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ABSTRACT
Summarizing graphs is of paramount importance due to diverse

applications of large-scale graph analysis. A popular family of sum-

marization methods is the group-based approach. The general idea

consists of merging nodes of the original graph into supernodes of

the summary graph, encoding original edges into superedges/cor-

rection set edges, and dropping certain superedges or correction

set edges (for lossy summarization). The current state of the art

has several steps in its computation that are serious bottlenecks

in terms of running time and scalability. In this work, we propose

algorithm LDME, a correction set based graph summarization algo-

rithm that produces compact output representations in a fast and

scalable manner. To achieve this, we introduce (1) weighted locality

sensitive hashing to drastically reduce the number comparisons

required to find good node merges, (2) an efficient way to compute

the best quality merges that produces more compact outputs, and

(3) a new sort-based encoding algorithm that is faster and more

robust. More interestingly, our algorithm provides performance tun-

ing settings to allow the option of trading compression for running

time. On high compression settings, LDME achieves compression

equal to or better than the state of the art with up to 53x speedup

in running time. On high speed settings, LDME achieves up to two

orders of magnitude speedup with only slightly lower compression.
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1 INTRODUCTION
Large scale graphs are widely used in many important real-world

applications and represent web, communication, social, and trans-

action networks. These graphs contain as many as several billion

nodes and edges, and are continually growing at a tremendous rate.

As such, it is crucial to be able to represent them in a compact

way using a method that is both efficient and scalable. Compress-

ing graphs into a smaller form is an essential step when working

with them in scenarios such as storing graphs, processing graphs,

answering queries, and data visualization.

The solution is a graph compression technique known as graph
summarization, which takes an input graph and produces a more

compact representation of the input called the summary graph.

The summary graph not only decreases the footprint of the orig-

inal graph, but also allows us to do tasks such as efficiently answer

queries [7, 28, 32] or performmore effective and insightful data visu-

alization [5, 6, 16, 21, 40]. There are many general methods of graph

summarization such as grouping nodes into supernodes based on

some similarity or logical relation metric [9, 19, 24, 28, 29, 32, 33],

reducing the bits required to represent graphs [2, 4, 30, 31], and

removing unimportant nodes and edges [26, 36].

The most popular of the above is the group-based approach

(c.f. [25]), which is also the focus of our work. In this approach, as

defined in [28, 32], the output representation consists of a summary

graph and correction set. The correction set is used to reconstruct

the original graph from the summary graph either perfectly (loss-

less) or with some loss in information (lossy). Correction set based

graph summarization algorithms consist of three broad steps: merge

nodes of the original graph into supernodes of the summary graph,

encode the original edges into superedges of the summary graph

and correction set, and drop some edges from the summary graph

and correction set to yield a more compact output (for lossy case).

The current state of the art correction set based graph summa-

rization algorithm is SWeG of [32]. SWeG is faster than all of its

competitors, yields better compression than other methods, and can

also run in a distributed setting. SWeG improves upon the original

framework of [28] by adding a dividing step that divides the nodes

into smaller groups prior to merging (for parallelizability and effi-

ciency) and introducing an approximation metric for finding nodes

to merge. Despite the impressive performance of SWeG compared

to other algorithms, there are several steps in the algorithm which

bottleneck its performance. In particular, the merging algorithm is

quadratic in the size of groups, so its running time suffers due to the

dividing step not creating small enough groups of nodes. The merg-

ing step also uses an approximation metric to find good merges

since [32] did not present an efficient way to directly compute the

true best merges in a group. Finally, the encoding algorithm also

becomes a bottleneck since it scales quadratically based on the

number of supernodes, making it perform poorly for larger graphs.

This work proposes algorithm LDME (Locality Sensitive Hashing
DivideMerge Encode), an efficient and scalable correction set based

graph summarization method which makes optimizations in each

step of SWeG. In particular, LDME introduces weighted locality

sensitive hashing to reduce the amount of computation during the

merge phase, uses an efficient method of computing the best merges,

and implements a faster and more scalable encoding algorithm.

Our optimizations are such that we can now handle large datasets

requiring only a single machine without the need for expensive

clusters of machines. Additionally, LDME includes the benefit of

being able to tune its performance to trade off compression for

running time. In particular, LDME with high compression settings

achieves up to 53x speedup with equal or better compression than

SWeG and with high speed settings achieves up to two orders of

magnitude speedup with only a small loss in compression.

Contributions



• New node dividing algorithm which introduces weighted lo-

cality sensitive hashing to significantly improve the running

time of the bottleneck merging step

• Efficient method to directly compute the best nodes to merge

that gives better overall compression and is faster than the

approximation metric used in SWeG

• New edge encoding algorithm that scales better based on

only the number of edges in the original graph and is up to

26x faster than SWeG (especially on very large graphs)

• A performance tuning technique to allow the choice of more

compressed output representation or faster running time

• Extensive experimental results showing the speedup and

scalability of our approach that is able to handle billion-scale

datasets on a single machine.

2 CORRECTION SET BASED GRAPH
SUMMARIZATION

Here we describe the framework of correction set based graph

summarization (CGS). In this framework, we are given a simple

undirected input graph 𝐺 = (𝑉 , 𝐸), and the output consists of a

summary graph 𝐺 = (S,P) and corrections sets 𝐶+ and 𝐶− which
contain edges to be inserted and deleted respectively. The goal is

to reconstruct 𝐺 using the summary graph and correction sets. We

denote the reconstructed graph by𝐺 = (𝑉 , 𝐸). If𝐺 = 𝐺 , we call the

summarization lossless; otherwise, the summarization is lossy. We

denote the set of neighbours of node 𝑣 in 𝐺 (𝐺) by 𝑁𝑣 (𝑁𝑣).
ProblemDefinition.We begin by formally describing the method

used to obtain the reconstructed graph𝐺 from the output of CGS,

namely the summary graph and the correction set. Given a sum-

mary graph 𝐺 = (S,P) and correction sets 𝐶+,𝐶−, we build 𝐺 =

(𝑉 , 𝐸) as follows:
(1) For each superedge (𝐴, 𝐵) ∈ P, add all pairs of nodes (𝑎, 𝑏)

as edges to 𝐸 where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
(2) Add each edge in 𝐶+ to 𝐸
(3) Remove each edge in 𝐶− from 𝐸

The graph summarization problem (an optimization problem)

that CGS algorithms aim to solve is defined below.

Graph Summarization Problem
Input: Graph𝐺 = (𝑉 , 𝐸)
Output: Summary graph𝐺 = (S, P) and correction sets𝐶+,𝐶−

Minimizing
|P | + |𝐶+ | + |𝐶− | (1)

Such that the restored graph 𝐺̂ = (𝑉 , 𝐸) satisfies the constraint
|𝑁𝑣 \ 𝑁̂𝑣 | + |𝑁̂𝑣 \ 𝑁𝑣 | ≤ 𝜖 |𝑁𝑣 |, ∀𝑣 ∈ 𝑉 (2)

The objective function (Eq. (1)), which we want to minimize, is

the sum of the number of superedges in the summary graph and the

number of edges in the correction sets. In our implementation, we

only count the non-loop superedges since self loops can be encoded

using a single bit, so their total size is negligible. Note that the

constraint in Eq. (2) applies only to lossy summarization which is

orthogonal to the contributions in this work. Figure 1 shows graph

summarization using correction sets. It losslessly summarizes the

input graph with 7 nodes and 9 edges to the summary with 3

supernodes, 3 superedges and 3 correction edges (1 insertion and 2

deletions). SWeG [32] is the current state of the art of CGS for large-
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Figure 1: The scheme of correction set based graph summarization

scale graphs that builds on the algorithm by Navlahka et al. [28]

and provides approximate solutions to the graph summarization

problem. SWeG contains several optimization techniques over [28],

namely an efficient approximation metric for determining merge

pairs and a dividing step to speed up the algorithm and parallelize

the code for a distributed computing environment. The goal of

our work is to introduce new techniques to summarize large scale

graphs faster than SWeG by significantly reducing the amount of

computation, while maintaining comparable output compactness.

Algorithmic Framework. To better describe our algorithm, we

will first outline the CGS approach of [28, 32].

At a high level, the input to the algorithm is a graph 𝐺 = (𝑉 , 𝐸),
number of iterations 𝑇 , and an error bound 𝜖 ; the output is a sum-

mary graph 𝐺 = (S,P) and correction sets 𝐶+,𝐶−. Firstly, the set
of supernodes S is initialized such that every supernode contains

exactly one vertex of 𝑉 and every vertex of 𝑉 is in exactly one

supernode. Then, S is repeatedly updated over 𝑇 iterations by per-

forming sequences of supernode merges per iteration. In the case

of SWeG, in each iteration, S is divided into disjoint groups prior

to the merging step and merges are performed within each group.

Once the supernodes are identified, the original edges 𝐸 are

encoded into superedges P and correction sets 𝐶+ and 𝐶−. Finally,
in the case of lossy summarization (if 𝜖 > 0), some superedges/edges

are dropped from P,𝐶+, and𝐶− while maintaining the constraint in

Eq. (2). The individual steps in the algorithm will now be described

in further detail.

Dividing step. The dividing step divides S into disjoint groups of

supernodes such that supernodes which are similarly connected are

placed into the same group. This step is an optimization technique

introduced by [32] for the purpose of speed, memory efficiency, and

parallelizability. The division is performed by grouping supernodes

based on their shingle. The shingle 𝑓 (𝑣) of a regular node 𝑣 ∈ 𝑉
is defined as 𝑓 (𝑣) := 𝑚𝑖𝑛𝑢∈𝑁𝑣 or 𝑢=𝑣 ℎ(𝑢) where ℎ is a random

bijective function ℎ : 𝑉 → {1, . . . , |𝑉 |}. The shingle 𝐹 (𝐴) of a
supernode 𝐴 ∈ S is defined as as 𝐹 (𝐴) := 𝑚𝑖𝑛𝑣∈𝐴 𝑓 (𝑣). S is then

divided into disjoint groups {S (1) , . . . ,S (𝑚) } where supernodes in
each group have the same shingle value.

Merging supernodes. Let S be the entire set of supernodes. In

the case of [32], set S to be each S (𝑖) ∈ {S (1) , . . . ,S (𝑚) } from
the dividing step and perform the following for each group. (In a

parallel implementation, each group is processed in parallel).

The merging step merges supernodes in S by selecting a random

node 𝐴 from S, determining 𝐴’s best merge candidate supernode

𝐵 (in terms of minimizing Eq. (1)) from S, then merging 𝐴 and 𝐵

if the result of the merge reduces Eq. (1) by a sufficient amount.

Formally, this is done as follows:

• Initialize temporary set temp to S



• While temp is not empty:

– Randomly remove a supernode 𝐴 from temp
– Find the best merge candidate 𝐵 for 𝐴 from temp
– If the savings (defined below) obtained from merging 𝐴

and 𝐵 is above some threshold, merge𝐴 and 𝐵 then replace

𝐵 in temp with the merged result

To define savings, we need the notion of cost described as follows.

The cost of each supernode 𝐴 ∈ S is denoted by 𝐶𝑜𝑠𝑡 (𝐴,S) and is

defined to be the number of superedges in P and edges in 𝐶+ and
𝐶− that 𝐴 contributes to Eq. (1). This is computed by performing a

temporary edge encoding step (described later) relative to 𝐴 on the

current state of S. In particular, to compute 𝐶𝑜𝑠𝑡 (𝐴,S) for some

supernode A, we would calculate the number of edges between 𝐴

and every adjacent supernode, then use this to calculate how many

superedges and correction set edges would be encoded. Similarly,

𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵) is computed by looking at edges between merged

supernode 𝐴 ∪ 𝐵 and all adjacent supernodes.

The savings obtained by merging two supernodes 𝐴 ≠ 𝐵 ∈ S,
denoted 𝑆𝑎𝑣𝑖𝑛𝑔(𝐴, 𝐵,S), describes the "benefit" of merging 𝐴 and

𝐵 by calculating the inverse of the ratio between the cost of merged

supernode 𝐴 ∪ 𝐵 and the sum of 𝐴 and 𝐵’s separate cost. Savings is

formally defined as

𝑆𝑎𝑣𝑖𝑛𝑔(𝐴, 𝐵,S) := 1 − 𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵, (S \ {𝐴, 𝐵}) ∪ {𝐴 ∪ 𝐵})
𝐶𝑜𝑠𝑡 (𝐴,S) +𝐶𝑜𝑠𝑡 (𝐵,S)

[32] claims that computing Saving is computationally expensive,

and uses an approximation metric known as SuperJaccard similarity

to approximate Saving. The SuperJaccard similarity between two

supernodes is defined as

𝑆𝑢𝑝𝑒𝑟 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) =
∑

𝑣∈𝑁𝐴∪𝑁𝐵
𝑚𝑖𝑛(𝑤 (𝐴, 𝑣),𝑤 (𝐵, 𝑣))∑

𝑣∈𝑁𝐴∪𝑁𝐵
𝑚𝑎𝑥 (𝑤 (𝐴, 𝑣),𝑤 (𝐵, 𝑣)) (3)

where 𝑁𝐴 is the set of nodes adjacent to the nodes inside supernode

𝐴 ∈ S and 𝑤 (𝐴, 𝑣) is the number of nodes in supernode 𝐴 ∈ S
adjacent to node 𝑣 ∈ 𝑉 , formally defined as 𝑤 (𝐴, 𝑣) := |{𝑢 ∈ 𝐴 :

{𝑢, 𝑣} ∈ 𝐸}|. SuperJaccard aims to measure the similarity between

two supernodes based on the similarity of their connectivity and is

used to approximate the best merge candidate. After the best merge

candidate 𝐵 is identified using SuperJaccard, then 𝑆𝑎𝑣𝑖𝑛𝑔(𝐴, 𝐵,S)
is computed once to decide whether or not to merge. Formally, if

𝑆𝑎𝑣𝑖𝑛𝑔(𝐴, 𝐵,S) ≥ merging threshold 𝜃 (𝑡), for iteration 1 ≤ 𝑡 < 𝑇 ,

then 𝐴 and 𝐵 are merged. Here, 𝜃 (𝑡) is defined as 1/(1 + 𝑡) so that

more merge opportunity is allowed in the later iterations.

Encoding edges. The encoding step takes the supernodes S from

the merging step and encodes the edges 𝐸 of the original graph into

superedges P and corrections𝐶+,𝐶−. This is done by iterating over
all pairs of supernodes (𝐴, 𝐵) where the set of edges in 𝐸 between

the nodes in 𝐴 and nodes in 𝐵 is not empty. Then we either (1)

choose to not encode a superedge between 𝐴 and 𝐵 or (2) choose

to encode a superedge between 𝐴 and 𝐵. In case (1), since we do

not introduce a superedge, we would lose all the edges between 𝐴

and 𝐵 in the reconstruction step, so we must add all these edges to

𝐶+. In case (2), we add a superedge (𝐴, 𝐵) to P and as a result we

could potentially introduce extraneous edges that were not in the

original graph; we add those edges to 𝐶−. For each supernode pair

𝐴, 𝐵 ∈ S, 𝐸𝐴𝐵 is the set of edges in 𝐸 that are between the nodes

inside supernodes 𝐴 and 𝐵, and 𝐹𝐴𝐵 is the set edges between all

pairs of nodes in 𝐴 and 𝐵. Formally,

𝐸𝐴𝐵 := {{𝑢, 𝑣} ⊂ 𝑉 : 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑢, 𝑣 ∈ 𝐸}
𝐹𝐴𝐵 := {{𝑢, 𝑣} ⊂ 𝑉 : 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}

For each pair of supernodes 𝐴, 𝐵 ∈ S where 𝐸𝐴𝐵 ≠ ∅, if |𝐸𝐴𝐵 | ≤
|𝐹𝐴𝐵 |
2

=
|𝐴 | · |𝐵 |

2
thenwe do not encode 𝐸𝐴𝐵 as a superedge, so 𝐸𝐴𝐵 is

merged into𝐶+. Otherwise, 𝐸𝐴𝐵 is encoded as a superedge, so edge

(𝐴, 𝐵) is added to superedges P and (𝐹𝐴𝐵 \𝐸𝐴𝐵) is merged into𝐶−.
In the special case where 𝐴 = 𝐵, the condition is such that we do

not encode a superedge (superloop) if |𝐸𝐴𝐴 | ≤ |𝐹𝐴𝐴 |
2

=
|𝐴 | · ( |𝐴 |−1)

4
.

Otherwise, we do encode a superloop.

Dropping edges. In [28, 32] there is also an optional post process-

ing step (when 𝜖 > 0), called the dropping step, where some edges

are removed from the summary graph and correction sets so that

the summary is more compact. The dropping step ensures that

Eq. (2) is satisfied by verifying the constraint is still met as each

edge is removed. We do not discuss this step further as its running

time is negligible and it is orthogonal to the main approach.

3 PROPOSED METHOD
Since the correction set based summarization method of [32] is the

current state of the art, we will discuss our proposed methods of

improvement with respect to SWeG. Our goal is to optimize the

steps of SWeG by reducing the amount of computation performed.

The merging step is, computationally, the most challenging stage

of the algorithm and takes a significant fraction of the total running

time, making it the overall bottleneck step for most graphs. This

is because the process is quadratic in the size of groups. Here we

propose an improved dividing step that reduces the size of groups,

thus significantly speeding up the merge phase. Additionally, we

propose an efficient algorithm to compute Saving directly during

merge eliminating the need to use an approximation metric. For

some graphs, the encoding step becomes a problematic step since it

iterates through all pairs of supernodes, inducing a large amount of

overhead required for computing/remembering the edges between

pairs of supernodes. For graphs with a high number of supernodes,

the overhead causes the encoding step to run much slower and in

some cases not complete within reasonable time. We present a new

sort-based encoding step which has an improved practical running

time and is more robust than the one in [32]. We show the overall

structure of our approach in Algorithm 1. It consists of the divide,

merge and encode steps as outlined in Section 2.

Algorithm 1: Algorithm Overview

Input: input graph𝐺 = (𝑉 , 𝐸) , number of iterations𝑇

Output: summary graph𝐺 = (S, P) , corrections𝐶+ and𝐶−

1: initialize supernodes S to each vertex in𝑉

2: for 𝑡 = 1...𝑇 do
3: compute weighted LSH signature of each supernode in S
4: divide S into disjoint groups based on their signature

5: perform merges in each disjoint groups

6: encode edges 𝐸 into superedges P and correction edges𝐶+ and𝐶−

7: return summary graph𝐺 = (S, P) and corrections𝐶+,𝐶−



Speeding up the merging step. In the merging step of [32], after

picking a random supernode 𝐴 from the group, the merge part-

ner 𝐵 for 𝐴 is determined by checking every other supernode in

the group and selecting the best candidate. Overall, the merging

step takes time quadratic in the number of supernodes in a group.

Conceptually, we can improve the running time of the merging

step by reducing the size of each group S (𝑖) ∈ {S (1) , ...,S (𝑚) }. We

achieve this by introducing a refined divide step which uses Super-
Jaccard similarity for grouping supernodes. Note that SWeG uses

SuperJaccard as an approximation of Saving in the merge phase.

We instead propose to use SuperJaccard in the divide step. Namely,

we want to create groups such that nodes with high SuperJaccard
similarity end up in the same group. However, we will aim to avoid

computing SuperJaccard for every pair of supernodes as this would

be prohibitive. Instead we want to devise a locality sensitive hash-

ing scheme for SuperJaccard and then hash the supernodes to the

proper groups.

Locality sensitive hashing (LSH) is a technique used to group

similar items. A hash function (or hash function family) is used to

assign items to buckets, and the items in each bucket are “similar” to

each other with high probability. Typically, items are considered to

be sets and LSH schemes are designed for well-known set similarity

measures, such as simple Jaccard, Hamming, and Cosine similar-

ity. In the following, we show that SuperJaccard can be casted as

weighted Jaccard similarity, for which there exist locality sensitive

hash functions.

The weighted Jaccard similarity 𝐽𝑤 (𝑋,𝑌 ) between two vectors

𝑋 and 𝑌 of equal length and with integers weights is defined is

𝐽𝑤 (𝑋,𝑌 ) :=
∑

𝑣𝑚𝑖𝑛(𝑋𝑣, 𝑌𝑣)∑
𝑣𝑚𝑎𝑥 (𝑋𝑣, 𝑌𝑣)

Note that when 𝑋 and 𝑌 are Boolean vectors, the above equation

gives the simple Jaccard similarity between two sets represented

by vectors 𝑋 and 𝑌 .

Weighted LSH based dividing step. We assign a “supervector”

𝑉𝑆 of size 𝑛 to each supernode 𝑆 ∈ S, where 𝑛 is the number of

nodes in𝑉 . Each index 𝑢 in𝑉𝑆 (where 1 ≤ 𝑢 ≤ 𝑛) represents a node

in 𝑉 , and the weight of 𝑉𝑆 at index 𝑢 for each node 𝑢 is 𝑤 (𝑆,𝑢).
Recall, from Section 2, that 𝑤 (𝑆,𝑢) is the number of nodes in 𝑆

adjacent to 𝑢.

We claim that for two supernodes 𝐴 and 𝐵, the weighted Jaccard

similarity between their supervectors 𝑉𝐴 and 𝑉𝐵 is equal to the

SuperJaccard similarity between 𝐴 and 𝐵. Namely, we note that

𝐽𝑤 (𝑉𝐴,𝑉𝐵) =
∑

𝑣𝑚𝑖𝑛((𝑉𝐴)𝑣, (𝑉𝐵)𝑣)∑
𝑣𝑚𝑎𝑥 ((𝑉𝐴)𝑣, (𝑉𝐵)𝑣)

=

∑
𝑣𝑚𝑖𝑛(𝑤 (𝐴, 𝑣),𝑤 (𝐵, 𝑣))∑
𝑣𝑚𝑎𝑥 (𝑤 (𝐴, 𝑣),𝑤 (𝐵, 𝑣))

is equal to 𝑆𝑢𝑝𝑒𝑟 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) as defined in Eq. (3). For any su-

pernode 𝑆 , the non-zero values in its assigned supervector 𝑉𝑆 cor-

respond exactly to the nodes in 𝑁𝑆 . So, in 𝐽𝑤 (𝑉𝐴,𝑉𝐵), only the

indices 𝑣 ∈ 𝑁𝐴 ∪ 𝑁𝐵 contribute to the overall value. Therefore,

𝐽𝑤 (𝑉𝐴,𝑉𝐵) = 𝑆𝑢𝑝𝑒𝑟 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵).
Now, we can use a weighted LSH scheme (to be described shortly)

in order to splitS in the dividing step and have the property that su-

pernodes with high SuperJaccard similarity have a high probability

of being in the same bucket. Compared to the simple single-shingle

based approach of [32], weighted LSH is a more precise metric

that divides 𝑆 into more groups of smaller size while ensuring that

supernodes with similar connectivity are in the same group. Fur-

thermore, we can control the performance of our algorithm by

tuning the precision level of the hash function in order to trade

compression for running time.

Updated Dividing Step. As a weighted LSH scheme, we use Den-

sified One Permutation Hashing (DOPH) [35], which takes as in-

put a binary vector 𝐼 of length |𝑉 | and uses a single permutation

ℎ : {1, . . . , |𝑉 |} → {1, . . . , |𝑉 |} to produce a hash signature 𝐻𝐼 for 𝐼

of length 𝑘 . We use the fact from [34] that for any sparse weighted

vectors𝑉𝐴 and𝑉𝐵 , the probability that the binarized forms of𝑉𝐴 and

𝑉𝐵 have the same DOPH signature is approximately the weighted

Jaccard similarity between 𝑉𝐴 and 𝑉𝐵 (non binarized).

Given a binary vector 𝐼 of length |𝑉 |, a random permutation

ℎ : {1, . . . , |𝑉 |} → {1, . . . , |𝑉 |}, a hash signature length 𝑘 , and a

random binary vector 𝐷 of length 𝑘 (where 𝐷𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , is set to

0 or 1 independently and uniformly at random), DOPH signature

𝐻𝐼 is computed as follows (see Algorithm 2):

• Permute the bits in 𝐼 by re-indexing based on ℎ. (Line 1)

• Separate 𝐼 into 𝑘 equal length bins. We denote bin 𝑖 as 𝑏𝑖 ,

1 ≤ 𝑖 ≤ 𝑘 . (Line 2)

• Define 𝐻𝑏𝑖 as the first index within the bin 𝑏𝑖 that contains

a non-zero value. If the bin contains no non-zero values, 𝐻𝑏𝑖
is "empty". Set 𝐻𝑏𝑖 to be the value of the signature 𝐻𝐼 at

position 𝑖 . (Lines 3 - 7)

• For each empty 𝐻𝑏𝑖 , we define the value to be the first

non-empty signature index either to the left or right (with

wraparound at the endpoints). The choice of left or right is

determined by the bit 𝐷𝑖 . (Lines 8 - 12)

• Return 𝐻𝐼 = {𝐻𝑏1 , ..., 𝐻𝑏𝑘 }. (Line 13)
We use DOPH as a new metric for dividing supernodes S into dis-

joint groups, where each group of supernodes has the same DOPH

signature. For each supernode 𝐴 ∈ S, we binarize the supervector
𝑉𝐴 (supervector defined in the previous section) by converting each

non-zero entry to 1 and compute 𝐴’s hash signature 𝐻𝐴 . We then

divide S into groups by hash signature value. The algorithm is

illustrated in Algorithm 3.

Algorithm 2:Densified One Permutation Hashing (DOPH)

Input: Binary vector 𝐼 , random permutation

ℎ : {1, . . . , |𝑉 | } → {1, ..., |𝑉 | }, hash signature length 𝑘 , random

binary vector 𝐷 of length 𝑘

Output: Hash signature 𝐻

1: permute the values of 𝐼 using ℎ

2: divide𝑉 into 𝑘 sequential bins of equal size (right pad𝑉 with zeroes if

𝑘 does not divide |𝑉 |)
3: for each bin 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑘 do
4: if 𝑏𝑖 has a non-zero entry (i.e. 𝑏𝑖 is non-empty) then
5: 𝐻𝑏𝑖 ← index of first non-zero entry in 𝑏𝑖 , 1 ≤ 𝐻𝑏𝑖 ≤ |𝑏𝑖 |
6: else
7: 𝐻𝑏𝑖 ← ∅
8: for each 𝐻𝑏𝑖 where 𝐻𝑏𝑖 = ∅, 1 ≤ 𝑖 ≤ 𝑘

9: if 𝐷𝑖 = 1 then
10: 𝐻𝑏𝑖 ← 𝐻𝑏 𝑗

, 𝑗 is index of first non-empty bin to the right

11: else
12: 𝐻𝑏𝑖 ← 𝐻𝑏 𝑗

, 𝑗 is index of first non-empty bin to the left

13: return 𝐻 = {𝐻𝑏1 , ..., 𝐻𝑏𝑘
}



Algorithm 3:Weighted LSH Divide

Input: Graph𝐺 = (𝑉 , 𝐸) , current supernodes S, signature length 𝑘
Output: Disjoint groups of supernodes: {S (1) , ..., S (𝑚) }
1: generate a random permutation ℎ : {1, ..., |𝑉 | } → {1, ..., |𝑉 | }
2: generate random binary vector 𝐷 of length 𝑘

3: for each supernode 𝐴 ∈ S do
4: compute supervector𝑉𝐴 (as previously defined)

5: 𝐼𝐴 ← 𝑏𝑖𝑛𝑎𝑟𝑖𝑧𝑒 (𝑉𝐴)
6: 𝐷𝑂𝑃𝐻 (𝐼𝐴, ℎ, 𝑘, 𝐷) ⊲ compute hash signature 𝐻𝐴 (Algorithm 2)

7: divide supernodes in S into {S (1) , ..., S (𝑚) } by their hash signature

8: return {S (1) , ..., S (𝑚) }

Tuning the performance. Using DOPH to divide S allows us to

tune the performance of the overall algorithm. In particular, we can

obtain a more compact output with more running time or obtain a

less compact output with less running time. Tuning is done through

modifying the 𝑘 value in DOPH which specifies the number of bins

that we divide the input vector 𝑉 into and the length of the hash

signature. Increasing 𝑘 means that vectors must be more similar

to have the same signature, which results in S being divided into

more groups of smaller size with higher weighted Jaccard similarity.

Conversely, reducing 𝑘 results in less groups but of larger size. As

𝑘 increases, the running time of the merge algorithm significantly

decreases since the merge algorithm receives groups of smaller

size. Amount of compression also decreases due to the probabilis-

tic nature of LSH since groups of smaller size result in a higher

likelihood of good potential merge pairs being placed in different

groups. Being able to tune 𝑘 allows the option of trading compres-

sion for running time (depending on which is more important for

a particular application). The number of groups increasing with 𝑘

can also be explained combinatorially by analyzing the number of

possible signatures for any given 𝑘 , which we observe is ( 𝑛
𝑘
+ 1)𝑘 .

This is because there are
𝑛
𝑘
+ 1 possible values per bin (namely

𝑛
𝑘

indices and the 𝑒𝑚𝑝𝑡𝑦 value) and 𝑘 total bins in a DOPH signature.

Hence, the number of possible groups grows exponentially with 𝑘 ,

compared to the shingle method in which the number of possible

groups is fixed at 𝑛.

Efficiently computing Saving.As previously discussed, themerg-

ing step in [32] computes the SuperJaccard between supernodes to

find the best merge partner for a particular supernode. SuperJaccard

is an approximation for Saving, where Saving is the true amount of

decrease in Eq. (1) when merging two supernodes. Here we present

a method to directly compute the Saving between supernodes in

running time no more than computing SuperJaccard.

For each group S (𝑖) of supernodes, we create a hashtable-of-

hashtables data structure𝑊 . The first level hashtable of𝑊 is keyed

by the supernodes in the group S (𝑖) . A second level hashtable,

denoted by𝑊𝐴 for some supernode 𝐴 in S (𝑖) , contains key-value
pairs (𝐵, 𝑣𝑎𝑙) where the key 𝐵 is a supernode in S such that there

exist edges in 𝐸 between the nodes within𝐴 and 𝐵 and the value 𝑣𝑎𝑙

is the number of edges in 𝐸 between 𝐴 and 𝐵. This data structure

enables us to find out the number of actual edges between any pair

of supernodes in expected constant time and consequently compute

its Cost and Saving with other supernodes. Algorithm 4 shows how

to calculate Saving for a pair of supernodes 𝐴 and 𝐵. The algorithm

works along the lines of the decision process inside the encoding

step described in Section 2. For this, it needs the numbers of edges

between supernode pairs, which are conveniently retrieved from

the hashtable structure we described (see lines 4,5,8,9,11).

Algorithm 4: Compute Saving

Input: Hashtables𝑊𝐴 and𝑊𝐵

Output: 𝑆𝑎𝑣𝑖𝑛𝑔 (𝐴, 𝐵, S)
1: initialize𝐶𝑜𝑠𝑡 (𝐴) = 0,𝐶𝑜𝑠𝑡 (𝐵) = 0,𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵) = 0

2: for each supernode𝐶 ∈ keyset of𝑊𝐴 do
3: if keyset of𝑊𝐵 does not contain𝐶 then
4: 𝐶𝑜𝑠𝑡 (𝐴)+=min

(
|𝐴|· ( |𝐶 |−1)

2
,𝑊𝐴 [𝐶 ]

)
5: 𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵)+=min

(
( |𝐴|+|𝐵 |) · ( |𝐶 |−1)

2
,𝑊𝐴 [𝐶 ]

)
6: for each supernode𝐶 ∈ keyset of𝑊𝐵 do
7: if keyset of𝑊𝐴 does not contain𝐶 then
8: 𝐶𝑜𝑠𝑡 (𝐵)+=min

(
|𝐵 |· ( |𝐶 |−1)

2
,𝑊𝐵𝐶

)
9: 𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵)+=min

(
( |𝐴|+|𝐵 |) · ( |𝐶 |−1)

2
,𝑊𝐵 [𝐶 ]

)
10: else
11: 𝐶𝑜𝑠𝑡 (𝐴 ∪ 𝐵)+=min

(
( |𝐴|+|𝐵 |) · ( |𝐶 |−1)

2
,𝑊𝐵 [𝐶 ] +𝑊𝐴 [𝐶 ]

)
12: return 1 − 𝐶𝑜𝑠𝑡 (𝐴∪𝐵)

𝐶𝑜𝑠𝑡 (𝐴)+𝐶𝑜𝑠𝑡 (𝐵)

After merging any two supernodes𝐴 and 𝐵, we update𝑊 by iter-

ating over the keyset of the hashtable corresponding to the supern-

ode with smaller size (say 𝐵). For each key-value pair (𝐶,𝑊𝐵 [𝐶])
in𝑊𝐵 (i.e. 𝐶 shares an edge in 𝐸 with 𝐵) we do the following steps:

(1) If key 𝐶 exists in𝑊𝐴 (i.e. 𝐶 shares an edge in 𝐸 with 𝐴),

we set𝑊𝐴 [𝐶] =𝑊𝐴 [𝐶] +𝑊𝐵 [𝐶] (i.e we add the number of

edges between 𝐵 and𝐶 to the count of edges between 𝐴 and

𝐶). Otherwise, we add a new pair (𝐶,𝑊𝐵 [𝐶]) to𝑊𝐴 .

(2) If𝑊𝐶 is in𝑊 (i.e. 𝐶 belongs to the same group as 𝐴 and 𝐵)

and key 𝐴 exists in𝑊𝐶 , we set𝑊𝐶 [𝐴] = 𝑊𝐶 [𝐴] +𝑊𝐶 [𝐵]
and remove 𝐵 from𝑊𝐶 . If key 𝐴 does not exist in𝑊𝐶 , we

create a new entry for 𝐴, set𝑊𝐶 [𝐴] =𝑊𝐶 [𝐵], and remove

𝐵 from𝑊𝐶 .

Finally, we remove 𝐵 from𝑊 since the supernode 𝐵 no longer exists

after the merge. We note that computing Saving using Algorithm 4

requires only iterating over supernodes in S (in contrast to com-

puting SuperJaccard which requires iterating over nodes in𝑉 ). This

helps us to speed up the merge step while eliminating the need of

approximating the Saving computation.

Improving the encoding step. The encoding algorithm of [32]

requires iterating over all supernodes and for each supernode 𝐴,

identifying all supernodes 𝐵 ∈ S for which there is at least one

edge in 𝐸 between the nodes within 𝐴 and 𝐵 (i.e. 𝐸𝐴𝐵 ≠ ∅). Imple-

menting this step requires a significant amount of computational

overhead especially for summary graphs with many supernodes. In

a simple implementation, all pairs of supernodes (𝐴, 𝐵) would be

checked and if 𝐸𝐴𝐵 ≠ ∅, we would perform the rest of the encoding

algorithm. However, this implementation would take time that is

quadratic in the number of supernodes leading to poor scalabil-

ity. In a more careful implementation, for each supernode 𝐴, we

only iterate over the supernodes 𝐵 where 𝐸𝐴𝐵 ≠ ∅. To do this, we

require a preprocessing step where we iterate over the nodes in

𝑉 within 𝐴, compute the edges incident to these nodes to obtain



the supernodes 𝐵 that shares an edge in 𝐸 with 𝐴, and save these

edges in a lookup table for the subsequent steps. However, there is

a significant overhead due to computing, storing, and looking up

incident edges for each supernode.

Nevertheless, even the more careful implementation above per-

forms poorly when the number of supernodes is large and in some

cases caused the algorithm to not complete within reasonable time.

Here we will introduce a restructured encoding step algorithm that

has faster practical performance, is more consistent, and requires

little computational overhead aside from reading the edges in 𝐸.

Updated Encoding Step. In our encoding algorithm (Algorithm

5), for each edge 𝑒 ∈ 𝐸, we add a 2-tuple (𝑠, 𝑒) to a list 𝐿. In each

2-tuple, 𝑒 = (𝑢, 𝑣) corresponds to the original edge and 𝑠 = (𝐴, 𝐵) is
a "candidate superedge" where 𝐴 and 𝐵 are the supernodes contain-

ing nodes 𝑢 and 𝑣 respectively. The candidate superedge identifies

which pair of supernodes an edge is between. We then group 𝐿

into {𝐿 (1) , ..., 𝐿 (𝑘) } by their candidate superedge value 𝑠 so that

any supernode pair (𝐴, 𝐵) where 𝐸𝐴𝐵 ≠ ∅, which have edges to

be encoded, have the edges between them grouped together (line

5 in Algorithm 5). Each group 𝐿 (𝑖) ∈ {𝐿 (1) , ..., 𝐿 (𝑘) } is associated
with a pair of supernodes (𝐴, 𝐵) and contains exactly the edges

between 𝐴 and 𝐵 (namely 𝐸𝐴𝐵 ) that are needed for the encoding

step. Thus, for each group, we can look at the respective 𝐸𝐴𝐵 to

decide whether or not to encode a superedge using the same condi-

tions as in [28, 32]. Line 5 in Algorithm 5 can be done efficiently

by lexicographically sorting the 2-tuples in 𝐿 by their candidate

superedge value 𝑠 . Effectively, this groups all the edges in 𝐸 by their

supernode endpoints. Iterating through each group (line 6) can

be done by linear scanning 𝐿 in sorted order and a group change

is detected by a change in the candidate superedge 𝑠 of a 2-tuple

during the scan. The edges between the pair of supernodes of a

group are obtained by temporarily saving each edge 𝑒 in the 2-tuple

scan until the group changes, at which point the remainder of the

encoding step can be performed on the saved edges.

Algorithm 5: Updated Encoding Step

Input: Input graph𝐺 = (𝑉 , 𝐸) , supernodes S
Output: Summary graph𝐺 = (S, P) , corrections𝐶+ and𝐶−

1: 𝐿 = {}
2: for each edge 𝑒 = (𝑢, 𝑣) in 𝐸 do
3: 𝐴← supernode containing 𝑢, 𝐵 ← supernode containing 𝑣

4: 𝑠 ← candidate superedge (𝐴, 𝐵) , 𝐿 ← 𝐿 ∪ {(𝑠, 𝑒) }
5: group 𝐿 into {𝐿 (1) , ..., 𝐿 (𝑘 ) } by candidate superedge 𝑠 = (𝐴, 𝐵)
6: for each 𝐿 (𝑖 ) ∈ {𝐿 (1) , ..., 𝐿 (𝑘 ) } do
7: (𝐴, 𝐵) ← candidate superedge 𝑠 of 𝐿 (𝑖 )

8: 𝐸𝐴𝐵 ← set of edges 𝑒 in 𝐿 (𝑖 ) (denoted 𝐸𝐴𝐴 if 𝐴 = 𝐵)

9: if 𝐴 ≠ 𝐵 then
10: if |𝐸𝐴𝐵 | ≤ |𝐴|·|𝐵 |

2
then𝐶+ ← 𝐶+ ∪ 𝐸𝐴𝐵

11: else P ← P ∪ {(𝐴, 𝐵) }, 𝐶− ← 𝐶− ∪ (𝐹𝐴𝐵 \ 𝐸𝐴𝐵 )
12: else
13: if 𝐸𝐴𝐴 ≤ |𝐴|· ( |𝐴|−1)

4
then𝐶+ ← 𝐶+ ∪ 𝐸𝐴𝐴

14: else P ← P ∪ {(𝐴,𝐴) }; 𝐶− ← 𝐶− ∪ (𝐹𝐴𝐴 \ 𝐸𝐴𝐴)
15: return𝐺 = (S, P) and𝐶+,𝐶−

In summary, we significantly reduce the running time of the

encoding algorithm of [28, 32] in practice by directly working with

the edges in 𝐸. This reduces the overhead that comes from iterating

over pairs of supernodes and computing the associated edges.

Time Complexity. The time complexity of LDME is dominated by

the merge phase, which is𝑂 ((𝑛/|S∗ |) · |S∗ |2) = 𝑂 (𝑛 · |S∗|), where
S∗ denotes the largest group in {S (1) , ...,S (𝑚) } from the divide

phase. Note that this is similar to the time complexity of the merge

phase in SWeG, however the largest group size in LDME is much

smaller than in SWeG, thus resulting in a significant improvement

in running time in practice.

Space Complexity. The space requirement for storing 𝐺,𝐺,𝐶+,
and 𝐶− is 𝑂 ( |𝑉 | + |𝐸 |) = 𝑂 ( |𝐸 |). The hashtable-of-hashtables𝑊 ,

created for each group, stores the number of edges between su-

pernodes in the group and their adjacent supernodes, which in the

worst case is 𝑂 ( |𝐸 |). However, LDME’s divide phase creates small

groups, especially as 𝑘 increases, thus the space requirement will

be much less in practice. The other data structures used, such as

the signatures and the encoding edge list, are all 𝑂 ( |𝐸 |).
Parallel Implementation Description. Similar to SWeG, LDME

is highly parallelizeable and can run in a distributed environment

for higher speed and scalability. In the dividing step, the DOPH

signature of each supernode can be computed in parallel (lines 5

and 6 of Algorithm 3). Then, the merging step can be performed

on each group in {S (1) , ...,S (𝑚) } in parallel (line 5 in Algorithm

1). Finally, each supernode 𝐴 in the encoding step can be processed

in parallel, so line 2 of Algorithm 5 only reads in the edges incident

to each 𝐴. Processing each supernode in parallel also removes the

need for grouping candidate superedges via sorting in line 5.

4 EXPERIMENTS
In our experiments, we compare our approach to SWeG [32], Mosso

[14], and VoG [15] (we do not compare versus [28] because it is

superseded by SWeG). In our experiments, we wish to test how

our algorithmic improvements translate to gains in running time

compared to the mentioned algorithms. We evaluate the imple-

mentations of all above algorithms on a single-threaded machine

where we can better observe our main goal of reducing the amount

of computation. We also compare the performance of the parallel

implementation of LDME and SWeG in a distributed setting.

We experiment with two versions of our approach, one where we

use DOPH signature length 𝑘 = 5 in our dividing step and the other

where 𝑘 = 20. We call our general approach LSH-based Divide-

Merge-Encode (LDME), and the two versions LDME5 and LDME20

for 𝑘 = 5 and 𝑘 = 20 respectively. Both versions demonstrate a

significant speedup over the compared algorithms (often an order

of magnitude), with LDME20 faster than LDME5. With respect to

compression, LDME5 is very similar to SWeG and Mosso, whereas

LDME20 shows some moderate reduction in compression as trade-

off for its speedier execution over LDME5.

We use the datasets in Table 1 from Laboratory of Web Algorith-

mics (http://law.di.unimi.it/datasets.php). The sizes of the graphs

we use are as follows: cnr-2000 is a (relatively) small graph, in-2004,

eu-2005, and hollywood-2009 are medium graphs, and hollywood-

2011, indochina-2004, uk-2002, and arabic-2005 are large graphs.

Table 1 shows the characteristics of each graph. We note that the

http://law.di.unimi.it/datasets.php
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Figure 2: The comparison between original SWeG, LDME5 and LDME20 in terms of compression, total time (seconds), divide/merge time
(seconds), encode time (seconds) over 60 iterations.
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Figure 3: Compression and total time at final iteration 60 of
LDME5/20 on graphs that SWeG could not complete within 1 day.

Graph Abbr Nodes Edges

cnr-2000 CN 325,557 5,565,380

in-2004 IN 1,382,908 27,560,356

eu-2005 EU 862,664 32,778,363

hollywood-2009 H1 1,139,905 113,891,327

hollywood-2011 H2 2,180,759 228,985,632

indochina-2004 IC 7,414,866 304,472,122

uk-2002 UK 18,520,486 529,444,615

arabic-2005 AR 22,744,080 1,116,651,935

Table 1: Summary of datasets

number of edges shown in Table 1 is after symmetrization, where

we add the reverse of directed edges if they do not already exist.

LDME v.s SWeG.We evaluate the difference between SWeG and

LDME5/LDME20 using four different metrics: (1) compression (2)

total running time, (3) dividing and merging time, and (4) encod-

ing time. For each metric, we ran SWeG and LDME5/LDME20 for

𝑇 = 10, 20, 30, 40, 50, 60 iterations. The amount of compression was

computed using the complement of the ratio between the number

of superedges + correction set edges and number of original edges.

Specifically: C𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − |P |+ |𝐶
+ |+ |𝐶− |
|𝐸 |

Figure 2 illustrates the compression and total running time of

SWeG and LDME5/LDME20 on graphs for which all algorithms

could complete within a reasonable time of 1 day (CN, IN, EU, and

H1). In terms of compression, LDME5 demonstrates a similar final

compression as SWeG; CN, IN, and EU achieved 2% to 4% increase at

iteration 60 and H1 had a 1% decrease. LDME20 demonstrates a final

compression that matches or is only slightly lower than SWeG; CN

and IN achieved 0.5% increase at iteration 60 while EU and H1 had

a 7% and 8% decrease respectively. In terms of total running time,

LDME5 demonstrates a 3.6x to 31x speedup over SWeG on CN, IN

and EU, and is 53x faster on H1. LDME20 shows an evenmore signif-

icant speedup ranging from 11x (IN) to 96x (CN) faster than SWeG.

Thus, the expected effect of increasing 𝑘 from 5 to 20 in LDME is

clearly demonstrated in both compression and running time.

Figure 2 also shows the comparison of SWeG and LDME’s di-

vide/merge and encode times on CN and EU (we do not show this for

IN andH1 since the behavior is similar). Since themerging step dom-

inates the total running time of the algorithms, the divide/merge

time and total running time are similar. The breakdown of encoding

time illustrates the difference between our encoding algorithm and

SWeG’s encoding algorithm. LDME’s encoding time is rather uni-

form through all iterations, while SWeG’s starts high and decreases

over iterations as the number of supernodes is compressed (since

it scales based on |S|). On CN, IN, EU, and H1, LDME’s encoding

time is 7x to 26x faster than SWeG, and for larger datasets (eg. UK,

AR), SWeG’s encoding could not complete within reasonable time

while our encoding algorithm stayed consistently small.

To illustrate the superior scalability of LDME over SWeG, Fig-

ure 3 shows the final compression and running time of LDME5/20

on larger graphs H2, IC, UK, and AR, on all of which SWeG could

not complete within reasonable time (1 day). SWeG ran overtime

on these graphs due to its slow merging step and in some cases also

due to its inefficient encoding step. Similar to the results in Figure

2, LDME20’s compression is slightly lower than that of LDME5, but

achieves a faster running time. AR, having over 1 billion edges, also

shows that our algorithm can successfully summarize billion edge

scale graphs using only a single machine.

Results of tuning 𝑘 . Figure 4 illustrates the number of groups

created in the dividing step and the size of the largest group for 𝑘

= {5, 10, 15, 20} on graphs CN, H1, and H2. As 𝑘 increases, there is

a clear significant increase and decrease in number of groups and

max group size respectively.
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Figure 4: The number of groups (red, left y-axis) and the largest
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Figure 5: Running time of (a) LDME vs. Mosso on a single machine,
(b) LDME vs. SWeG in a distributed environment, and (c) SBM exper-
iments for LDME, SWeG, Mosso, and VoG on a single machine

LDME vs. Mosso and VoG. Figure 5 (a) shows the running time

for Mosso and LDME5/20 (for 10 iterations) on CN, H1, H2, and

UK. VoG was also run, but it was over 40x slower than LDME on

all datasets, hence its running time is not displayed. We use the

configuration (𝑒 = 0.3, 𝑐 = 120) for MoSSo as used in [14], where 𝑒 is

the escape probability and 𝑐 is the sample size of each trial. LDME5

and LDME20 achieved a 1.5x to 5.7x and 2.6x to 10.2x speedup

over Mosso respectively. Mosso could also not complete AR within

reasonable time (1 day) while both LDME5/20 could (see Figure 3).

Distributed Environment Experiments: Figure 5 (b) illustrates
the running time of the parallel implementations of SWeG and

LDME5/20, both run for 10 iterations, in a distributed environment.

The implementation of both algorithms were done using Apache

Spark and they were run on Amazon EMR clusters with the follow-

ing specifications: 8 m5xlarge (4 vCore, 16GB memory, 64GB EBS

storage) instances for CN/H1/H2 and 8 m5.2xlarge (8 vCore, 32GB

memory, 128GB EBS Storage) instances for UK/AR. LDME’s signif-

icant improvement in running time also translates to a distributed

setting, where LDME5 achieved 3.0x to 23.8x speedup and LDME20

achieved 3.1x to 36.0x speedup on the experimented datasets. LDME

also achieves higher scalability, as illustrated by SWeG being unable

to complete AR within reasonable time (12 hours).

Stochastic Block Model Experiments: Stochastic block model

requires two parameters for generating random graphs, the number

of nodes in each community and the block matrix which shows the

level of interaction between communities. We generate different

random graphs with 3 communities, 300 nodes in each commu-

nity and 900 nodes in total. We gradually increase the level of

interactions between/within communities to generate more dense

random graphs. We compare the running time of LDME5/20 with

MoSSo, SWeG and VoG. Figure 5 (c) shows the performance of

each algorithm. VoG goes off the figure and MoSSo running time

increases substantially as the density of graph increases. SWeG and

LDME5/20 are quite resilient with respect to density and LDME5

is up to 8x faster than SWeG in some cases.

5 RELATEDWORK
Graph summarization is an active area of research and studied in

a variety of settings (see [11, 25] for detailed surveys). Previous

work on this topic can be classified into two categories, grouping

[7, 13, 17–19, 28, 29, 32, 38] and non-grouping [1, 8, 10, 20, 22, 23,

26, 27, 37, 39, 40]. Grouping based methods received more attention

in the last few years and they are divided into non-correction set

based methods such as [7, 8, 15, 17–19, 29, 38] and correction set

based methods [13, 14, 28, 32].

Navlakha et al. [28] introduced a novel framework in which a

graph is represented compactly as a summary graph along with

correction sets. Their algorithm, RANDOMIZED, picks a random

supernode and identifies the supernode that gives the best savings

with it among possible candidate merges from supernodes that

are 2-hops away. SAGS [12] uses simple locality sensitive hashing

instead of Saving or SuperJaccard in the merge phase to choose the

best pair among pairs that are 2-hop away. VoG [15] uses existing

clustering algorithms for finding important candidate subgraphs

to summarize. These works, however, are unable to achieve strong

compression while maintaining scalability.

The state of the art algorithm for correction set based graph

summarization is SWeG studied by Shin et al. [32] which achieves

strong compression and scales an order of magnitude better than

RANDOMIZED and SAGS. MoSSo is a recent incremental algorithm

for summarizing dynamic graphs using correction set [14] which

we also include in our comparisons. SlimGraph [3] is a program-

ming framework, where various summarization algorithms can be

plugged-in (such as SWeG), rather than an algorithmic contribution,

so there is no direct avenue to compare it with our work.

6 CONCLUSION
We proposed LDME, a correction set based graph summarization

method that highlights the usefulness of weighted LSH to graph

compression. LDME is able handle large datasets using only a single

machine and improves each step of SWeG, namely, the dividing,

merging, and encoding steps. Furthermore, using weighted locality

sensitive hashing in the dividing step allows for performance tuning

of LDME where compression can be traded off for running time.

With high compression settings, LDME achieves up to 53x times

faster running time while maintaining compression rates as good as

SWeG. With high speed settings, LDME achieves up to two orders

of magnitude speedup while allowing a small loss in compression.
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