
Optimized Block Based Disparity Estimation in Stereo Systems Using a Maximum-Flow
Approach

IMIR THOMO, SOTIRIS MALASIOTIS, MICHAEL G. STRINTZIS �

Department of Electrical and Computer Engineering,
University of Thessaloniki,

Thessaloniki 540 06, GREECE
Tel: +30-31-996359 Fax: +30-31-996398

alex,malasiot@panorama.ee.auth.gr, strintzi@eng.auth.gr

Abstract. A novel disparity estimation method is presented that increases the robustness of the estimator by
replacing the classical approach of dynamic programming with finding the maximum flow in a graph. Once
solved, the minimum cut associated to the maximum flow yields a disparity surface for the whole image
at once. The results show improved depth estimations as well as better handling of depth discontinuities.
Although the running time for solving the maximum flow problem is higher than dynamic programming,
experiments have shown that the special topology of the graph, the position of the source and sink and the
capacity structure of the edges tend to make the problem easier to solve. However, the main drawback of
this approach is the large amount of memory resources required by the classical implementations of the
maximum flow algorithm, which make impossible in practice to apply this approach even for the small
stereo images with small disparity resolution. Taking advantage of the special topology of the graph and the
position of the source and sink we propose an efficient data structure for drastically reducing the amount of
memory resources used.

Keywords. disparity estimation, maximum flow, lift-to-front algorithm

1 Introduction

The determination of homologous image points between
the left and right image views, is a crucially important
step in stereoscopic image analysis. Perspective effects,
occlusions, photometric variation and inherent ambigui-
ties make disparity estimation a difficult task. The dy-
namic programmingapproach casts the problem of match-
ing a pair of stereo images as an optimization problem,
which is solved by making the following assumptions
[1, 2, 3]. The first assumption is the well known epipo-
lar constraint. According to this constraint the depth re-
lated displacements in stereo pairs always occur along the
epipolar lines. This constraint reduces the stereo corre-
spondence problem to one dimension. The second as-
sumption made is the ordering constraint. According to
this, a set of points on an epipolar line of the left image
and their corresponding points in the right image appear
in the same order. These constraints along with other de-
tails of the camera geometry regarding stereo imagery are
fully covered in the particularly readble textbook of [4].
However the reduction to one dimensional space is an
over-simplification of the problem and is made primar-
ily for reducing significantly the computational complex-

�This work was supported by the EU projects ACTS 092
PANORAMA (Package for New Autostereoscopic Multiview Systems
and Applications).

ity. The solutions obtained on consecutive epipolar lines
can vary significantly and create artifacts across epipolar
lines, especially affecting object boundaries that are per-
pendicular to the epipolar lines.

There have been several earlier approaches to smooth
the artifacts created at vertical edges relating the solution
of consecutive epipolar lines matched with dynamic pro-
gramming [1, 2]. These approaches in practice do not
perform well in every case and in general are not very
efficient and not optimal.

In this paper we propose a new approach based on
the method of [5]. In this method the traditional ordering
constraint is replaced by the more general local coherence
constraint and the stereo correspondence problem is cast
as a maximum flow problem in a graph. The minimum
cut associated to the maximum flow can be interpreted as
a disparity surface for the whole image. A robust opti-
mization cost function for the the stereo matching prob-
lem is introduced improving in this way the disparity es-
timation accuracy in [5] by at least 100%.

However, the main contribution of our approch is
the adaptation of the well known “Lift-to-Front” method
of [6] for solving the maximum flow problem in a random
graph to the specific case of the disparity 3D graph. This
method belongs to the “Preflow-Push” methods which are
the fastest up to date methods for solving the maximum

Anais do X SIBGRAPI (1997) 1–?

2 I. THOMO, S. MALASIOTIS AND M. G. STRINTZIS

flow problem in a graph with significant improvement
over the running time of the Ford-Fulkerson method. The
main drawback of the “Lift-to-Front” method is the large
amount of memory resources required by the classical
implementations, which make impossible in practice to
apply this approach even for the small stereo images with
small disparity resolution. Taking advantage of the spe-
cial topology of the graph and the position of the source
and sink we use an efficient data structure reducing dras-
tically the amount of memory resources used.

This paper is organized as follows. Section 2 de-
scribes the geometry of a general stereo scene and its as-
sociated epipolar constraint. In Section 3 a robust opti-
mization cost function is defined. In Section 4, details of
casting the stereo matching problem as a maximum flow
problem are presented. Also the possibilities of graph
degeneration and the method used to eliminate them are
discussed there. The class of the fastest to date preflow-
push algorithms and a variant of them, the lift-to-front
algorithm are described in Section 5. The analysis of the
lift-to-front algorithm for the specific 3D input graphs is
done in Section 6. In this section it is shown that using an
efficient data structure, appropriate for the specific topol-
ogy of the graph a significant memory reduction can be
achieved. Experiments and results are presented and dis-
cussed in Section 7.

2 Epipolar Geometry and Matching

As can be seen from Figure 1, givenm1 in the image
planeI1, all possible physical pointsM that may have
producedm1 are on the infinite half line(m1; C1). As a
direct consequence, all possible matchesm2 of m1 in the
planeI2 are located on the projection, through the second
imaging system, of this infinite half line.

In the traditional approach to stereo matching, a sin-
gle epipolar line in the first image is matched with its
corresponding epipolar line in the second image. The es-
tablished matching between two lines is a path in the grid
of all possible matches (Figure 2). The matching grid be-
tween the epipolar line in the first image and the epipolar
line in the second can be transformed into the equivalent
formulation on the right where only the line in the first
image appears directly. In this case each potential match
has the form(m; d), wherem is the position along the
epipolar line andd is its associated disparity. In Figure 3
all minimum cost paths defining the matching of epipo-
lar lines are now assembled into a single minimum cost
surface. The goal of this construction is to take advan-
tage of one very important property of disparity fields,
which is local coherence, by which is meant that dispar-
ities tend to be locally very similar, in any and all di-
rections. This property is exploited in dynamic program-
ming based methods along epipolar lines by enforcing the

ordering constraint. However, local coherence occurs in
all directions. By putting all epipolar lines together and
solving globally for a disparity surface, it becomes pos-
sible to take full advantage of local coherence and to im-
prove the resulting depth map.

Figure 1: Epipolar geometry

Figure 2: Epipolar matching

Figure 3: Putting all epipolar lines together and casting
the problem of finding the disparity surface in a maxi-
mum flow problem in a graph

3 Definition of a Useful Cost Function

In order to perform the actual stereo matching, the defi-
nition of a matching cost function is needed. It should be
small for a likely match and large for an unlikely one.

By assuming that the surfaces are Lambertian (i.e.
their intensity is independent of viewing direction) the

Anais do X SIBGRAPI, outubro de 1997

OPTIMIZED MAXIMUM -FLOW DISPARITY ESTIMATION 3

intensity values of the projections of one3D point M
on the camera planes should be identical and thus these
projection are a valid match. Therefore, we can define the
matching cost as the variance of the pixel intensities as

cost(m; d) = 1
2 ((I1(m)� �I(m; d))2+

(I2(m+ d)� �I(m; d))2)
(1)

where Ik(m) is the luminace value of pixelm in the
image planeIk, k = 1; 2 and �I(m; d) is the mean of
the luminance values of pixelm in image planeI1 and
pixelm + d in image planeI2. However, as can be seen
also from the experimental results, the disparity estima-
tion based on this cost function is not stable and produces
many outlier disparity values. A natural alternative would
be to use as cost function the Displace Frame Difference
(DFD):

DFD(m; d) =
P

(x;y)2W jjI1(mx + x;my + y)

�I2(mx + dx + x;my + dy + y)jj
(2)

whereW is a square window centered at pixelm.
The value of the cost function is considered reliable

only if the pixelm is located over highly textured regions.
For the detection of texture we used a variant of the tech-
nique proposed in [7] which is based on the observation
that the highly textured regions present high local vari-
ation of the luminance in all directions, while on edges
the variation of the luminance is higher in the edge di-
rection. The cost function is computed for every dispar-
ity layer and the corresponding cost image is low pass
filtered. The low pass filtering replaces each unreliable
value with a weighted mean of neighboring reliable pixel
values.

4 Casting the Stereo Matching Function as a Maxi-
mum Flow Problem

We solve globally for the disparity surface by adding a
source and a sink as in Figure 3, and treat it as flow prob-
lem in a graph. The vertex set is defined as

V = V ? [fs; tg (3)

wheres is the source,t is the sink andV ? is the3D mesh:

V ? = f(x; y; d) : x 2 [0 : : : xmax];
y 2 [0 : : : ymax]; d 2 [0 : : : dmax]g

(4)

where(xmax + 1; ymax + 1) is the base image size and
the dmax + 1 is the disparity resolution. Internally the
mesh is six-connected and the sources connects to the
front plane while the back plane is connected to the sink
t. We have:

E =

8<
:

(u; v) 2 V ? � V ? jju� vjj = 1
(s; (x; y; 0)) x 2 [0 : : : xmax]
((x; y; dmax); t) y 2 [0 : : : ymax]

(5)

Being six-connected instead of four connected, each
vertex of the new problem is not only connected to its
neighbors along the epipolar line, but also across adja-
cent epipolar lines. We can compute the maximum flow
between the source and the sink. The set of edges that
are saturated by the maximum flow represent the mini-
mum cut of the graph. This cut separates the source and
the sink and effectively represents the disparity surface.
The edge capacities are defined in a straightforward way.
The matching cost is used directly as a capacity. Since a
likely match has a low matching cost, the corresponding
edge capacity will be low and that edge is likely to be sat-
urated by the maximum flow. Conversely, a high match-
ing cost yields a high capacity edge, which is unlikely to
be saturated. Since a vertex in the graph corresponds to
a potential match, we can derive its matching cost by the
above cost equation. The capacity of an edge is derived
from the matching cost of the two vertices that it links:

c(u; v) =
cost(mu; dmu

) + cost(mv; dmv
)

2
(6)

where themfu;vg are the corresponding reference image
points and thedfmu;mvg are their hypothetical dispari-
ties. We can write the above equation in the following
equivalent form:

c(u; v) =
cost(u) + cost(v)

2
(7)

wherecost(u) is used for simplicity instead ofcost(mu;

dmu
) andcost(v) instead ofcost(mv ; dmv

) sinceu and
v are matches and defined by their associated point and
disparity.

Sometimes there can be edges with zero capacity
along which no flow passes. These cases can frequently
occur in the homogeneous regions or in the ideal case of a
perfect match. As no flow pass through these edges, they
do not belong to the set of saturated edges and so they are
not included in the disparity surface. This problem can be
solved by a well-known method used in linear program-
ming which avoids the graph degeneration. Namely in-
stead of zero capacities" edge capacities are used where
" is a small number near zero but not zero. In this way
the undesired possibility of non passing flow through the
“very good” matching edges is eliminated. These edges
now, are likely to be saturated by the flow and the result-
ing disparity surface is more reliable.

The cut obtained by solving the maximum flow prob-
lem is the optimal way to separate the source and the sink
for the particular cost function. As it is known, any cut
must break each path connecting the source with the sink.
From the graph structure for any(x; y), there is a path
s; t of the form:

s! (x; y; 0)! (x; y; 1)! :::! (x; y; ddmax) ! t

(8)

Anais do X SIBGRAPI, outubro de 1997

4 I. THOMO, S. MALASIOTIS AND M. G. STRINTZIS

Since the capacities of the edges that connect the source
and sink with other vertices are infinity, it follows that
the cut will break this path in at least one edge(x; y; d)�
(x; y; d + 1) whered 2 [0; dmax � 1]. According to the
above, a disparity map can be constructed from the mini-
mum cut as follow. For each point(x; y), the disparity is
the largestd such that the edge(x; y; d) � (x; y; d + 1)
belongs to the minimum cut.

5 Preflow-push Algorithms

In this section, we present the “preflow-push” approach to
computing maximum flows. The fastest maximum-flow
algorithms to date are preflow-push algorithms. This sec-
tion describes a refinement of the Goldberg’s “generic”
maximum-flow algorithm, the “Lift to Front” approach
which has a running time ofO(V 3). The intuition behind
the preflow-push methods is best understood in terms of
fluid flows. We consider a flow networkG = (V;E) to be
a system of interconnected pipes of given capacities. Ver-
tices which are pipe junctions, have two properties. First
to accommodate excess flow, each vertex has an outflow
pipe leading to an arbitrary large reservoir that can accu-
mulate fluid. Second, each vertex, its reservoir, and all
its pipe connections are on a platform whose height in-
creases as the algorithm progresses.

Vertex heights determine how flow is pushed: we
only push flow downhill, that is from a higher vertex to
a lower vertex. There may be positive net flow from a
lower vertex to a higher vertex, but operations that push
flow always push it downhill. The height of the source
is fixed at jV j, and the height of the sink is at 0. All
other vertex heights start at 0 and increase with time. The
algorithm first sends as much flow as possible downhill
from the source toward the sink. The amount it sends is
exactly enough to fill each outgoing pipe from the source
to the capacity. When flow first enters an intermediate
vertex, it collects in the vertex’s reservoir. From there, it
is eventually pushed downhill.

It may eventually happen that the only pipes that
leave a vertexu and are not already saturated with flow
connect to vertices that are on the same level asu are up-
hill from u. In this case, to rid an overflowing vertexu of
its excess flow, we must increase its heights. This opera-
tion is called “lifting” vertexu. Its height is increased to
one unit more than the height of the lowest of its neigh-
bors to which it has an unsaturated pipe. After a ver-
tex is lifted, therefore, there is at least one outgoing pipe
through which more flow can be pushed.

A capacity edge usually is considered equivalent with
two arcs inverse to each other with the same capacity
equal to the edge capacity. We notef(u; v) for the current
net flow over the arc(u; v), h[u] for the height of vertex
u, ande[u] for the excess accumulated at the reservoir of
vertexu. Also we define the residual capacity of an arc

(u; v) to be the differencecf = c(u; v) � f(u; v). The
flow satisfies the following well known properties:
Capacity constraint: For allu; v 2 V , we require

f(u; v) � c(u; v) (9)

Skew symmetry: For allu; v 2 V , we require

f(v; u) = �f(u; v) (10)

Flow conservation: For allu 2 V � s; t, we require
P

v2V f(u; v) = 0 (11)

5.1 The basic operations

From the preceding discussion, we see that there are two
basic operations performed by a preflow- push algorithm:
pushing flow excess from a vertex to one of its neighbors
and lifting a vertex. The basic operationPUSH(u; v)
can be applied ifu is an overflowing vertex,cf (u; v) > 0,
andh(u) = h(v) + 1.

PUSH(u,v)
temp = min(e[u],cf(u,v))
f(u,v) = f(u,v)+temp
f(v,u) = -f(u,v)
e[u] = e[u] - temp
e[v] = e[v] + temp

The basic operationLIFT (u) applies ifu is overflowing
and if and if cf (u; v) > 0 implies h[u] � h[v] for all
verticesv. In other words, we can lift an overflowing
vertexu if for every vertexv for which there is residual
capacity fromu to v, flow cannot be pushed fromu to v
becausev is not downhill from u.

LIFT(u)
h[u] = 1+min{h[v] : cf(u,v)>0}

The generic preflow-push algorithm uses the following
subroutine to create an initial preflow in the flow network.

INITIALIZE-PREFLOW(G,s)
for each vertex u in V[G]

do h[u] = 0
e[u] = 0

for each edge (u,v) in E[G]
do f(u,v) = 0

f(v,u) = 0
h[s] = |V[G]|
for each vertex u adjacent to s

do f(u,s) = c(s,u)
f(s,u) = -c(s,u)
e[u] = c(s,u)

After initializing the flow, the generic algorithm repeat-
edly applies, in any order, the basic operations wherever
they are applicable. It is shown that the generic algorithm
runs inO(V 2E) time.

Anais do X SIBGRAPI, outubro de 1997

OPTIMIZED MAXIMUM -FLOW DISPARITY ESTIMATION 5

5.2 The lift-to-front algorithm

The generic preflow-push method allows us to apply the
basic operations in any order at all. By choosing the or-
der carefully and managing the network data structure ef-
ficiently, we can solve the maximum-flow problem faster
thanO(V 2E) bound. The lift-to-front algorithm main-
tains a list of the vertices in the network. Beginning at
the front, the algorithm scans the list, repeatedly selecting
an overflowing vertexu and then “discharging” it, that is,
performing push and lift operations untilu no longer has
a positive excess. Whenever a vertex is lifted, it is moved
to the front of the list and the algorithm begins its scan
anew. It is shown [6] that the lift-to-front algorithm has
running timeO(V 3), which is asymptotically at least as
good asO(V 2E).

Edges, in classical implementations, are organized
into “neighbor lists.” Given a flow networkG = (V;E),
the neighbor listN [u] for a vertexu 2 V is a singly
linked list of the neighbors ofu in G. The first vertex
in the N [u] is pointed to byhead[N [u]]. The vertex
following v in a neighbor list is pointed to bynext �
neighbor[v]; this pointer isNIL if v is the last vertex
in the neighbor list. The lift to front algorithm cycles
through each neighbor list in an arbitrary order that is
fixed throughout the execution of the algorithm. For each
vertexu, the fieldcurrent[u] points to the vertex cur-
rently under consideration inN [u]. Initially, current[u]
is set tohead[N [u]]. An overflowing vertexu is dis-
charged by pushing all of its excess flow through edges
(arcs) with non-zero residual capacity to neighbors ver-
tices, lifting u as necessary. The pseudocode is as fol-
lows.

DISCHARGE(u)
while e[u] > 0

do v = current[u]
if v = NIL

LIFT(u)
current[u] = head[N[u]]

else
if cf(u,v)>0 and h[u]=h[v]+1

PUSH(u)
else

current[u] = next-neighbor[v]

As we said above, in the lift-to-front algorithm, we
maintain a linked listL consisting of all vertices inV �
s; t. The pseudocode for the lift-to-front algorithm as-
sumes thatnext[u] points to the vertex that followsu in
list L and that, as usual,next[u] = NIL if u is the last
vertex in the list.

LIFT-TO-FRONT(G,s,t)

INITIALIZE-PREFLOW(G,s)

L = V[G]-{s,t}
for each vertex u in V[G]-{s,t}

do current = head[N[u]]
u=head[L]
while u <> NIL

do old-height = h[u]
DISCHARGE(u)
if h[u] > old-height

move u to the front of L
u = next[u]

It should be note that, ifu was moved to the front of the
list, the vertex used in the next iteration is the one follow-
ing u in its new position in the list. It is shown that the
lift-to-front algorithm terminates and its running time is
O(V 3).

6 On Analyzing the Algorithm and the Specific Topol-
ogy of the Graph

Analyzing an algorithm has come to mean estimating the
resources that the algorithm requires. Usually, resources
such as computational time and memory are of primary
concern. The dynamic programming approach on sep-
arate epipolar lines requires a total running time which
might seem much better than the maximum-flow algo-
rithm. However, the computational time required for solv-
ing the maximum-flow problem depends heavily in the
input graph. After experiments with various stereo pairs
we observed that the topology of the graph, the position
of the source and sink, and the structure of edge capac-
ities all tend to make the problem easier to solve, mak-
ing the average running time much better than the worst
case analysis. In practice, the average running time of
the fully optimized lift-to-front algorithm compares fa-
vorably with the dynamic programming approach. The
typical running time for256 � 256 images is anywhere
between 0.5 to 5 minutes, on an Indigo 2 SGI worksta-
tion, depending on the depth resolution used.

But, as can be easily observed the main drawback of
the classical implementation of the lift-to-front algorithm
is the large amount of memory that it requires. Let us
estimate how large this amount of memory is. As were
shown above, edges in the lift-to-front algorithm are or-
ganized into “neighbor lists.” The best solution for an
arbitrary graph would be a singly linked list of the neigh-
bors for each vertex. Because in our graph the vertices
are six-connected, their “neighbors lists” will have six el-
ements. In these elements we have to store information
about the endpoint (an edge typically is considered equiv-
alent with two arcs inverse to each other, so can be used
the term endpoint), capacity and residual capacity of the
corresponding edge along with the pointer to the next el-
ement of the list. However, we must note that in order
to fully optimize the lift-to-front algorithm regarding the

Anais do X SIBGRAPI, outubro de 1997

6 I. THOMO, S. MALASIOTIS AND M. G. STRINTZIS

Bytes
Endpoint 4
Capacity + res. capacity 2
Pointer to inverse arc 4
Pointer for linking the list 4
Total 14

Table 1: Bytes required for neighbor list element.

running time, the line

f(v,u) = -f(u,v)

in the PUSH routine must be executed inO(1) time.
For this reason, usually in the classical implementations
a pointer to the inverse arc is stored in each element of
the “neighbor lists.”

In this way, 14 bytes are needed per list element or
6 � 14 = 84 bytes in total per vertex, according to Table
1.

Regarding the source and sink their “neighbor lists”
havexmax�ymax elements, that isxmax�ymax�14 bytes
are needed.

We must note that an additional amount of eight bytes
for each vertex for storing the excess flow and the height
value and eight bytes for maintaining the vertex list in the
LIFT-TO-FRONT routine is required.

So in this representation, which is the best for arbi-
trary graphs, the lift-to-front algorithm needs84 + 16 =
100 bytes for each vertex excluding the source and sink
and2 � 100 � xmax � ymax bytes for the source and sink.
Totally, the algorithm requires an amount of

100 � xmax � ymax � dmax + 2 � 100 � xmax � ymax

bytes of memory resources.
This amount of memory is in many cases very large

prohibiting us to run the program for large images with
large disparity resolution. For example in in a stereo
pair256� 256with disparity resolution30 about210Mb

memory is needed. However, using the special struc-
ture of the graph we can drastically reduce the memory
resources needed by the lift-to-front algorithm. Firstly,
we show how the second term in the above sum can be
eliminated. Eventually, all the flow that can possibly get
through to the sink has arrived there. No more can arrive,
because the pipes obey the capacity constraints. The al-
gorithm then sends the excess collected in the reservoirs
of overflowing vertices back to the source by continuing
to lift vertices to the above the fixed heightjV j of the
source. Instead of performing a push operation from the
front vertices back to the source we can simply cancel
the excess of the front vertices. In this way there is no

need to store any information regarding the source, its
“neighbor list” etc. Regarding the sink, recall that the ca-
pacities of edges that link the end vertices to the sink are
infinity. In this way if eventually there is excess to the
reservoirs of the end vertices it all can be pushed to the
sink. Similarly, we do not perform in these cases a push
operation but simply cancel the excess flow eliminating
in this way any information regarding the sink. Eliminat-
ing the source and sink we now have a 3D graph with six
connected vertices only. By taking advantage of this fact
we can use an array of

xmax � ymax � dmax � 6

dimensions where each row corresponds to a vertex and
each element in the row corresponds to an edge. The el-
ements of the array have a size of two bytes only, just
for storing the capacity and residual capacity of the cor-
responding edge. The key property of the array is the
order in which the information for each vertex is placed
in it. Namely theuth row of the array corresponds to the
(i; j; d) vertex by the following function:

INDEX(u, i, j, d)
temp = u div dmax
d = u mod dmax
j = temp div xmax
i = temp mod xmax

Of course this function is one-to-one and its inverse is:

INVERSE-INDEX(i, j, d)
return j*nx*dmax + i*dmax + d

Figure 4: Array of hexades

We also have to define a specific order inside the
hexades of each row in the array. Namely we define the
order of the six links of a vertex to be as in Figure 5.

In this way, as we will show in the following, there is
no need to store the endpoint fields, pointers to the inverse
arc, or pointers for linking the “neighbor list”.

Anais do X SIBGRAPI, outubro de 1997

OPTIMIZED MAXIMUM -FLOW DISPARITY ESTIMATION 7

Figure 5: Order inside the hexades

In fact, by taking advantage of the specific order of
the array, the endpoint of an arc whose capacity and resid-
ual capacity are stored in the array in the(u; k) place and
the pointer to its inverse arc can be found inO(1) time by
the following routines:

END-POINT(u, k)
INDEX(u,i,j,d)
switch(k)

case 1:
return INVERSE-INDEX(i-1,j,d)

case 2:
return INVERSE-INDEX(i+1,j,d)

case 3:
return INVERSE-INDEX(i,j-1,d)

case 4:
return INVERSE-INDEX(i,j+1,d)

case 5:
return INVERSE-INDEX(i,j,d-1)

case 6:
return INVERSE-INDEX(i,j,d+1)

INVERSE(u, k)
v = END-POINT(u,k);
switch(k){

case 1:
return adress(graph[v,2])

case 2:
return adress(graph[v,1])

case 3:
return adress(graph[v,4])

case 4:
return adress(graph[v,5])

case 5:
return adress(graph[v,6])

case 6:
return adress(graph[v,5])

Therefore6 � (4+ 4+ 4) = 72 bytes less per vertex
are used than in the classical implementations of lift-to-
front algorithm. In other words for each vertex there are
needed twenty eight bytes, that is the algorithm will to-
tally use:

Method Correct (%)
Roy S. and Cox J. I. [5] 22.26 %
Cox J. I. [2] 36.19 %
Tzovaras D. [1] 44.21 %
Intille S. S. and Bobick F. A. [3] 45.12 %
Proposed method 46.74 %

Table 2: Percentages of the well estimated disparity val-
ues for each method.

28 � xmax � ymax � dmax

bytes only. This is a drastic reduction of memory re-
sources compared with the classical implementations. For
the previous example of the256 � 256 images with dis-
parity resolution30 the memory used is 55Mb.

7 Experiments and Results

A numerical comparison of the efficiency of various dis-
parity methods is made. For this the synthetic “Corridor”
stereo pair (courtesy of Thorsten Froehlinghaus, Univer-
sity of Bonn) with its ground truth disparity map was se-
lected. After estimating the disparity with the estimators
proposed in [1, 2, 3, 5] the percentages of the correctly es-
timated values for each method were compared (Table 2).
The increase in the percentage of the correct matches is
due to the cost function used, if we compare with [2]. Re-
garding the other methods, the increase in the percentage
of the correct matches is due to the new method of cast-
ing the stereo matching problem to the maximum flow
problem.

Results obtained in real stereo image pair “Aqua”
are shown in Figure 6. If we compare visually the results
obtained with the dynamic programming method as for
example in the case of [1] with the results obtained with
the proposed method we can see that the artifacts at the
vertical edges are reduced significantly using the present
method. As can be seen, the disparity edges in the right
side of the rock and at the top of image are sharper and
more accurate.

It should be noted that the disparity map images are
equalized in order to improve their contrast.

8 Conclusions

A novel method for disparity estimation in stereo images
was presented. The method is based on concepts similar
to those in [5]. However it performs considerably better
than [5], improving the disparity estimation accuracy in
[5] by at least 100%. Combining the method of maxi-
mum flow in a graph for solving the optimization prob-

Anais do X SIBGRAPI, outubro de 1997

8 I. THOMO, S. MALASIOTIS AND M. G. STRINTZIS

(a)

(b)

(c)

Figure 6: “Aqua”, disparity estimation (a) original image
(b) method in [1], (c) proposed method,

lem of disparity estimation with the power of a sound op-
timization cost function we achieve better results than the
well known methods in the literature. Further we reduce
the prohibitive memory cost of the classical implementa-
tion of the maximum flow method using an efficient data
structure that takes advantage of the special topology of
the graph reducing the memory resources required about
four times.

References

[1] D. Tzovaras, N. Grammalidis, and M. G. Strintzis,
“Object-Based Coding of Stereo Image Sequences
Using Joint 3D mo tion/disparity Compensation,”
IEEE Trans. on Ciscuits and Systems for Video Tech-
nology, vol. 7, pp. 312–328, April 1997.

[2] I. Cox, “A Maximum Likehood N-camera Stereo Al-
gorithm,” in Proceedings, IEEE Conference on Com-
puter Vision and Pattern Recognition, (Seattle, WA),
pp. 733–739, 1994.

[3] S. S. Intille and A. F. Bobick, “Disparity-Space Im-
ages and Large Occlusion Stereo,” tech. rep., M.I.T.

Media Lab Perceptual Computing Group, No. 220,
1994.

[4] O. Faugeras,Three Dimensional Computer Vision.
Cambridge, MA: MIT Press, 1993.

[5] S. Roy and I. J. Cox, “A maximum flow formulation
of the n-camera stereo correspondence problem,” in
Proc. IEEE Int. Conf. Computer Vision, ICCV’ 98,
(Bombay, India), 1998.

[6] T. Cormen, C. Leiserson, and R. Rivest,Introduction
to Algorithms. Cambridge, MA: MIT Press, 1990.

[7] O. Egger, W. Li, and M. Kunt, “High compression
image coding using an adaptive morphological sub-
band decomposition,”Proc. IEEE, vol. 83, pp. 272–
287, February 1995.

Anais do X SIBGRAPI, outubro de 1997

