectional computation for finding shortest paths from
a source to a target has been suggested in several works
(cf. [11, 18]. In [18], it is shown that proper termination
is when both the forward and backward search finalize a
graph vertex in common. Recall, this was possible for the
bidirectional Dijkstra’s algorithm and B-LF-BFS, but not
for B-R-BFS (for which we need to resort to a more com-
plex termination procedure). In [11], the benefits of bidi-
rectional search are shown by experiments for graphs that
fit in memory. Another part of [11] is about A* heuristics
for speeding up the s-t shortest path computation. Such
heuristics, however, were in practice observed in [11] to

be mainly useful for spatial networks (and not much for
complex networks). In this paper, we focus on complex
networks (social and web networks). As such, we have not
employed A* heuristics.

Relational Databases have been often used to store com-
plex data, such as XML and RDF graphs (cf. [5, 32] and [4,
17], respectively). They have also been shown to be a good
choice to support advanced applications, such as data min-
ing [34, 45] and machine learning [10, 25].

For graph queries, as [16, 43] argue, relational technol-
ogy can sometimes outperform more specialized solutions.
An interesting work that uses relational technology for an-
swering subgraph and supergraph queries is [33]. These
queries are different from our source-to-target shortest
path queries. Other works, such as [8, 24] use rela-
tional databases to build vertex-centric (VC) systems in the
Pregel model. As we explained in Section 2, a VC compu-
tation is not a good fit for computing s-t shortest paths.
In terms of table structure, the edge tables used in B-R-
BFS and B-LF-BFS are similar to the edge table in [8]. All
these works (including ours) suggest that using relational
databases for graph management can be for some prob-
lems better than using specialized graph engines.

9. CONCLUSIONS
We showed that designing algorithms for RDBMS is a

good avenue to pursue for graphs that do not fit in mem-
ory, and sometimes, even for graphs that can (e.g. Live
Journal). Also, RDBMS technology is quite mature and can
accommodate complex data and algorithms, sometimes,
even better than special purpose systems.

We presented a correct procedure for deciding termina-
tion in B-R-BFS. We argued that it is challenging to de-
termine whether a vertex has its distance finalized in B-R-
BFS. Then we showed that we can decide termination by
carefully deriving lower bounds on the forward and back-
ward distances of vertices from the source and target.

We gave next a new algorithm, B-LF-BFS, which per-
forms restrictive BFS by selecting only a part of the visited
vertices as a set to be expanded. This was achieved by set-
ting distance levels that need to be cleared (in terms of ex-
pansions) before going to the next level. We showed that,
once a level is cleared, the vertices that were expanded in
that level have their distance finalized. This allowed us to
use a much simplified termination procedure.

Then, we presented B-LF-BFS-C, an algorithm that en-
hances B-LF-BFS by using a compressed representation of
neighbor-cost lists. The compression achieved was such
that B-LF-BFS-C was able to handle graphs of an order of
magnitude bigger than what B-R-BFS and B-LF-BFS could.

Using detailed experiments, we showed that all three al-
gorithms scale well (for their best parameter setup), and
B-LF-BFS-C in particular can produce results in a reason-
able time even on the largest dataset we experimented
with, UK 2005, with close to one billion edges, using only
a consumer-grade machine.

As future work, we would like to extend our results using
RDBMS to shortest paths in graphs that are both weighted
and labeled with symbols from a finite alphabet [12, 35,
40]. In this case, the paths allowed to follow are specified
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by regular expressions and the goal is to compute shortest
paths that spell words in the query language [13, 14, 39].
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