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ABSTRACT

We present new algorithms for graph summarization where the

loss in utility is fully controllable by the user. Specifically, we make

three key contributions. First, we present a utility-driven graph

summarization method G-SCIS, based on a clique and independent

set decomposition, that produces optimal compression with zero

loss of utility. The compression provided is significantly better than

state-of-the-art in lossless graph summarization, while the runtime

is two orders of magnitude lower. Second, we propose a highly scal-

able, utility-driven algorithm, T-BUDS, for fully controlled lossy

summarization. It achieves high scalability by combining mem-

ory reduction using Maximum Spanning Tree with a novel binary

search procedure. T-BUDS outperforms state-of-the-art drastically

in terms of the quality of summarization and is about two orders

of magnitude better in terms of speed. In contrast to the competi-

tion, we are able to handle web-scale graphs in a single machine

without performance impediment as the utility threshold (and size

of summary) decreases. Third, we show that our graph summaries

can be used as-is to answer several important classes of queries,

such as triangle enumeration, Pagerank and shortest paths.
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1 INTRODUCTION

Graphs are ubiquitous and are the most natural representation for

many real-world data such as web graphs, social networks, com-

munication networks, transaction networks, and epidemiological

networks. Such graphs are growing at an unprecedented rate. For

instance, the web graph consists of more than a trillion websites [2]

and the social graphs of Facebook, Twitter, andWeibo, have billions

of users with many friend/follow connections per user [1, 3, 4].

Consequently, storing such graphs and answering queries, mining

patterns, and visualizing them are becoming highly impractical

[11, 22]. Graph summarization is a fundamental task of finding a

compact representation of the original graph called the summary. It

allows us to decrease the footprint of the graph and derive analytical

insights more efficiently [17, 22].

The problem has been approached from different directions, such

as compression to reduce the number of required bits for describing

graphs [5, 21], sparsification to remove less important nodes/edges

in order to make the graph simpler [16, 25] and grouping to merge

nodes into supernodes based on some interestingness measure

[9, 11, 12, 14, 17, 20, 22]. Grouping methods constitute the most

popular approach as they allow the user to logically relate the graph

summary to the original graph. Our work belongs in this category.

The flip side of summarization is loss of utility, or loss of “useful

information” contained in the original graph. At a conceptual level,

utility is defined by attempting to reconstruct the original graph 𝐺

from a summary G thus obtaining reconstructed graph 𝐺 ′. Com-

pared to𝐺 , graph𝐺 ′ can miss original edges that have been lost or

can have spurious edges that have been added. We define the utility

of summary G to be the utility of the reconstructed graph 𝐺 ′. The
utility of 𝐺 ′ is penalized in terms of the number of lost edges and

spurious edges. As a consequence, the more structural similarity

𝐺 ′ has with 𝐺 , the higher its utility.
A problem with most previous works is that it is hard to predict

the utility of their produced summaries. They do not incorporate

measuring utility at each step of the algorithm. To the best of our

knowledge the only works that present utility-aware algorithms

are [22], [9], and [11]. In [22], Shin et al. present SWeG, an algo-

rithm that preserves a neighborhood similarity measure for each

pair of corresponding nodes in 𝐺 and 𝐺 ′. This however is a local
measure, not easily generalizable to global utility for the whole

graph. Furthermore, the edges are considered of equal importance,

thus further hampering the measuring of utility. In [9], Ko et al.

present MoSSo, an incremental algorithm for maintaining lossless

summaries of dynamic graphs. Similar to [22], MoSSo also is not

conducive to considering a global notion of utility.

In [11], Kumar and Efstathopoulos are the first to address global

utility. However, their approach, UDS, requires time 𝑂 (𝑉 2); based
on our experiments, it can only handle small to moderate datasets,

often requiringmore than 100 hours. Furthermore UDS only scratches

the surface of what is possible to achieve in utility-based graph

summarization. For example, for the case when we desire zero loss

of utility, UDS performs rather poorly producing a summary that

is not very different from the original graph it started from. On the

other hand, for the case when utility loss is allowed, UDS uses sim-

ple criteria for merging nodes of the original graph thus producing

summaries that can be vastly improved.

To address these challenges, we propose two utility-driven algo-

rithms, G-SCIS and T-BUDS, for the lossless and lossy cases, respec-

tively, which can handle large graphs efficiently on a consumer-

grade machine. G-SCIS is based on a clique and independent set

decomposition that produces significant compression with zero loss

of utility. Compared to SWeG, MoSSo, and UDS, G-SCIS produces

better summaries with respect to reduction in number of nodes,

while having a running time lower by two-orders of magnitude.

We also show that G-SCIS summaries possess an attractive char-

acteristic not present in SWeG, MoSSo or UDS summaries. Due

to our clique and independent set decomposition, we are able to

compute important classes of queries, such as Pagerank, triangle

enumeration, and shortest paths using the G-SCIS summary “as-is”

without the need to perform postprocessing or execute neighbor-

hood queries as SWeG and MoSSo do.

Our second algorithm, T-BUDS, is a highly scalable iterative

algorithm for the lossy case, which incorporates measuring utility



at each iteration and allows the user to fully control the loss of

utility according to their needs. T-BUDS significantly outperforms

SWeG and UDS in terms of node reduction while requiring signifi-

cantly less time and space. We achieve this by combining the use of

weighted Jaccard similarity, a memory reduction technique based

on Maximum Spanning Tree and a novel binary-search approach

for merging nodes. In summary, our contributions are as follows.

• We propose an optimal algorithm, G-SCIS, for lossless graph

summarization and show that it outperforms state of art by

two orders of magnitude in runtime while achieving better

reduction in number of nodes.

• We show interesting applications of the summary produced

by G-SCIS to triangle enumeration, Pagerank, and shortest

path queries. For instance, we show that we can enumerate

triangles and compute Pagerank on the G-SCIS summaries

much faster than on the original graph.

• We propose a utility-driven algorithm, T-BUDS, for lossy

summarization. T-BUDS achieves high scalability and out-

performs state-of-the-art by two orders of magnitude.

• We also show that T-BUDS significantly outperforms state-

of-the-art in terms of utility achieved for a given level of node

reduction. Conversely, for a given utility threshold, T-BUDS

offers much better node reduction than state-of-the-art.

2 PRELIMINARIES

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, where 𝑉 is the set of nodes

and 𝐸 the set of edges. A summary graph is also undirected and

denoted by G = (V, E), whereV is a set of supernodes, and E a set

of superedges. More precisely we haveV = {𝑆1, 𝑆2, . . . , 𝑆𝑘 } such
that 𝑘 ≤ |𝑉 |, 𝑉 =

⋃𝑘
𝑖=1 𝑆𝑖 and ∀𝑖 ≠ 𝑗, 𝑆𝑖 ∩ 𝑆 𝑗 = ∅. The supernode

which a node 𝑢 ∈ 𝑉 belongs to is denoted by 𝑆 (𝑢).
Reconstruction. Given a summary graph, we can (lossily) recon-

struct the original graph as follows. For each superedge (𝑆𝑖 , 𝑆 𝑗 ) we
construct edges (𝑢, 𝑣), for each 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆 𝑗 . For 𝑖 ≠ 𝑗 , this

amounts to building a complete bipartite graph with 𝑆𝑖 and 𝑆 𝑗 as its

parts. For 𝑖 = 𝑗 (a self-loop superedge), the reconstruction amounts

to building a clique among the vertices of 𝑆𝑖 .

Utility. In order to reason about the utility of a graph summariza-

tion we need to define the notion of edge importance. We denote

the importance of an edge (𝑢, 𝑣) in 𝐺 by 𝐶 (𝑢, 𝑣). For example, the

edge importance could measure its centrality. Obviously, the more

important edges we recover during reconstruction, the better it is.

However, this should not come at the cost of introducing spurious

edges. In order to measure the amount of spuriousness, we also

introduce the notion of importance for spurious edges and denote

that by 𝐶𝑠 (𝑢, 𝑣). Now in a similar way to [11] we define the utility

of a summary graph G = (V, E) as follows.

𝑢 (G) =
∑

(𝑆𝑖 ,𝑆 𝑗 ) ∈E

©­­­­«
∑
(𝑢,𝑣) ∈𝐸

𝑢∈𝑆𝑖 ,𝑣∈𝑆 𝑗

𝐶 (𝑢, 𝑣) −
∑
(𝑢,𝑣)∉𝐸

𝑢∈𝑆𝑖 ,𝑣∈𝑆 𝑗

𝐶𝑠 (𝑢, 𝑣)
ª®®®®¬

(1)

In words, the utility of a summary is measured by summing

the importance scores of edges of the original graph that can be

reconstructed from it and subtracting the sum of importance scores

of the spurious edges that are introduced by the reconstruction.

𝐶 (𝑢, 𝑣) and 𝐶𝑠 (𝑢, 𝑣) are normalized so that their respective sums

equal one. We give a numeric example in Appendix.

In order to have a good summary, the user defines a threshold

𝜏 , 0 ≤ 𝜏 ≤ 1, and requests that 𝑢 (G) ≥ 𝜏 . Now we define the

optimization problem we study as follows. Given graph 𝐺 = (𝑉 , 𝐸)
and user-specified utility threshold 𝜏 , our objective is to

minimize |V| subject to 𝑢 (G) ≥ 𝜏 . (2)

3 OPTIMAL LOSSLESS ALGORITHM

Kumar et al. [11] showed that given a utility threshold 𝜏 , computing

the optimal graph summary with utility loss of at most 𝜏 is NP-Hard.
In this section, we analyze the problem for the special case of 𝜏 = 1,

that is, lossless graph summarization. When we reconstruct the

graph from such a summary, no actual edge will be lost and no

spurious edge will be introduced. We show that we can obtain in

polynomial time the optimal summary in terms of the objective

function, i.e. the one with the smallest number of supernodes.

We denote by 𝑁 (𝑢) the set of neighbors of vertex 𝑢. In the fol-

lowing whenever we refer to a clique we mean a clique𝐶 , such that

if 𝑢, 𝑣 ∈ 𝐶 , then 𝑁 (𝑢) ∪ {𝑢} = 𝑁 (𝑣) ∪ {𝑣}. This implies the vertices

of 𝐶 share the same neighbours outside the clique. Similarly, when-

ever we refer to an independent set (a set of nodes where no two

nodes are connected) we mean an independent set 𝐼 , such that if

𝑢, 𝑣 ∈ 𝐼 , then 𝑁 (𝑢) = 𝑁 (𝑣). We have the following lemmas.

Lemma 3.1. In a summary for 𝜏 = 1, each node can be (1) in a
supernode of size one, or (2) inside a supernode representing a clique
in 𝐺 , or (3) inside a supernode representing an independent set in 𝐺 .

Proof. During reconstruction, a supernode either generates just

one node, a clique (when a self-loop exists), or an independent set

(when a self-loop does not exist). Now if the original graph does

not precisely correspond to what is reconstructed, then there will

be at least either one spurious edge added (in the case of a clique

supernode), or one actual edge lost (in the case of an independent

set supernode). Thus the summary would be lossy and the recon-

structed graph would be different from the original graph. □

Lemma 3.2. A node 𝑣 cannot be in a clique supernode in one lossless
summary and in an independent set supernode in another.

Proof. Let us assume, if possible, that nodes 𝑢, 𝑣 are inside an

independent set supernode in one lossless summary and 𝑢, 𝑣 are

inside a clique supernode in another. This implies that𝑁 (𝑢) = 𝑁 (𝑣)
and 𝑁 (𝑢) ∪ {𝑢} = 𝑁 (𝑣) ∪ {𝑣}, a contradiction. □

We now show that there is a polynomial-time algorithm that

computes an optimal lossless summary. Algorithm 1 gives a global

greedy strategy for finding such a summary. For each node 𝑢, the

goal of the algorithm is to find the largest supernode that 𝑢 can be

a part of. For the summary to be lossless, such a supernode has to

be either an independent set or a clique.

Condition in line 6 of Algorithm 1 checks whether vertices𝑢 and

𝑣 can be in the same clique or independent set with neighborhood

properties as described above. If so, 𝑢 and 𝑣 are greedily merged.

Further, Lemma 3.2 proved that the two conditions in line 6 are

mutually exclusive. That is, all the vertices in 𝑆 (𝑢) will satisfy



Algorithm 1 Finding the best summary for 𝜏 = 1

1: Input: 𝐺 = (𝑉 , 𝐸)
2: Initialization: 𝑆𝑡𝑎𝑡𝑢𝑠 [∀𝑣 ∈ 𝑉 ] ← False, S ← []

3: for 𝑢 ∈ 𝑉 ∧ 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑢] = False do
4: 𝑆 (𝑢) ← {𝑢}, 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑢] ← True
5: for 𝑣 ∈ 𝑉 ∧ 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑣] = False do
6: if (𝑁 (𝑢) = 𝑁 (𝑣)) ∨ (𝑁 (𝑢) ∪ {𝑢} = 𝑁 (𝑣) ∪ {𝑣}) then
7: 𝑆 (𝑢) ← 𝑆 (𝑢) ∪ {𝑣}, 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑣] ← True
8: S.𝑎𝑑𝑑 (𝑆 (𝑢))
9: BuildSuperEdges(S)

exactly one of these two conditions. If neither of these conditions

holds true, then node 𝑢 should be in a supernode of size one.

Building Superedges.Once the appropriate supernodes have been

identified we build superedges as follows. For each supernode 𝑆 ,

an edge is added to another supernode 𝑆 ′ iff 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 ′ and
(𝑢, 𝑣) ∈ 𝐸. We refer to this process as BuildSuperEdges (last line of

Algorithm 1).

Theorem 3.3 (Tractability of lossless graph summa-

rization). Lossless graph summarization is in 𝑃 . That is, Algo-
rithm 1 computes the optimal solution in polynomial time for 𝜏 = 1.

Proof. We claim that the supernode 𝑆𝑢 containing a vertex

𝑢 ∈ 𝑉 in the summary output by Algorithm 1 is the largest pos-

sible supernode for 𝑢 in any lossless summary. Suppose 𝑆𝑢 is an

independent set supernode. All the nodes in 𝑆𝑢 must have the same

neighbor set as 𝑢. As Algorithm 1 greedily finds and adds all ver-
tices 𝑣 ∈ 𝑉 such that 𝑁 (𝑣) = 𝑁 (𝑢) to 𝑆𝑢 , this must be the largest

set possible; the only way to make such a supernode larger is to

include a node with different neighbor set. Doing so makes the

summary be no longer lossless. An analogous argument applies for

the case when 𝑆𝑢 is a clique supernode.

We now show that Algorithm 1 produces an optimal lossless

summary. For contradiction, let us assume that there exists an

optimal lossless summary in which the number of supernodes is less

than the summary provided by Algorithm 1. If so, there should exist

at least one node 𝑢 ∈ 𝑉 such that its supernode size in the optimal

summary is larger than the its supernode size in the summary

provided by Algorithm 1. However, we proved in the previous

paragraph that this can never happen and hence is a contradiction.

Finally, it can be verified that the time complexity of Algorithm 1

is𝑂 (𝑉 2Δ𝑚𝑎𝑥 ), where Δ𝑚𝑎𝑥 is the maximum degree of a node in𝐺

and hence lossless summarization is in 𝑃 . □

3.1 Scalable Lossless Algorithm, G-SCIS

Algorithm 1 is of 𝑂 (𝑉 2Δ𝑚𝑎𝑥 ) time complexity, which makes it im-

practical for large datasets. Here we propose an improved algorithm

of𝑂 (𝐸) complexity, which uses hashing to speed up the process. We

can break down the process into three parts: (a) finding candidate

supernodes, (b) filtering supernodes, and (c) connecting superedges.

A hash function is used to hash 𝑁 (𝑢) and 𝑁 (𝑣) in the case of

independent sets, or 𝑁 (𝑢) ∪ {𝑢} and 𝑁 (𝑣) ∪ {𝑣} in the case of

cliques, respectively. If 𝑢 and 𝑣 have the same hash value, then

they are candidates to be merged into an independent set or clique

supernode.

Note that the use of a hash function could result in candidate

supernodes with false positives (i.e. two nodes that should not

belong to same supernode might be present into one candidate

supernode) but there cannot be false negatives (i.e. two nodes that

must belong to same supernode cannot be in two different candidate

supernodes). Of course, the probability of a false positive depends on

the quality of the hash function used. In order to completely remove

false positives, we further examine each candidate supernode for

false positives, which are then filtered out into separate supernodes.

After this step all the supernodes are as they should be in an optimal

summary and finally the superedges are added between them.

In Algorithm 2, two different hash values (ℎ𝑐 and ℎ𝑖 ) are gen-

erated for the neighbor sets of each node. The nodes that have

the same ℎ𝑐 value (line 4) are grouped together to form candidate

clique supernodes. Similarly, the nodes that have the same ℎ𝑖 value

(line 5) are grouped together to form candidate independent set

supernodes. Note that due to possible false positives, there can

exist a node that is present in both a candidate independent set and

a candidate clique at the same time. Finally, Algorithm 2 returns

two hashmaps,𝑚𝑎𝑝𝐶 and𝑚𝑎𝑝𝐼 , where keys are hash values and

buckets contain the set of nodes falling in the same candidate clique

or independent set supernode.

Algorithm 3 filters the candidate supernodes to become correct

supernodes. For any candidate supernode, it selects a random node

𝑢, and, using its neighbourhood list, removes all the other nodes 𝑣 in

that supernode for which the appropriate condition is not satisfied.

Namely, we have 𝑁 (𝑢)∪{𝑢} = 𝑁 (𝑣)∪{𝑣} for the case of clique and
𝑁 (𝑢) = 𝑁 (𝑣) for the case of independent set. If the quality of the

hash function is perfect, i.e. no false positives occur, then the loop in

line 4 executes only once and Algorithm 3 is very efficient. On the

other hand, if there are false positives, the loop will execute several

times. While we can devise perfect hashing (see [6]), in practice we

observed that we have few false positives even for simple default

hash functions and the number of iterations was always small.

Algorithm 4 is the main algorithm that drives the whole process

and produces the summary. It obtains the two hashmaps 𝑚𝑎𝑝𝐶

and 𝑚𝑎𝑝𝐼 using Algorithm 2 (line 3). It then removes the false

positives using Algorithm 3 (lines 4 and 5). Lines 7 to 10 handle the

supernodes of size one. Finally, the superedges are built in line 11.

Time and space complexity: The work space requirement
1
of

Algorithm 2 is 𝑂 (𝑉 ) due to the fact that two hashmaps𝑚𝑎𝑝𝐶 and

𝑚𝑎𝑝𝐼 as well as list of supernodes S only use 𝑂 (𝑉 ) space. The
runtime is𝑂 (𝐸) as the hash function has to traverse each neighbor

set of each node. Similarly, building superedges takes 𝑂 (𝑉 ) space
and 𝑂 (𝐸) runtime. Algorithm 3 takes 𝑂 (𝑉 ) space. Its runtime, as

mentioned above, depends on the quality of the hash function. For

a perfect hash function (no false positives) this is𝑂 (𝐸). We observe

very close to this order in practice even for simple hash functions,

e.g. 𝑥%𝑝 , where 𝑝 is a large prime. The better the hash function

the more (non-empty) buckets we have, but their number cannot

be more than 𝑂 (𝑉 ). To summarize, the runtime of Algorithm 4 is

𝑂 (𝐸) and its work space requirement is 𝑂 (𝑉 ).

1
Not considering the read-only input graph and the write-only summary graph.



Algorithm 2 Candidate Supernodes

1: Input: 𝐺 = (𝑉 , 𝐸), ℎ ⊲ hash function to map list to number

2: 𝑚𝑎𝑝𝐶 ← {} ,𝑚𝑎𝑝𝐼 ← {} ⊲ hash maps

3: for 𝑣 ∈ 𝑉 do

4: ℎ𝑐 ← ℎ((𝑁 (𝑣) ∪ {𝑣})𝑠𝑜𝑟𝑡𝑒𝑑 )
5: ℎ𝑖 ← ℎ(𝑁 (𝑣)𝑠𝑜𝑟𝑡𝑒𝑑 )
6: 𝑚𝑎𝑝𝐶 [ℎ𝑐 ] ←𝑚𝑎𝑝𝐶 [ℎ𝑐 ] ∪ {𝑣}
7: 𝑚𝑎𝑝𝐼 [ℎ𝑖 ] ←𝑚𝑎𝑝𝐼 [ℎ𝑖 ] ∪ {𝑣}
8: return𝑚𝑎𝑝𝐶,𝑚𝑎𝑝𝐼

Algorithm 3 Filter Supernodes

1: Input:𝑚𝑎𝑝, 𝑡𝑦𝑝𝑒 ⊲ map containing candidate supernodes

2: 𝑆 ← [] ⊲ list of filtered supernodes

3: for 𝑋 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑚𝑎𝑝) do ⊲ for each candidate supernode

4: while 𝑋 ≠ 𝜙 do

5: 𝑢 ← remove-random-node(𝑋 )

6: if type = clique then

7: 𝑆 (𝑢) ← {𝑣 ∈ 𝑋 | 𝑁 (𝑢) ∪ {𝑢} = 𝑁 (𝑣) ∪ {𝑣}}
8: else 𝑆 (𝑢) ← {𝑣 ∈ 𝑋 | 𝑁 (𝑢) = 𝑁 (𝑣)}
9: if S(𝑢) ≠ {𝑢} then
10: 𝑋 ← 𝑋 \ S(𝑢)
11: S.𝑎𝑝𝑝𝑒𝑛𝑑 (S(𝑢))
12: return S

Algorithm 4 Scalable algorithm for 𝜏 = 1

1: Input: 𝐺 = (𝑉 , 𝐸)
2: 𝑆𝑡𝑎𝑡𝑢𝑠 [∀𝑣 ∈ 𝑉 ] ← 𝐹𝐴𝐿𝑆𝐸 , 𝑆 ← [] ⊲ list of supernodes

3: 𝑚𝑎𝑝𝐶,𝑚𝑎𝑝𝐼 ← CandidateSuperNodes(𝐺)

4: 𝐶 ← FilterSuperNodes(𝑚𝑎𝑝𝐶, 𝑡𝑦𝑝𝑒 = 𝑐𝑙𝑖𝑞𝑢𝑒)
5: 𝐼 ← FilterSuperNodes(𝑚𝑎𝑝𝐼, 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠𝑒𝑡)
6: S.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶), S.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼 )
7: for S𝑖 ∈ S do

8: for 𝑢 ∈ S𝑖 do 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑢] ← True
9: for 𝑢 ∈ 𝑉 AND 𝑆𝑡𝑎𝑡𝑢𝑠 [𝑢] = False do
10: S.𝑎𝑝𝑝𝑒𝑛𝑑 ({𝑢})
11: BuildSuperEdges(S)

4 SCALABLE LOSSY ALGORITHM, T-BUDS

Although G-SCIS achieves significant compression without any

loss in utility, in this section we discuss a scalable lossy algorithm,

T-BUDS, to further compress the summary graph G produced by

G-SCIS while minimizing the loss in utility. Our algorithm can

work with a G-SCIS summary as well as with the input graph;

hence we continue to denote the input by 𝐺 = (𝑉 , 𝐸). The output
is a more compressed, lossy summary. T-BUDS iteratively merges

pairs of (super)nodes until the utility of the graph drops below

a user-specified threshold 𝜏 < 1. Intuitively, it is desirable that

any two nodes in the same supernode have similar neighborhoods.

A starting point is to look at the two-hop away nodes, as they

have at least one neighbor in common. However, we do not stop

here; we use a special version of weighted Jaccard similarity that

incorporates the weight of edges in order to come up with a proper

score for similarity of nodes’ neighborhoods. Based on this score

we decide the merge sequence of nodes.

We denote the set of two-hop away nodes by 𝐹 . To decide the

order of merge operations, we consider 𝐹 as the candidate pairs

set. T-BUDS starts merging from the less desirable pairs (based

on weighted Jaccard as described in Section 4.1) of 𝐹 because they

result in less damage to the utility. It iterates over a sorted version

of 𝐹 and in each iteration performs the following steps.

(1) Pick the next pair of candidate nodes ⟨𝑢, 𝑣⟩ from 𝐹 , find their

corresponding supernodes 𝑆 (𝑢), 𝑆 (𝑣), and merge them into

a new supernode 𝑆 , if 𝑆 (𝑢) ≠ 𝑆 (𝑣).
(2) Update the neighbors of 𝑆 based on the neighbors of 𝑆 (𝑢), 𝑆 (𝑣).

In particular, add an edge from 𝑆 to another supernode if the

loss in utility is less than the loss if not added.

(3) (Re)compute the utility of the summary built so far and stop

if the threshold is reached.

We reiterate that while this description provides the intuition be-

hind T-BUDS, additional techniques described below are needed

to ensure its time and space efficiency.

4.1 Ordering Candidate Pairs

We order the node pairs in 𝐹 using weighted Jaccard similarity and

make sure that only the highly similar nodes are merged together.

Using weighted Jaccard similarity enables us to capture both the

importance score of each edge as well as the number of the common

neighbors between any pair of two-hop nodes ⟨𝑢, 𝑣⟩.
Weighted Jaccard (WJ) Similarity: For a pair of nodes ⟨𝑢, 𝑣⟩

WJ(𝑢, 𝑣) =
∑
𝑥 ∈𝑁 (𝑢)∩𝑁 (𝑣) min(𝑤 (𝑢, 𝑥),𝑤 (𝑣, 𝑥))∑
𝑥 ∈𝑁 (𝑢)∪𝑁 (𝑣) max(𝑤 (𝑢, 𝑥),𝑤 (𝑣, 𝑥)) (3)

wherewe define theweights𝑤 (𝑢, 𝑥) as follows. If𝑢 is connected to𝑥
we define𝑤 (𝑢, 𝑥) = 2·max𝐶 −(𝐶𝑢+𝐶𝑥 ), wheremax𝐶 = max𝑢∈𝑉 𝐶𝑢 ,
otherwise 𝑤 (𝑢, 𝑥) = 0. Observe that the higher the centrality of

𝑥 , the lower 𝑤 (𝑢, 𝑥) is. The intuition for the above is as follows.

In the extreme when the neighborhoods of two nodes 𝑢 and 𝑣

are the same (i.e. mergable according to G-SCIS), we have that

their degrees and centrality scores are the same, thus we have

WJ = 1. Relaxing this, in order to merge 𝑢 and 𝑣 , we still want a

high amount of neighborhood commonness, hence we use a form

of Jaccard similarity between sets of neighbors. In this process,

we would like to weigh the high centrality neighbors below low

centrality ones. This stems from the fact that in general, we try

to avoid merging high centrality nodes because this can cause a

high loss in utility. Now, the greater the number of high-centrality

neighbors, the higher the centrality of 𝑢 and 𝑣 usually is. Therefore,

we give low priority to these 𝑢, 𝑣 pairs by applying the proposed

weighted Jaccard similarity. To summarize, we order the merge

operations by sorting the two-hop away pairs by their WJ score in
descending order.

Using Maximum Spanning Tree (MST). We observe that not every

candidate pair will cause a merge. This is because the nodes in the

pair can be already in a supernode together due to previous merges.

Therefore, there are many useless pairs, which we can eliminate

with our proposed MST technique below.

Let us denote the two-hop graph by 𝐺
2−ℎ𝑜𝑝 = (𝑉 , 𝐹 ). That is,

𝐹 = {(𝑎, 𝑐) | (𝑎, 𝑏) ∈ 𝐸 and (𝑏, 𝑐) ∈ 𝐸}. We propose a method to



reduce the number of candidate pairs from 𝑂 ( |𝐹 |) to 𝑂 ( |𝑉 |) by
creating an MST of 𝐺

2−ℎ𝑜𝑝 . In Theorem 4.1, we prove that using

the sorted edge list of MST of𝐺
2−ℎ𝑜𝑝 will produce exactly the same

summary as using the sorted edge list of 𝐺
2−ℎ𝑜𝑝 .

Let us denote by 𝐿 the weight-based sorted version of 𝐹 . Also,

we denote by 𝐻 the sorted list of edges of an MST for 𝐺
2−ℎ𝑜𝑝 . We

now present a sufficiency theorem, which says that using𝐻 instead

of 𝐿 as the list of candidates is sufficient. The idea of the proof is

that the candidate pairs leading to a merge when 𝐿 is used, in fact,

exactly correspond to the edges of an MST.

Theorem 4.1 (MSTSufficiencyTheorem). For utility thresh-
old 𝜏 , using 𝐻 as the list of candidate pairs will produce the same
graph summary as using 𝐿.2

Proof. InitiallyG is same as𝐺 and let us assume that at iteration

𝑖 a new pair ⟨𝑢, 𝑣⟩ ← 𝐿[𝑖] is chosen and 𝑆 (𝑢)𝑖−1 and 𝑆 (𝑣)𝑖−1 are
their corresponding supernodes. If 𝑆 (𝑢)𝑖−1 ≠ 𝑆 (𝑣)𝑖−1 then they

should be merged together into a new supernode. The following

two claims ensure the sufficiency of 𝐻 as a candidate set.

(1) If ⟨𝑢1, 𝑣1⟩ and ⟨𝑢2, 𝑣2⟩ are in𝐻 s.t. ⟨𝑢1, 𝑣1⟩ appears before ⟨𝑢2, 𝑣2⟩
in 𝐻 then ⟨𝑢1, 𝑣1⟩ appears before ⟨𝑢2, 𝑣2⟩ in 𝐿.
(2) If 𝑢 and 𝑣 are not inside a same supernode, that is 𝑆 (𝑢)𝑖−1 ≠

𝑆 (𝑣)𝑖−1, then ⟨𝑢, 𝑣⟩ must be in 𝐻 .

Proof of (1): As both 𝐻 and 𝐿 are sorted based on the weighted Jac-

card similarity of the pairs, the order in which ⟨𝑢1, 𝑣1⟩ and ⟨𝑢2, 𝑣2⟩
appear in 𝐻 will be the same as their order in 𝐿.

Proof of (2): 𝑆 (𝑢)𝑖−1 ≠ 𝑆 (𝑣)𝑖−1 implies that there does not exist

any other pair ⟨𝑢 ′, 𝑣 ′⟩ ← 𝐿[ 𝑗] for any 𝑗 < 𝑖 such that 𝑢 ′ ∈ 𝑆 (𝑢)𝑖−1
and 𝑣 ′ ∈ 𝑆 (𝑣)𝑖−1. Otherwise, 𝑆 (𝑢 ′) 𝑗 would have been merged with

𝑆 (𝑣 ′) 𝑗 in the 𝑗-th iteration. Thus, 𝑢 ′ and 𝑣 ′ would belong to the

same supernode and 𝑆 (𝑢)𝑖−1 should be same as 𝑆 (𝑣)𝑖−1. Hence,
⟨𝑢, 𝑣⟩ is the largest weighted edge in 𝐺

2−ℎ𝑜𝑝 connecting 𝑆 (𝑢)𝑖−1
and 𝑆 (𝑣)𝑖−1. We want to show now that ⟨𝑢, 𝑣⟩ ∈ 𝐻 i.e. part of the

MST. To show this, we claim that, in fact, ⟨𝑢, 𝑣⟩ is the largest weight
edge in𝐺

2−ℎ𝑜𝑝 connecting 𝑆 (𝑢)𝑖−1 and𝑉 \𝑆 (𝑢)𝑖−1. Suppose not. Let
us consider the edges between 𝑆 (𝑢)𝑖−1 and 𝑉 \ 𝑆 (𝑢)𝑖−1. Recall that
a cut in a connected graph is a minimal set of edges whose removal

disconnects the graph. Therefore, the edges between 𝑆 (𝑢)𝑖−1 and
𝑉 \𝑆 (𝑢)𝑖−1 form a cut in𝐺

2−ℎ𝑜𝑝 . A well known property called cut
property of MST (maximum spanning tree) states that the maximum

weight edge of any cut belongs to the MST [10]. Now let, if possible,

a different edge, ⟨𝑢 ′′, 𝑣 ′′⟩ in 𝐺
2−ℎ𝑜𝑝 be the edge with the largest

weight connecting 𝑆 (𝑢)𝑖−1 and 𝑉 \ 𝑆 (𝑢)𝑖−1. Then by the cut prop-

erty, ⟨𝑢 ′′, 𝑣 ′′⟩ belongs to 𝐻 and would have been considered as a

candidate pair for merge in an earlier iteration. In that case, 𝑢 ′′ and
𝑣 ′′ will belong to the same supernode which is a contradiction. □

Using Locality Sensitive Hashing (LSH). Since computing the

weighted Jaccard similarity for all the possible two-hop away nodes

is an overhead, we deploy a locality sensitive hashing scheme pre-

sented in [24] to partition the two-hop graph into multiple buckets.

We only compute weighted Jaccard for nodes𝑢, 𝑣 of edges (𝑢, 𝑣) ∈ 𝐹
that fall in the same bucket. On the other hand, if 𝑢 and 𝑣 fall in

different buckets, we consider the score of edge (𝑢, 𝑣) to be zero.

2
There can be different sorted versions of 𝐿 due to possible ties (albeit unlikely as

weights are real numbers). What this theorem shows is that the summary constructed

based on MST is the same as the summary constructed using some sorted version of 𝐿.

Theorem 4.1 holds the same. For ease of notation we continue to

call by WJ this LSH-based version of weighted Jaccard similarity.

4.2 Merging Candidate Pairs

Based on Theorem 4.1, we can use 𝐻 instead of 𝐿 for the list of

candidate pairs. Furthermore, we show in following theorem that

the utility is non-increasing as we merge candidate pairs of 𝐻 in

order. It can be verified that

Theorem 4.2 (Non-increasingutilitytheorem). LetG0 =
𝐺 and G𝑡 be the summary graph obtained by processing 𝐻 in order
from index 1 to 𝑡 where 1 ≤ 𝑡 ≤ |𝐻 |. Then 𝑢 (G𝑡−1) ≥ 𝑢 (G𝑡 ).

Theorems 4.1 and 4.2 form the basis of our new approach T-

BUDS that uses binary search over the sorted list of MST edges,

𝐻 , in order to find the largest index 𝑡 for which 𝑢 (G𝑡 ) ≥ 𝜏 (see

Algorithm 5). This requires computing𝐻 (Algorithm 6) followed by

lg( |𝐻 |) computations of utility. The latter is done using Algorithm 7.

Given graph 𝐺 = (𝑉 , 𝐸) and centrality scores for each node

𝐶 [𝑢 ∈ 𝑉 ], T-BUDS first creates the sorted candidate pairs 𝐻 by

calling the Two-hop MST function (Algorithm 6). This function

follows the structure of Prim’s algorithm [19] for computing MST.

However, we do not want to build the 𝐺
2−ℎ𝑜𝑝 graph explicitly. As

such, we start with an arbitrary node 𝑠 and insert it into a priority

queue 𝑄 with a key value of∞. All other nodes are initialized with

a key value of 0. For any given node 𝑣 with maximum key value

deleted from 𝑄 , 𝑣 is included in the MST, and the key values of its

two-hop away neighbours are updated, when needed.

After creating the two-hop MST and sorting its edges, T-BUDS

uses a binary search approach and iteratively performs merge op-

erations from the first pair until the middle pair in 𝐻 (Algorithm 5).

In each iteration, we pick a pair of nodes 𝑢, 𝑣 from 𝐻 , find their

supernodes 𝑆 (𝑢) and 𝑆 (𝑣) and merge them into a new supernode 𝑆 .

This process continues until the algorithm reaches the middle point.

G is the resulting summary after these operations and we compute

its utility in line 11. If this utility ≥ 𝜏 , then we search for the index

𝑡 in the second half, otherwise, we search for the index 𝑡 in the first

half. The algorithm finds the best summary in lg |𝐻 | iterations and
|𝐻 |, being the number of edges in the MST of 𝐺

2−ℎ𝑜𝑝 , is just 𝑂 (𝑉 ).

Algorithm 5 T-BUDS

1: Input: 𝐺 = (𝑉 , 𝐸),𝐶, 𝜏
2: 𝐻 ← TwoHopMST(G,C)

3: 𝑙𝑜𝑤 ← 0, ℎ𝑖𝑔ℎ ← |𝐻 | − 1
4: while 𝑙𝑜𝑤 ≤ ℎ𝑖𝑔ℎ do

5: 𝑚𝑖𝑑 ← 𝑙𝑜𝑤+ℎ𝑖𝑔ℎ
2

,V ← 𝑉 , 𝑖 ← 0

6: for 𝑖 ≤ 𝑚𝑖𝑑 do

7: ⟨𝑢, 𝑣⟩ ← 𝐻 [𝑖], 𝑖 ← 𝑖 + 1
8: 𝑆 ←Merge(𝑆 (𝑢), 𝑆 (𝑣))
9: V ← (V \ {𝑆 (𝑢), 𝑆 (𝑣)}) ∪ 𝑆
10: 𝑢 (G) ← ComputeUtility(V)

11: if 𝑢 (G) ≥ 𝜏 then ℎ𝑖𝑔ℎ =𝑚𝑖𝑑 − 1
12: else 𝑙𝑜𝑤 =𝑚𝑖𝑑 + 1
13: BuildSuperEdges(V)

Algorithm 7 computes the utility for a specific summary G =

(V, E). In following discussion we will assume that the centrality



of any edge (𝑢, 𝑣) is defined as 𝐶 (𝑢, 𝑣) = 𝐶𝑢

𝑑𝑢
+ 𝐶𝑣

𝑑𝑣
. Also, we will

assume all the non-existent edges are assigned equal weights and

each such edge gets a weight 𝐶𝑠 (𝑢, 𝑣) = 1

( |𝑉 |
2
)−|𝐸 | . Our analysis can

be easily adapted to other definitions of 𝐶 (𝑢, 𝑣) and 𝐶𝑆 (𝑢, 𝑣).
The algorithm iterates over all supernodes one at a time and

for a given supernode 𝑆𝑖 , it creates two maps (𝑐𝑜𝑢𝑛𝑡 and 𝑠𝑢𝑚)

to hold the details for the superedges connected to 𝑆𝑖 . 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ]
stores the number of actual edges between supernodes 𝑆𝑖 and 𝑆 𝑗 .

Similarly, 𝑠𝑢𝑚[𝑆 𝑗 ] contains the sum of the weights for all the edges

between 𝑆𝑖 and 𝑆 𝑗 . Lines 4 to 12 initialize these two structures.

Sedge(𝑆𝑖 , 𝑆 𝑗 ) (the cost of drawing a super edge between 𝑆𝑖 and 𝑆 𝑗 )

and nSedge(𝑆𝑖 , 𝑆 𝑗 ) (the cost of not drawing a super edge between
𝑆𝑖 and 𝑆 𝑗 ) can be estimated using 𝑐𝑜𝑢𝑛𝑡 and 𝑠𝑢𝑚. As nSedge(𝑆𝑖 , 𝑆 𝑗 )
is the sum of weights of edges in 𝐺 between nodes in 𝑆𝑖 and 𝑆 𝑗 ,

it is exactly equal to 𝑠𝑢𝑚[𝑆 𝑗 ] (line 14). If 𝑆𝑖 ≠ 𝑆 𝑗 , the number

of spurious edges is equal to |𝑆𝑖 | |𝑆 𝑗 | − 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] and since each

spurious edge has cost
1

( |𝑉 |
2
)−|𝐸 | , Sedge(𝑆𝑖 , 𝑆 𝑗 ) =

|𝑆𝑖 | |𝑆 𝑗 |−𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ]
( |𝑉 |

2
)−|𝐸 |

(line 15). Similarly, if 𝑆𝑖 = 𝑆 𝑗 , the number of spurious edges is

( |𝑆𝑖 |
2

)
−

𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] and Sedge(𝑆𝑖 , 𝑆 𝑗 ) =
( |𝑆𝑖 |

2
)−𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ]
( |𝑉 |

2
)−|𝐸 | (line 16). Finally the

utility loss can be estimated as min(Sedge(𝑆𝑖 , 𝑆 𝑗 ) , nSedge(𝑆𝑖 , 𝑆 𝑗 ))
and the utility is decremented by the loss. Algorithm 7 returns the

final utility for G which is used by Algorithm 5 to make decisions.

Building Superedges.Once the appropriate supernodes have been

identified, a superedge is added between two supernodes 𝑆𝑖 and

𝑆 𝑗 if and only if Sedge(𝑆𝑖 , 𝑆 𝑗 ) ≤ nSedge(𝑆𝑖 , 𝑆 𝑗 ). This task can be

completed in 𝑂 ( |𝐸 |) time: Line 18 of Algorithm 7 can be replaced

by the task of adding superedge between 𝑆𝑖 and 𝑆 𝑗 .

Algorithm 6 Two-hop MST

1: Input: 𝐺 = (𝑉 , 𝐸),𝐶 ⊲ 𝐶 is centrality scores array for nodes

2: 𝑘𝑒𝑦 [𝑠] ← ∞, 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑠] ← Null, 𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠, 𝑘𝑒𝑦 [𝑠])
3: for (𝑣 ∈ 𝑉 \ {𝑠}) do
4: 𝑘𝑒𝑦 [𝑣] ← 0, 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑣] ← Null, 𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑣, 𝑘𝑒𝑦 [𝑣])
5: while !𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑄) do
6: (𝑣, _) = 𝑄.𝑑𝑒𝑙𝑀𝑎𝑥 ()
7: for (𝑤 ∈ 𝑁 (𝑁 (𝑣)) | 𝑤 ∈ 𝑄 & 𝑤 ≠ 𝑣) do

8: if 𝑘𝑒𝑦 [𝑤] < WJ(𝑣,𝑤) then
9: 𝑄.𝑠𝑒𝑡𝐾𝑒𝑦 (𝑤,WJ(𝑣,𝑤))
10: 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑤] ← 𝑣

11: 𝐻 ← {(𝑣, 𝑝𝑎𝑟𝑒𝑛𝑡 [𝑣]) : 𝑣 ∈ 𝑉 \ {𝑠}}
12: return sorted 𝐻 based on 𝐶

Data structures.We used the union-find algorithm [8] for repre-

senting our supernodes. The union operation was used to imple-

ment the merge operation in line 8 of Algorithm 5 and the find

operation was used to find the corresponding supernode for a spe-

cific node in line 8 of Algorithm 5 and line 6 of Algorithm 7. Using

path compression with the union-find algorithm allows reducing

the complexity of the union and find operations to 𝑂 (lg★ |𝑉 |) (iter-
ated logarithm of |𝑉 |). As lg★ |𝑉 | is about 5 when |𝑉 | is even more

than a billion, we treat it as a constant in our calculations. The

union-find algorithm only needs two arrays of size |𝑉 | and thus

the working memory requirement is 𝑂 ( |𝑉 |).

Algorithm 7 Compute Utility

1: Input: 𝐺 = (𝑉 , 𝐸), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← 1,V ⊲ set of supernodes

2: for 𝑆𝑖 ∈ V do ⊲ for each supernode

3: 𝑐𝑜𝑢𝑛𝑡 ← {}, 𝑠𝑢𝑚 ← {}
4: for 𝑢 ∈ 𝑆𝑖 do
5: for 𝑣 ∈ 𝑁 (𝑢) do
6: 𝑆 𝑗 ← 𝑆 (𝑣)
7: if (𝑆𝑖 ≠ 𝑆 𝑗 ) ∨ (𝑆𝑖 = 𝑆 𝑗 ∧ 𝑖 < 𝑗) then
8: if 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] ≥ 1 then

9: 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] ← 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] + 1
10: 𝑠𝑢𝑚[𝑆 𝑗 ] ← 𝑠𝑢𝑚[𝑆 𝑗 ] +𝐶 (𝑢, 𝑣)
11: else

12: 𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ] ← 1, 𝑠𝑢𝑚[𝑆 𝑗 ] ← 𝐶 (𝑢, 𝑣)
13: for 𝑆 𝑗 ∈ 𝑐𝑜𝑢𝑛𝑡 .𝑘𝑒𝑦𝑠 ∧ 𝑖 ≤ 𝑗 do
14: nSedge(𝑆𝑖 , 𝑆 𝑗 ) ← 𝑠𝑢𝑚[𝑆 𝑗 ]
15: if 𝑆𝑖 ≠ 𝑆 𝑗 then Sedge(𝑆𝑖 , 𝑆 𝑗 ) ←

|𝑆𝑖 | |𝑆 𝑗 |−𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ]
( |𝑉 |

2
)−|𝐸 |

16: else Sedge(𝑆𝑖 , 𝑆 𝑗 ) ←
( |𝑆𝑖 |

2
)−𝑐𝑜𝑢𝑛𝑡 [𝑆 𝑗 ]
( |𝑉 |

2
)−|𝐸 |

17: if Sedge(𝑆𝑖 , 𝑆 𝑗 ) ≤ nSedge(𝑆𝑖 , 𝑆 𝑗 ) then
18: 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 − Sedge(𝑆𝑖 , 𝑆 𝑗 )
19: else 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ← 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 − nSedge(𝑆𝑖 , 𝑆 𝑗 )
20: return 𝑢𝑡𝑖𝑙𝑖𝑡𝑦

Complexity analysis.We can show that the time complexity of

T-BUDS is𝑂 ((( |𝐹 | · Δ𝑚𝑎𝑥 + |𝑉 |) · lg |𝑉 |)) and the space complexity

is𝑂 ( |𝑉 |) (Appendix). Of course in practice by using LSH we reduce

the 𝑂 (𝐹 · Δ𝑚𝑎𝑥 ) complexity to only 𝑂 (𝐹 ′ · Δ𝑚𝑎𝑥 ), where 𝐹 ′ is the
subset of𝑢, 𝑣 pairs in 𝐹 such that𝑢 and 𝑣 fall in the same LSH bucket.

5 EXPERIMENTS

The experimental evaluation is divided into the following four parts:

(1) Performance analysis of G-SCIS versus lossless versions of

SWeG, UDS and MoSSo [9, 11, 22] in terms of running time

and node reduction.
3

(2) Performance analysis of G-SCIS on Pagerank computation

and triangle enumeration (see Appendix).

(3) Performance analysis of T-BUDS versus lossy versions of

SWeG and UDS in terms of running time, reduction in nodes,

and scalability.

(4) Accuracy analysis of T-BUDS versus SWeG and UDS in terms

of top-𝑘 queries on the reconstructed graph.

Except for MoSSo for which the source code is publicly available,

we implemented all other algorithms in Java 14 (https://anonymous.

4open.science/r/64699cbc-f4a7-4d16-b30b-3c9f2072a169/) on a sin-

gle machine with dual 6 core 2.10 GHz Intel Xeon CPUs, 64 GB

RAM and running Ubuntu 18.04.2 LTS. In [11] UDS was run on

higher-end AWS hardware for more than 2 weeks, whereas we have

a time cutoff of 100 hours (about 4 days) on commodity hardware.

We used seven web and social graphs from (http://law.di.unimi.it/

datasets.php) varying from moderate size to very large (Table 1).

3
MoSSo only performs lossless summarization.

https://anonymous.4open.science/r/64699cbc-f4a7-4d16-b30b-3c9f2072a169/
https://anonymous.4open.science/r/64699cbc-f4a7-4d16-b30b-3c9f2072a169/
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php


Graph Abbr Nodes Edges

cnr-2000 CN 325,557 5,565,380

hollywood-2009 H1 1,139,905 113,891,327

hollywood-2011 H2 2,180,759 228,985,632

indochina-2004 IC 7,414,866 304,472,122

uk-2002 U1 18,520,486 529,444,615

arabic-2005 AR 22,744,080 1,116,651,935

uk-2005 U2 39,459,925 1,581,073,454

Table 1: Summary of datasets

5.1 Lossless Case: G-SCIS

In this section, we evaluate the performance of G-SCIS in terms

of (1) reduction in nodes, (2) running time, and (3) efficiency of

Pagerank computation and triangle enumeration. We observed that

the reduction in nodes of UDS [11] for the lossless case is not

competitive with the other algorithms; in all our datasets the UDS

reduction in nodes was less than 0.01 (1%). Therefore we decided to

not show the UDS numbers alongside G-SCIS, SWeG and MoSSo.

5.1.1 Comparison of G-SCIS to SWeG and MoSSo. The reduction
in nodes (RN) is defined as 𝑅𝑁 = ( |𝑉 | − |V|)/|𝑉 | (c.f. [11]). Since
SWeG and MoSSo produce also correction graphs to add/delete

(𝐶+,𝐶−), RN for them is more precisely computed as

𝑅𝑁 = ( |𝑉 | − (|V| ∪ |𝑉𝐶+ | ∪ |𝑉𝐶− |)) /|𝑉 |. We ran SWeG for different

choices of the number of iterations up to 80 and chose the best RN

value obtained. We use the same configuration for MoSSo as in

[9], 0.3 escape probability and 120 sample size for each trial. Since

MoSSo is an incremental algorithm, we started from an empty graph

and inserted one edge at a time and updated the summary after

each step until all edges are inserted.

Figure 1 shows the comparison between G-SCIS, SWeG, and

MoSSo in terms of RN and running time.
4
G-SCIS outperforms both

SWeG and MoSSo in terms of RN and is also orders of magnitude

faster. On large graphs like AR and U2, SWeG is not runnable

within 100 hours while G-SCIS finishes in about 15 and 23 minutes

respectively. MoSSo, on the other hand, is much faster than SWeG

and is able to finish on large graphs but it is still not competitive

with G-SCIS on both running time and RN. For example, on H2, G-

SCIS is 131x faster and produces 6x more compression than MoSSo.

5.2 Lossy Case: T-BUDS

5.2.1 Performance of T-BUDS. In this section, the performance of

T-BUDS is compared to the performance of UDS and SWeG in terms

of running time and memory usage (Figure 2). For our comparison,

we set the utility threshold at 0.8. In order to extend SWeG to

support edge weights, we subtract the weight of each removed edge

from the current utility value in the dropping step of [22]. Dropping

continues until the value of utility drops below the threshold.

We observe that UDS ([11]) is quite slow on moderate and large

datasets. Namely, it was not able to complete in reasonable time

(100h) for none of the datasets. As such, we provide as input to UDS

not the full list of 2-hop pairs as in [11], but the reduced list from

the MST of 𝐺
2−ℎ𝑜𝑝 . This way, we were able to handle with UDS

the datasets CN, H1, and H2. However, we still could not have UDS

4
When we compare our algorithms to SWeG, MoSSo and UDS, we use green for G-SCIS

and T-BUDS, blue for SWeG and red for either UDS or MoSSo.
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Figure 1: G-SCIS vs SWeG vs MoSSo in terms of node re-

duction and running time. G-SCIS achieves better reduction

than both SWeG and MoSSo. Runtime of G-SCIS is orders

of magnitude better than them. SWeG could not run within

100h for AR and U2.
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Figure 2: T-BUDS vs UDS and SWeG in terms of runtime in

(sec). 𝜏 is set to 0.8. T-BUDS is faster than bothUDS and SWeG.

We provide our MST edge pairs as input to UDS because the

original version of UDS could not complete within 100h for

all the datasets but CN. Still, even with MST as input, UDS

could not complete for IC, U1, AR, and U2.

complete for the rest of the datasets. SWeG on the other hand, is

much faster than UDS but still significantly slower than T-BUDS.

Specifically, in Figure 2, we observe that T-BUDS outperforms

UDS in running time by orders of magnitude. T-BUDS can easily

deal with the largest graph, U2, in less than 7 hours. In contrast

UDS takes more than 90 hours on a moderate graph, such as H2, to

produce results. T-BUDS also outperforms SWeG significantly (see

for example CN and IC). Regarding memory consumption both T-

BUDS and SWeG need orders of magnitude less memory than UDS.

In another experiment we compare the performance of T-BUDS,

UDS and SWeG for varying utility thresholds. Figure 3 shows the

runtime of the three algorithms on two different graphs CN and H1

in terms of varying utility threshold. Having an algorithm that is

computationally insensitive to changing the threshold is desirable
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Figure 3: Runtime of T-BUDS, UDS and SWeG for different

utility thresholds on CN and H1. T-BUDS and SWeG are in-

dependent of threshold while UDS heavily depends on it. T-

BUDS is order ofmagnitude faster than both SWeG andUDS.

because it allows the user to conveniently experiment with differ-

ent values of the threshold. As shown in the figure, the runtimes

of T-BUDS and SWeG remain almost unchanged across different

utility thresholds. In contrast, UDS strongly depends on the utility

threshold and its runtime grows as the threshold decreases.

In Figure 4, we compare the summarization performance (RN)

values for each algorithm subject to the utility threshold. As results

show, T-BUDS significantly outperforms SWeG and UDS for all

datasets and all threshold values considered (0.5 - 1.0). For instance,

for threshold value 0.7 on CN, T-BUDS offers a node reduction of

0.83, much higher than UDS (RN=0.59) and SWeG (RN=0.38). UDS

starts off worse than SWeG for higher values of 𝜏 but improves for

lower values; it is still worse than T-BUDS for any value of 𝜏 . For

medium and big datasets, UDS cannot complete within 100 hours.

Hence there are no results for UDS for IC and U1.

5.2.2 Accuracy analysis of top-𝑘 query on reconstructed graph. We

study the performance of T-BUDS towards top-𝑘 query answering.

To do so, we compute the PageRank centrality (P) for the nodes, and

assign (normalized) importance score to each edge (𝑢, 𝑣), 𝐶 (𝑢, 𝑣),
based on the importance scores of its two endpoints. We then com-

pute the summary using T-BUDS. Similarly, we also summarize

graphs using UDS [11] and SWeG [22]. In the end we reconstruct

the graph from the summary of each method (T-BUDS, UDS, and

SWeG) and run PageRank centrality on them. We obtain the top 𝑘%

of central nodes in the reconstructed graph and match against the

actual top 𝑘% central nodes in the original graph. A higher number

of matches indicates that the lossy summary obtained is better at

preserving the graph structure.

Table 2 shows the top-𝑘% match performance of T-BUDS with

varying RN on two graphs, CN and H1. The five columns after RN

show results for different levels of 𝑘 in top-𝑘% queries. The match

performance of T-BUDS is impressive. For instance, on H1 for RN of

0.5 we get a 97% match of the top-10% nodes in the original graph.

Now we compare the performance of T-BUDS vs. the lossy ver-

sions of SWeG and UDS in terms of RN. In order to find the summary

of SWeG given the RN value, we first obtain the lossless summary

of SWeG and then in the dropping step find the appropriate value

for error bound 𝜖 (see [22]) which results in the same value for RN.

Figure 5 shows the relative improvement of T-BUDS over UDS

and SWeG. Each subfigure shows the relative improvement of T-

BUDS over SWeG and UDS for a specific value 𝑘% of top-𝑘%. For

Graph RN 10% 20% 30% 40% 50%

CN

0.50 0.85 0.92 0.94 0.95 0.96

0.55 0.79 0.87 0.91 0.93 0.94

0.60 0.75 0.84 0.88 0.90 0.91

0.65 0.69 0.78 0.84 0.88 0.89

0.70 0.61 0.71 0.78 0.83 0.85

H1

0.50 0.97 0.98 0.98 0.99 0.99

0.55 0.87 0.90 0.93 0.94 0.95

0.60 0.82 0.87 0.90 0.92 0.93

0.65 0.74 0.83 0.85 0.87 0.89

0.70 0.65 0.76 0.80 0.81 0.83

Table 2: Match of top-𝑘% PageRank query on reconstructed

graph from T-BUDS summary. RN is the node reduction

level we consider. Each of the following columns represent a

level of𝑘 in the top-𝑘% query. The numbers in these columns

shows the ratio of the top-𝑘% nodes that appear in both the

original and reconstructed graphs.

each choice of top 𝑘% query, we run PageRank on the original graph

and on the reconstructed graph obtained from the summaries of the

three algorithms. We match the top 𝑘% central nodes of each recon-

structed graph with the top 𝑘% central nodes of the original graph.

We observe T-BUDS to be significantly better than both SWeG and

UDS as seen in Figure 5. Its relative improvement over UDS and

SWeG is impressive; mostly above 60% and 20%, respectively.

6 RELATEDWORK

We can classify the proposed methodologies in graph summariza-

tion into two general categories, grouping and non-grouping. The

non-grouping category includes sparsification-based methods [16]

and sampling-based methods [13]. For a more detailed analysis of

non-grouping methods, see the survey by Liu et al. [15].

The grouping category of methods is more commonly used for

graph summarization and as such has received a lot of attention

[7, 9, 11, 12, 14, 17, 20, 22, 23]. In this category, works such as

[12, 20] can only produce lossy summarizations optimizing different

objectives. On the other hand, [17, 22] are able to generate both

lossy and lossless summarizations. Among works of the grouping

category, we discuss the following works [9, 11, 14, 17, 22] that aim

to preserve utility and as such are more closely related to our work.

Navlakha et al. [17] introduced the technique of summarizing

the graph by a compact representation containing the summary

along with correction sets. Liu et al. [14] proposed a distributed so-

lution to improve its scalability. Recently, Shin et al. [22], proposed

SWeG, that builds on the work of [17]. They used a shingling and

minhash based approach to prune the search space for discovering

promising candidate pairs. MoSSo is a recent incremental algorithm

for summarizing dynamic graphs using correction sets [9].

Kumar and Efstathopoulos [11] presented the UDS algorithm

that preserves the utility above a user specified threshold. However,

UDS cannot be effectively used for lossless summarization as its

summary is very close to the original graph. Furthermore, for the

lossy case, UDS is not scalable to moderate or large graphs.

7 CONCLUSIONS

In this work, we study utility-driven graph summarization in-depth

and made several novel contributions. We present a new, lossless
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Figure 4: RN values for different utility thresholds. For each threshold, T-BUDS gives more compression than SWeG and UDS.
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Figure 5: Relative improvement for top-𝑘% query answering of T-BUDS over SWeG and UDS. The cyan bar shows the improve-

ment of T-BUDS over UDS and the yellow bar shows the improvement of T-BUDS over SWeG. The y axis shows different RN

values (i.e. 0.5, 0.55, 0.6, 0,65) and the x axis shows the percentage of relative improvement of T-BUDS over each algorithm.

graph summarizer, G-SCIS, that can output the optimal summary,

with the smallest number of supernodes. We design a scalable, lossy

summarization algorithm, T-BUDS, that uses weighted Jaccard sim-

ilarity for measuring neighbourhood similarity. Two key insights

leading to the scalability of T-BUDS are the use of MST of the

two-hop graph combined with binary search over the MST edges.
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8 APPENDIX

8.1 Example of the Utility Framework

Figure 6 shows an example for this framework. There are 14 edges

and 11 nodes. We assume that the weight of each actual edge is

equal to
1

|𝐸 | =
1

14
and the weight of each spurious edge is equal

to
1

(11
2
)−14 = 1

41
. That is, there are 41 spurious edges in total and

the weight of each is set in this example to be equal to 1/41. In

part (a) the set of nodes inside the circles merge together into new

supernodes and the utility still remains one because no information

has been lost. In part (b) the circles show two merge cases. In the

first case, the blue supernode merges with the red node and in the

second case, the green supernode merges with the blue node. In the

first case, there is a utility loss of
1

14
for missing one actual edge

(see part (d) for the reconstructed graph). We chose not to add an

edge from the new blue supernode to one of the neighbours of the

red node because doing so would introduce three spurious edges

for a cost of
3

41
that is greater than

1

14
(cost of missing one actual

edge). Similarly, in the second case, there is a utility loss of
2

41
for

introducing two spurious edges. Therefore, the utility after this step

is 1 − 1

14
− 2

41
= 505

574
. Part (c) shows the summary after all the four

merges and part (d) shows the reconstructed graph of summary in

part (c).

(a) (b) (c) (d)

Figure 6: Example of the utility-based framework. (a) Shows

the original graph with two candidate merges with no loss

of utility. The result is shown in (b) along with two more

candidate merges. The merge of the green supernode with

the blue node introduces two spurious edges (see the rele-

vant part in the reconstructed graph in (d)). The merge of

the blue supernode with the red node loses an actual edge

as shown by the result in (d). (d) shows the reconstructed

graph starting from the summary graph in (c).

8.2 How to query G-SCIS graph summaries?

In general there are two ways to query graph summaries. The first

is to reconstruct the original graph, incrementally and on-the-fly,

then answer queries. For example, using neighborhood-queries as

a primitive illustrates such a reconstruction (c.f. [22]). The run time

of this approach is at least as much as querying the original graph.

The second approach is to devise query answering algorithms

that work directly on the summary graph and never reconstruct the

original graph. This class of algorithms has the potential to produce

significant gains in running time compared to executing the query

on the original graph. Here we propose three such algorithms for

summaries produced by G-SCIS. They are for computing Pagerank,

enumerating triangles, and answering shortest path queries, which

form the basis for many graph-analytic tasks.

Computing Pagerank. We show now how to find the Pagerank

scores of all nodes in 𝐺 without reconstructing 𝐺 .

Let 𝑃𝑖 (𝑢) denote the Pagerank value of any node 𝑢 after 𝑖-th

iteration of the Pagerank algorithm [18]. For any undirected graph

𝐺 = (𝑉 , 𝐸), all the nodes are initialized with the same Pagerank

value i.e. ∀𝑢∈𝑉 𝑃0 (𝑢) = 1. In iteration 𝑖 , it is updated as follows:

𝑃𝑖 (𝑢) ← ∑
𝑤∈𝑁 (𝑢)

𝑃𝑖−1 (𝑤)
|𝑁 (𝑤) | . In this equation we ignore damping

factor for simplicity but it can be easily incorporated without im-

pacting our results. We can show the following result.

Theorem 8.1. For any supernode 𝑆 ∈ V , all the nodes inside 𝑆
must have the same Pagerank value.

To calculate the exact Pagerank scores of the nodes in𝐺 using its

summary G, we propose Algorithm 8, an adaptation of the Pager-

ank algorithm, that runs directly on G. Algorithm 8 maintains the

invariant that the Pagerank of a supernode after iteration 𝑖 is the

sum of the Pagerank of its nodes after iteration 𝑖 of the Pagerank

algorithm. It initializes the Pagerank of a supernode to be its size

(line 2). It computes the number of neighbours of a node inside a

supernode 𝑋 (lines 5 and 7). Using this, it updates the Pagerank of

supernode 𝑋 in iteration 𝑖 (line 10 to 13). Finally, it computes the

Pagerank of each node of 𝐺 from the Pagerank of its supernode in

G (line 16). We can show the following theorem.

Theorem 8.2. Algorithm 8 outputs exactly the same Pagerank
score for each node 𝑣 in 𝐺 as the Pagerank algorithm.

Enumerating Triangles. Triangle enumeration using G-SCIS sum-

mary is described in Algorithm 9. It can be extended to enumerate

other types of graphlets, such as squares, 4-cliques, etc.

There are three types of triangles in the summary: (a) those

having all three vertices in the same supernode, (b) those having two

vertices in one supernode and one in another, and (c) those having

all vertices in different supernodes. The idea underlyingAlgorithm 9

is to enumerate type-(a) and type-(b) triangles by iterating over

the clique supernodes in G and to generate type-(c) triangles by

considering all the supernodes (cliques and independent sets).

Let 𝑋 be a clique supernode. Type-(a) triangles from 𝑋 can be

found by listing every subset of three vertices in 𝑋 (see lines 3

and 4). Type-(b) triangles with two vertices in 𝑋 can be computed

by listing every subset of two vertices in 𝑋 combined with every

subset of one vertex from a neighbor supernode 𝑌 (lines 5 and 6).

Finally, any triangle enumeration algorithm can be used on the

summary graph to find all the super triangles (triangles formed by

three supernodes). Type-(c) triangles can now be listed as follows.

If (𝑋,𝑌, 𝑍 ) is a super triangle, then all the corresponding type-(c)

triangles can be listed by combining every choice of the first node

from 𝑋 , second node from 𝑌 , and third node from 𝑍 (lines 7 to 9).

Answering Shortest Path Queries. We observe that G can be used

to compute lengths of shortest paths between any two nodes 𝑢, 𝑣 ∈
𝐺 in time 𝑂 ( |E | + |V|). We can show the following.

Theorem 8.3. Given nodes 𝑢, 𝑣 such that 𝑆 (𝑢) = 𝑆 (𝑣), we have
(1) If 𝑆 (𝑢) is a clique, the shortest path length between 𝑢 and 𝑣 in

𝐺 , 𝑑 (𝑢, 𝑣), is 1.
(2) If 𝑆 (𝑢) is an independent set and |𝑁 (𝑆 (𝑢)) | > 0, then𝑑 (𝑢, 𝑣) =

2. Otherwise, 𝑑 (𝑢, 𝑣) = ∞.
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Figure 7: Runtime improvement of Pagerank and triangle

enumeration when running directly on G-SCIS summary vs

running on SWeG summary using neighbor queries.

Algorithm 8 Pagerank using G-SCIS summary

1: Input: G = (V, E)
2: Initialization: ∀𝑋 ∈ V, 𝑃0 (𝑋 ) = |𝑋 |, 𝑖 ← 1

3: for 𝑋 ∈ V do

4: if 𝑋 ∉ 𝑁 (𝑋 ) then
5: 𝑊 (𝑋 ) ← ∑

𝑌 ∈𝑁 − (𝑋 ) |𝑌 | ⊲ X is IS

6: else

7: 𝑊 (𝑋 ) ← ∑
𝑌 ∈𝑁 − (𝑋 ) |𝑌 | + (|𝑋 | − 1) ⊲ X is clique

8: while 𝑃𝑖 ≠ 𝑃𝑖−1 do ⊲ until convergence

9: for 𝑋 ∈ V do

10: if 𝑋 ∉ 𝑁 (𝑋 ) then ⊲ X is IS

11: 𝑃𝑖 (𝑋 ) ← ∑
𝑌 ∈𝑁 − (𝑋 )

|𝑋 | ·𝑃𝑖−1 (𝑌 )
𝑊 (𝑌 )

12: else ⊲ X is clique

13: 𝑃𝑖 (𝑋 ) ← ∑
𝑌 ∈𝑁 − (𝑋 )

|𝑋 | ·𝑃𝑖−1 (𝑌 )
𝑊 (𝑌 ) + ( |𝑋 |−1) ·𝑃

𝑖−1 (𝑋 )
𝑊 (𝑋 )

14: for 𝑋 ∈ V do

15: for 𝑢 ∈ 𝑛𝑜𝑑𝑒𝑠 (𝑋 ) do
16: 𝑃 (𝑢) ← 𝑃𝑖 (𝑋 )

|𝑋 |
17: return 𝑃

Algorithm 9 Enumerating Triangles

1: Input: G = (V, E) , triangle-enum ⊲ State of the art triangle

enumeration algorithm

2: for 𝑋 ∈ V do

3: if 𝑋 ∈ 𝑁 (𝑋 ) then ⊲ 𝑋 has a superloop

4: Output all type a triangles in 𝑋 ⊲
( |𝑋 |
3

)
triangles

5: for 𝑌 ∈ {𝑁 (𝑋 ) \ 𝑋 } do
6: Output all type b triangles having 2 vertices

in X and 1 vertex in Y ⊲
( |𝑋 |
2

)
|𝑌 | triang.

7: super-triangles← triangle-enum(G)
8: for (𝑋,𝑌, 𝑍 ) ∈ super-triangles do
9: Output all type c triangles in (X,Y,Z) ⊲ |X||Y||Z| triang.

Theorem 8.4. Given nodes 𝑢, 𝑣 such that 𝑆 (𝑢) ≠ 𝑆 (𝑣), 𝑑 (𝑢, 𝑣) is
equal to the length of shortest path between 𝑆 (𝑢) and 𝑆 (𝑣) in G.

Based on the above theorems we present Algorithm 10 for com-

puting 𝑑 (𝑢, 𝑣) given two nodes 𝑢, 𝑣 ∈ 𝑉 using a G-SCIS summary.

Algorithm 10 Shortest Paths using G-SCIS summary

1: Input: G = (V, E), 𝑢, 𝑣 ∈ 𝑉
2: if 𝑆 (𝑢) = 𝑆 (𝑣) then
3: if 𝑆 (𝑢) is a clique then
4: 𝑑 (𝑢, 𝑣) = 1

5: else

6: if 𝑁 (𝑆 (𝑢) > 0 then

7: 𝑑 (𝑢, 𝑣) = 2

8: else

9: 𝑑 (𝑢, 𝑣) = ∞
10: else

11: 𝑑 (𝑢, 𝑣) = 𝑑 (𝑆 (𝑢), 𝑆 (𝑣))
12: return 𝑑 (𝑢, 𝑣)

8.2.1 Pagerank computation and triangle enumeration. In Figure 7,
we show the reduction in runtime for Pagerank computation and

triangle enumeration using G-SCIS summaries as described in Sec-

tion 8.2 versus the runtime using SWeG summaries with neighbor

(adjacency list) queries ([22]). We see a significant reduction in

time for both queries for all datasets, reaching up to 80% for IC. We

omit results for shortest paths due to space constraints. We observe

in Figure 7 (left) and (right) a similar order of datasets with some

exceptions, such as H2 or U1, for which the order is reversed. We

attribute this to the size of the output in triangle enumeration.

8.3 Complexity analysis of T-BUDS

Let us begin by analysing the time complexity of Algorithm 6. As

its structure follows that of Prim’s algorithm [19], and computing

weighted jaccard similarity adds an overhead of 𝑂 (Δ𝑚𝑎𝑥 ) for each
pair (assuming the neighbor lists are sorted), As the number of

edges in 𝐻 is 𝑂 ( |𝑉 |), sorting it takes 𝑂 ( |𝑉 | lg |𝑉 |) time. it requires

𝑂 ( |𝐹 | · lg |𝑉 | · Δ𝑚𝑎𝑥 ) steps to compute MST. Thus, the total time

complexity of Algorithm 6 is 𝑂 (( |𝐹 | · Δ𝑚𝑎𝑥 + |𝑉 |) · lg |𝑉 |).
The total space required by Algorithm 6 is𝑂 ( |𝑉 |) as it stores the

priority queue 𝑄 and arrays 𝑘𝑒𝑦, 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 , and 𝐻 all of size 𝑂 ( |𝑉 |).
Now let us analyse the time complexity of Algorithm 7. To com-

pute the utility of G, the algorithm iterates over all the edges in 𝐺 ,

each edge exactly once, to identify pairs of supernodes (𝑆𝑖 , 𝑆 𝑗 ) that
have at least one edge of 𝐺 between them. This step, that includes

the computation of count and sum for each supernode, takes 𝑂 (𝐸)
time. Once this step is completed, it takes 𝑂 (1) time to compute

the Sedge and nSedge cost for a pair (𝑆𝑖 , 𝑆 𝑗 ). Therefore, the time

complexity of Algorithm 7 is 𝑂 ( |𝐸 |). It requires 𝑂 ( |𝑉 |) space to

store the count and sum arrays.

Finally, let us analyse the time and space complexity of Algo-

rithm 5. As discussed in Section 5.2, Algorithm 5 will perform lg |𝐻 |
iterations. For each iteration, merging supernodes in Algorithm 5

requires 𝑂 ( |𝐻 |) operations and the utility estimation using Algo-

rithm 7 requires 𝑂 ( |𝐸 |) time. Thus the time complexity for each

iteration is 𝑂 (( |𝐸 | + |𝑉 |) and time for a total of lg |𝐻 | iterations is
𝑂 (( |𝐸 | + |𝑉 |) · lg( |𝑉 |)). The space requirement inside Algorithm 5

is storing 𝐻 andV , which is 𝑂 ( |𝑉 |). Thus, the space requirement

of Algorithm 5 is 𝑂 ( |𝑉 |). Summarizing all the above, we have

Theorem 8.5. The time complexity of T-BUDS is𝑂 ((( |𝐹 | ·Δ𝑚𝑎𝑥 +
|𝑉 |) · lg |𝑉 |)). The space complexity of T-BUDS is 𝑂 ( |𝑉 |).
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