
Distributed Multi-Source Regular Path Queries

Maryam Shoaran and Alex Thomo

University of Victoria, Canada
{maryam,thomo}@cs.uvic.ca

Abstract. Regular path queries are the building block of almost any
mechanism for querying semistructured data. Despite the fact that the
main applications of such data are distributed, there are only few works
dealing with distributed evaluation of regular path queries. In this paper
we present a message-efficient and truly distributed algorithm for com-
puting the answer to regular path queries in a multi-source semistruc-
tured database setting. Our algorithm is general as it works for the larger
class of weighted regular path queries on weighted (as well) semistruc-
tured databases.

1 Introduction

Semistructured data is the foundation for a multitude of applications in many
important areas such as information integration, Web and communication net-
works, biological data management, etc. The data in these applications is con-
ceptualized as edge-labeled graphs, and there is an inherent need to navigate
these graphs by means of a recursive query language. As pointed out by seminal
works in the field (cf. [8, 13, 5–7]), regular path queries (RPQ’s) are the “winner”
when it comes expressing navigational recursion over semistructured data. These
queries are in essence regular expressions over the database edge symbols, and in
general, one is interested in finding query-matching database paths, which spell
words in the (regular) query language.

Taking an example from spatial network databases (such as [19]), suppose
that the user wants to find database paths consisting mainly of highway segments
and tolerating up to k provincial roads or city streets. Clearly, such paths can
easily be captured by the regular path query

Q = highway∗ || (road + street + ǫ)k,

where || is the shuffle operator.
In this paper, we consider generalized RPQ’s with preference weights as in-

troduced in [11]. For example, the user can write

Q = (highway : 1)∗ || (road : 2 + street : 3 + ǫ)k,

to express that she ideally prefers highways, then roads, which she prefers less,
and finally she can tolerate streets, but with an even lesser preference.

Moreover, inherent database edge weights (or importance) can be naturally
incorporated to scale up or down query preferences. Thus, in our spatial exam-
ple, the edge importance could simply be the edge-length, and so, traversing a
100 kms highway would be less preferable than traversing a 49 kms provincial
road, even though in general provincial roads are less preferable than highways.

Based on query-matching paths, there are two ways of defining the answer to
an RPQ. The first is the single-source variant [1, 3], where the answer is defined
to be the set of objects reachable from a given source by following some query-
matching path. The second is the multi-source variant [13, 5–7, 11], where the
answer is defined to be the set of pairs of objects that are connected by some
query-matching path.

For generalized RPQ’s, in the single-source variant, the answer is the set of
(b, w) pairs, where w is the weight of the cheapest query-matching path connect-
ing the database source object with object b.

On the other hand, in the multi-source variant, the answer is the set of
(a, b, w) triples, where w is the weight of the cheapest query-matching path
connecting database objects a and b.

In this paper, we focus on the second variant of generalized RPQ’s. As
the main applications based on semistructured data are distributed, we look
at RPQ’s from a distributed strategy angle.

Computing the answer to a generalized RPQ in the multi-source variant
amounts to computing the “all-pairs shortest paths” in the subgraph of database
paths spelling words in the query language. However, for each user query, there
would be a new subgraph on which to compute all-pairs shortest paths, and
such a subgraph cannot be known in advance, but rather only after the query
evaluation finishes. This is “too late” for applying algorithms, which need global
knowledge of the whole graph. With such algorithms, the user cannot see partial
answers while waiting for the query to finish, and there is extra computation and
communication overhead incurring after the subgraph [relevant to the query] is
determined. Thus, the Flloyd-Warshall algorithm and its distributed variants
are not approriate to our database setting.

Regarding work on distributed shortest path computation, we remark here
Haldar’s algorithm in [12], which computes all-pairs shortest paths with the best
known number of messages. Our algorithm is in part inspired by this work. We
consider our algorithm a generalization of Haldar’s algorithm. However, Haldar’s
algorithm makes two simplifying (global knowledge) assumptions, which are:
(1) each node knows the graph size and (2) each node knows the identities of all
other nodes. Clearly, as we explained above they are not true in our setting, and
our generalization is essential. Also, due to the fact that the subgraph [relevant
to a query] is computed on the fly, we have challenging subtleties that need to
be carefully addressed.

Our algorithm works under the assumption that the nodes of the relevant
graph are computed on demand and they have local [neighbor] knowledge only.
The central idea of our algorithm is to overlap computations starting from dif-
ferent database objects. We achieve this overlap in a careful way in order to

guarantee the expansion of the best path first, in a similar spirit with the Dijk-
stra’s methodology. However, at the same time we allow multiple expansions at
different processes, which is what makes the algorithm truly distributed.

To the best of our knowledge, only very few works present a distributed
evaluation of regular path queries. In [17], a distributed algorithm is presented,
which works based on local knowledge only. However, it has a message complexity
which is quadratically worse than our complexity in this paper.

Besides [17], other works that have delt with distributed RPQ’s are [3, 18,
16, 14]. All four consider the single-source variant of RPQ’s.

Finally, regarding the usefulness of weighted RPQ’s, we refer the reader to
[9, 10, 17, 11], which study such queries in a multitude of important applications.

The rest of the paper is organized as follows. In Section 2 we give the defi-
nitions we are based on. In Section 3, we present our distributed algorithm. In
Section 4, we discuss the message complexity.

2 Databases and Weighted RPQ’s

We consider a database to be an edge-labeled graph with positive real values
assigned to the edges. Intuitively, the nodes of the database graph represent
objects and the edges represent relationships (and their importance) between
the objects.

Formally, let ∆ be an alphabet. Elements of ∆ will be denoted R,S, As
usual, ∆∗ denotes the set of all finite words over ∆. We also assume that we
have a universe of objects, and objects will be denoted a, b, c, A database
DB is then a weighted graph (V,E), where V is a finite set of objects and
E ⊆ V × ∆ × R

+ × V is a set of directed edges labeled with symbols from ∆

and weighted with numbers from R
+.

Before talking about weighted preference path queries, it will help to first
review the classical path queries.

A regular path query (RPQ) is a regular language over ∆. Computationally,
an RPQ is a finite state automaton (FSA) A = (P,∆, τ, p0, F), where P is the
set of states, ∆ is the alphabet, τ ⊆ P × ∆ × P is the transition relation, p0 is
the initial state, and F is the set of final states. For the ease of notation, we will
blur the distinction between RPQ’s and FSA’s that represent them.

Let A be a query FSA and DB = (V,E) a database. Then, the answer to A
on DB is defined as

Ans(A,DB) = {(a, b) ∈ V : a
w

−→ b in DB and w is accepted by A},

where −→ denotes a path in the database.
Now, let N = {1, 2, . . .}. A weighted finite state automaton (WFSA) A is

a quintuple (P,∆, τ, p0, F), where P , p0, and F are similarly defined as for a
classical FSA, while the transition relation τ is now a subset of P × ∆ × N × P .
Query WFSA’s are given by means of weighted regular expressions (WRE’s). The
reader is referred to [2] for efficient algorithms translating WRE’s into WFSA’s.

Given a weighted database DB = (V,E), and a query WFSA A = (P, ∆, τ,

p0, F), the preferentially scaled weighted answer (SWAns) of A on DB is

SWAns(A,DB) = {(a, b, r) ∈ V × V × R
+ :

r = inf

{

n
∑

i=1

kiri : (pi−1, Ri, ki, pi) ∈ τ, (ci−1, Ri, ri, ci) ∈ E

}}

,

where pn ∈ F , c0 = a, and cn = b.
As an example, consider the database DB and query automaton A in Fig.

1. There are three paths going from object a to object c. The shortest path
consisting of a single edge T of weight 1, is not the cheapest path according to
the query. Rather, the cheapest path is the one spelling RS. The other path,
spelling RT , does not match any query automaton path, so it is not considered
at all. Hence, we have that (a, c, 3) is the answer with respect to a and c.

Similarly, we find the other query answers and finally have SWAns(A,DB)
= {(a, b, 1), (a, c, 3), (a, d, 6), (a, a, 7), (b, c, 5), (b, d, 8), (b, a, 9)}.

d

S

R S

S

T
Ta

b

c,

,

1

1

1, ,2

,3

,1

0 1

R

T,5

,1

,1

p p

S

Fig. 1. A database DB and a query automaton A

In order to help understanding of our distributed algorithm, we will first
review the well-known method for the evaluation of classical RPQ’s (cf. [1]). The
evaluation proceeds by creating state-object pairs from the query automaton and
the database. For this, let A be a query FSA. Starting from an object a of a
database DB , we first create the pair (p0, a), where p0 is the initial state in A.
Then, we create all the pairs (p, b) such that there exists a transition from p0

to p in A, and an edge from a to b in DB , and furthermore the labels of the
transition and the edge match. In the same way, we continue to create new pairs
from existing ones, until we are not anymore able to do so. In essence, what
is happening is a lazy construction of a Cartesian product graph of the query
automaton with the database graph. Of course, only a small (hopefully) part
of the Cartesian product is really contructed. This ultimately depends on the
selectivity of the query.

After obtaining the above Cartesian product graph, producing query answers
becomes a question of computing reachability of nodes (p, b), where p is a final
state, from (p0, a), where p0 is the intial state. Namely, if (p, b) is reachable from
(p0, a), then (a, b) is a tuple in the query answer.

Now, when having instead a weighted query automaton and database, one
can build a weighted Cartesian product graph. It is not difficult to see that, in
order to compute weighted answers, we have to find, in the Cartesian product
graph, the cheapest paths from all (p0, a) to all (p, b), where p is a final state in
the query automaton A.

As we mentioned in the Introduction, in general there is a different Cartesian
product graph for each query. Thus, a useful distributed algorithm must not rely
on having global knowledge about the topology of this graph, since it will only
be known after the completion of the query evaluation.

3 Distributed Algorithm

The key feature of our algorithm is the overlapping of computations starting
from different database objects. We assume that each database object has only
local knowledge about the database graph, that is, it only knows the identities
of its neighbors and the labels and weights of its outgoing edges. Further, we
assume that each object a, is being serviced by a dedicated process for that
object Pa. Our algorithm can be easily modified for the case when subgraphs of
the database (as opposed to single objects) are being serviced by the processes.
In such a case, many of the basic computation messages are sent and received
locally by the processes from and to themselves.

First, the query automaton is sent to each process. Such a service is com-
monly achieved by distributively creating a minimum spanning tree (MST) of the
processes before any query starts to be evaluated (cf. [4] for a message optimal
MST algorithm).

We can note here that such an MST can be used by the processes to transmit
their id’s and get so to know each other. However, we do not require this coordi-
nation step. Even if such a step is undertaken, the real challenge [which remains]
is that the relevant subgraph of the [query–database] Cartesian product cannot
be known in advance for a new query. In other words, a shortest path algorithm
has to work with a target graph not known beforehand.

Continuing the description of our algorithm, each process starts by creating
an initial task for itself. The tasks are “keyed” (uniquely identified) by the au-
tomaton states, with the initial tasks being keyed by the initial state p0. Each
task has three components:

1. an automaton state,
2. a status flag that can switch between active, passive, and completed values,

and
3. a table (or set) of tuples representing knowledge about “objects reached so

far” along with additional information (to be precisely described soon).

A typical task will be written as 〈px, status, {. . . }〉. We will refer to the table
{. . .} as Pa.px.T or px.T when Pa is clear from the context. The tuples in this
table have four components, and will be written as [(c, pz), (b, py),weight, status],
where

1. (c, pz) states that the algorithm, starting from object a and state px, has
reached (possibly through multiple hops) object c and state pz,

2. (b, py) states that the best path (known so far) to reach (c, pz) is by passing
via object b and state py, where b and py are neighbors of a and px in the
database and query automaton respectively,

3. weight is the weight of this best path (determined as in Section 2), and
4. status is a flag switching from prov to opt values telling whether weight

is provisional and would possibly be improved or optimal and permanently
stay as is.

Initially, when a px-task is created, process Pa tries to find all the outgoing
edges from a, which match (w.r.t. the symbol label) outgoing transitions from
px. Let (a,R, r, b) be such an edge which matches transition (px, R, k, py). Then,
Pa inserts tuple [(b, py), (b, py), k · r, prov] in table Pa.px.T . If there are multiple
(a, , , b) - (px, , , py) edge-transition matches, then only the match with the
cheapest weight product is considered.

Each process Pa starts by creating and initializing a passive p0-task, which is
possibly selected next for processing. We say “possibly” because a process might
receive new tasks from neighboring processes.

When a task is selected for processing, its provisional-status tuples (or pro-
visional tuples in short) will be “expanded” in a best-first order with respect
to their weights. If there are no more provisional tuples in the table of the p0-
task, then the task attains a completed status, and the process reports its local
termination.

All (working) processes run in parallel exactly the same algorithm, which
consists of four concurrent threads. These threads are as follows:

Expansion: A process Pa selects a passive task, say px–task, which still has
provisional tuples in its table.
Then, Pa makes the px–task active, and selects for expansion the cheapest
provisional tuple in its table Pa.px.T .
The active status for the px–task prevents the expansion of other provisional
tuples in Pa.px.T .
Next, Pa sends a request message to its neighbor Pb asking it to: (1) create
a task py, and (2) send its “knowledge” regarding the [(c, pz), , ,] tuple.

Task Creation: When a process Pb receives a request message from Pa (w.r.t
px) for the creation of a task, say py, it creates a py-keyed task (if such does
not exist) and properly initializes it. Next, Pb establishes a virtual commu-
nication channel between its py-task and the px-task of Pa. This communi-
cation channel is specialized for the relevant tuple (keyed by (c, pz)), whose
expansion caused the request message. The weight of the channel will be
equal to the cost of going from (a, px) to (b, py), which is in fact the weight
of the (b, py)–keyed tuple in Pa.px.T .
Notably, overlapping of computations happens when process Pb receives an-
other request message for the same task from a different neighboring process.
In such a case, the receiving process Pb only establishes a communication
channel with the sending process.

Reply: After creating the communication channel, process Pb will send table
Pb.py.T backward to task Pa.px. This backward message will be sent only
when the (c, pz)-keyed tuple in Pb.py.T attains an optimal status. The weight
of the communication channel is added to the weights of the tuples as they
are bundled together to be sent. We refer to this modified (message) table
as Pb.py.T ∗.

Update: When a process Pa receives from some process Pb a backward reply
message, which is related to a tuple [(c, pz), , , prov] of task Pa.px, and
contains the table Pb.py.T ∗, it will: (1) update (relax) the provisional tuples
in Pa.px.T as appropriate (if there are tuples with the same keys in Pb.py.T ∗),
(2) add to table Pa.px.T all tuples of Pb.py.T ∗, which do not have any “peer”
(tuple with the same key) in Pa.px.T , and (3) change the status of the px-task
to passive.

Formally our algorithm is as follows.

Algorithm 1

Input:

1. A database DB . For simplicity we assume that each database object, say
a, is being serviced by a dedicated process for that object Pa.

2. A query WFSA A = (P,∆, τ, p0, F).

Output: The answers to query A evaluated on database DB .

Method:

1. Initialization: Each process Pa creates a task 〈p0, passive, {. . .}〉 for
itself. The table {. . .} (referred to as Pa.p0.T) is initialized as follows:

(a) insert tuple [(a, p0), (a, p0), 0, opt], and
(b) For each edge-transition match,

(a,R, r, b) in DB and
(p0, R, k, p) in A,

insert tuple [(b, p), (b, p), k · r, prov]
(if there are multiple (a, , , b) – (p0, , , p) edge-transition matches,
then the cheapest weight product is considered.)

If at point (b) there is no edge-transition match, then make the status
of the p0-task completed.

2. Concurrently execute all the four following threads at each process in
parallel until termination is detected. [For clarity, we describe the threads
at two processes, Pa and Pb.]

3. Expansion: [At process Pa]

(a) Select a passive px-task for processing. Make the status of the task
active.

(b) Select the cheapest provisional-status tuple, say [(c, pz), (b, py),w,prov]
from table Pa.px.T .

(c) Request Pb, with respect to state py, to provide information about
(c, pz).
For this, send a message 〈py, [px, (c, pz), wab]〉 to Pb, where wab is the
cost of going from (a, px) to (b, py), which is equal to the weight of
the (b, py)–keyed tuple in Pa.px.T .

(d) Sleep, with regard to px-task, until the reply message for (c, pz) comes
from Pb.

4. Task Creation: [At process Pb]
Upon receiving a message 〈py, [px, (c, pz), w]〉 from Pa:
if there is not yet a py-task
then create a task 〈py, passive, {. . .}〉 and initialize its table similarly

as in the first phase.
That is,
(a) insert tuple [(b, py), (b, py), 0, opt], and
(b) For each edge-transition match,

(b,R, r, d) in DB and
(py, R, k, pu) in A,

insert tuple [(d, pu), (d, pu), k · r, prov]
(if there are multiple (b, , , d)–(py, , , pu) edge-transition matches,
then the cheapest weight product is considered.)

Also, establish a virtual communication channel with Pa. This chan-
nel relates the py-task of Pb with the px-task of Pa. Further, it is
indexed by (c, pz) and is weighted by wab (the weight included in the
received message).

else [Pb has already a py-task.] Do not create a new task, but only es-
tablish a communication channel with Pa as described above.

5. Reply: [At process Pb]
When in the py-task, the tuple [(c, pz), (,), ,] is or becomes optimally
weighted, reply back to all the neighbor processes, which had sent a task
requesting message 〈py, [, (c, pz),]〉 to Pb.
For example, Pb sends to such a neighbor, say Pa, through the corre-
sponding communication channel, the message 〈Pb.py.T ∗〉, which is table
Pb.py.T after adding the channel weight to the weight of each tuple.

6. Update: [At process Pa]
Upon receiving a reply message 〈Pb.py.T ∗〉 from a neighbor Pb w.r.t. the
expansion of a (c, pz)-keyed tuple in table Pa.px.T do:
(a) Change the status of (c, pz)-keyed tuple to optimal.
(b) For each tuple [(d, pu), (,), v, s]1 in Pb.py.T ∗, which has a smaller

weight (v) than a same-key tuple [(d, pu), (,), , prov] in Pa.px.T ,
replace the latter by [(d, pu), (b, py), v, s].

(c) Add to Pa.px.T all the rest of the Pb.py.T ∗ tuples, i.e., those which
do not have corresponding same-key tuples in Pa.px.T .
Also, change the via component of these tuples to be (b, py).

1
s is the status which can be prov or opt .

(d) if the px-task does not have anymore provisional tuples,
then make its status completed.

If px = p0, then report that all query answers from Pa have been
computed.

else make the status of the px-task passive.

Finally upon termination, which happens when all the tasks in every process
have attained completed status, set

eval(A,DB) = {(a, b, r) : [(b, py), (,), r, opt)] ∈ Pa.p0.T and py ∈ F}.

In the full paper2, we show the soundness and completeness of our algorithm.
Based on them, the following theorem can be stated.

Theorem 1 Upon termination of the above algorithm, we have that

eval(A,DB) = SWAns(A,DB).

It is worth mentioning here that any snapshot of eval(A, DB) at any time during
the execution of the above algorithm is a partial answer to the query. Hence, an
answer can be immediately reported as soon as the corresponding tuple attains
an optimal status. Upon termination, all the answers would have been reported.
Also, in the full paper we show that

Theorem 2 Algorithm 1 (positively) terminates.

4 Complexity

In this paper, we restrict our discussion to message complexity only. We show
that the upper bound of the message complexity for Algorithm 1 is quadratic in
the number of database objects. In fact, we can further qualify this as the number
of database objects involved in the Cartesian product explained in Section 2.
This number ultimately depends on the query selectivity, and in practice one
hopes that the (lazy) Cartesian product size is much smaller than the size of the
database (cf. [1]).

Theorem 3 The maximum number of messages required for a query evaluation
is 2 · n2 · s2, where n is the number of objects in DB, and s is the number of
states in A.

Proof. We base our claim on the following facts:

1. The number of tasks in each process is bounded by s.
2. Between two tasks in different processes, there can be up to n · s communi-

cation channels, which are indexed by an object-state pair.
3. Only one forward message is needed to cause the creation of a communication

channel.

2 http://www.cs.uvic.ca/∼thomo/all to all.pdf

4. Each communication channel is traversed only once, which happens when the
tuple keyed by the object-state of the channel becomes optimally weighted.

Since we have n processes, the upper bound for the total number of messages is
n · s · (n · s) · (1 + 1) = 2 · n2 · s2. ⊓⊔

References

1. Abiteboul S., Buneman P., and Suciu D. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, San Francisco CA (1999)
2. Allauzen C., M. Mohri. A Unified Construction of the Glushkov, Follow, and An-

timirov Automata. Proc. of MFCS’06, LNCS 4162, Springer (2006) 110–121.
3. Abiteboul S., V. Vianu. Regular Path Queries with Constraints. J. of Computing

and System Sciences 58(3) (1999) 428–452
4. Awerbuch B. Optimal Distributed Algorithms for Minimum-Weight Spanning tree,

Counting, Leader Election and Related Problems. Proc. of STOC’87, ACM (1987)
230–240

5. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. Answering Regular Path
Queries Using Views. Proc. of ICDE’00, IEEE (2000) 389–398

6. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on Regular
Path Queries. SIGMOD Record 32(4) (2003) 83–92

7. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based Query Pro-
cessing: On the Relationship between Rewriting, Answering and Losslessness. Proc.

of ICDT ’05, LNCS 3363, Springer (2005) 321–336
8. Consens M. P, A. O. Mendelzon. GraphLog: A Visual Formalism for Real Life

Recursion. Proc of PODS’90, ACM (1990) 404–416
9. Flesca S., F. Furfaro, and S. Greco. Weighted Path Queries on Semistructured

Databases. Inf. Comput. 204(5) (2006) 679–696
10. Grahne G., and A. Thomo. Regular Path Queries Under Approximate Semantics.

Ann. Math. Artif. Intell. 46(1–2) (2006) 165–190
11. Grahne G., A. Thomo, and W. Wadge. Preferentially Annotated Regular Path

Queries. Proc. of ICDT’07, LNCS 4353, Springer (2007) 314–328
12. Haldar S. An “All Pairs Shortest Paths” Distributed Algorithm Using 2n

2 Mes-
sages. J. of Algorithms, 24(1) (1997) 20–36

13. Mendelzon A. O., and P. T. Wood, Finding Regular Simple Paths in Graph
Databases. SIAM J. Comp. 24(6) (1995) 1235–1258

14. Miao Z., D. Stefanescu, A. Thomo. Grid-Aware Evaluation of Regular Path Queries
on Spatial Networks. Proc. of AINA’07, IEEE (2007) 158–165

15. Planet–Lab: www.planet-lab.org
16. Stefanescu D., A. Thomo, and L. Thomo. Distributed Evaluation of Generalized

Path Queries Proc. of SAC’05, ACM (2005) 610–616
17. Stefanescu D., A. Thomo. Enhanced Regular Path Queries on Semistructured

Databases. Proc. of QLQP’06, LNCS 4254, Springer (2006) 700–711
18. Suciu D., Distributed Query Evaluation on Semistructured Data. ACM Trans. on

Database Systems, 27(1) (2002) 1–62
19. TIGER: Topologically Integrated Geographic Encoding and Referencing system,

US Census Bureau http://www.census.gov/geo/www/tiger
20. Vardi M. Y. A Call to Regularity. Proc. PCK50 - Principles of Computing &

Knowledge, Paris C. Kanellakis Memorial Workshop ’03, ACM (2003) 11

