
Scalable Ubiquitous Data Access
in Clustered Sensor Networks

Yueh-Hua Lee, Alex Thomo, Kui Wu, and Valerie King

University of Victoria, Victoria BC, Canada
yhl@uvic.ca,{thomo,wkui,val}@cs.uvic.edu

Abstract. Wireless sensor networks have drawn much attention due to
their ability to monitor ecosystems and wildlife habitats. In such sys-
tems, the data should be intelligently collected to avoid human inter-
vention. For this, we propose a network infrastructure in which the sen-
sor nodes are designated as “data-generating” or “data-storage” nodes.
Data-generating nodes take measurements, whereas data-storage nodes
make themselves available to compute and store checksums of data re-
ceived from nearby data-generating nodes.
We propose a spatially-clustered architecture for our storage nodes and a
coding scheme that allows a data collector to recover all original data by
querying only a small random subset of storage nodes from each cluster.
The size of such a subset is equal to the number of data-generating nodes
that the cluster serves.
When the clustering structure of the storage nodes is unknown, we show
that recovering of the original data is still possible if a random subset of

the right size of storage nodes is selected for querying. We determine this
right size so as to have a successful decoding with a probability exceeding
a given threshold.

1 Introduction

A wireless sensor network (WSN) consists of a large number of cheap, low-
power sensors with strictly limited resources. Most WSN applications collect
and process sensor readings such as temperature and humidity. In applications
such as the detection of fire and pollution, live data streams are delivered to
a data processing center through a connected network [7, 8, 1, 5]. In some other
applications; however, the network may not be connected all the time or access
to live data streams may be costly and undesirable. To mention a few examples,
in ZebraNet [6] that tracks wild zebras in Africa, it is very hard to access live
data from zebras due to their spontaneous movement; in the habitat monitoring
system in Great Duck Island [9], some birds are notoriously sensitive to human
intervention, and as such, data are collected only occasionally. In these examples,
the data are stored temporarily (at storage nodes) for later data access.

A system infrastructure to achieve the above goal is to deploy sensors in the
field to form a distributed data storage network. The infrastructure contains
three different nodes: “data-generating nodes” (or data nodes for short), “data

storage nodes” (or storage nodes for short), and “data collectors.” The data
nodes (e.g., the sensors on animals) takes measurements. When the data nodes
are close to storage nodes, they upload their readings. The duty of the storage
nodes is to encode and store the incoming data. Data collectors, which may be
interested researchers using the system, will access the storage nodes at a later
time. The storage nodes are usually stationary. They form an auto-configuration
network, which is managed by an underlying network management scheme (e.g.,
clustering). The operations of the management scheme may be invisible to data
nodes (zebras) and data collectors (human people), who may not be always on
the monitored field.

It has been pointed out that näıve data storage without coding cannot achieve
efficient data collection (cf. [3, 12]). Suppose that the number of data nodes and
storage nodes is K and N , respectively. The ubiquitous access property is

to recover all K data items by querying any K storage nodes.

This is exactly the goal that we want to achieve with small system overhead.

Dimakis et al. in [3] proposed Decentralized Erasure Codes (DEC) for ubiqui-
tous access to sensor data. Dimakis et al. showed that if each data node transmits
the data to at least 5N

K
lnK storage nodes, then the ubiquitous access can be

fulfilled. They assumed, however, a flat underlying network structure, and thus,
the communication cost for the data distribution is prohibitive when N becomes
large. Unfortunately, in many applications, we must deploy a great number of
storage nodes to provide good coverage. In addition, the K data items are de-
codable only with a probability of 1− K

q
, where q is the order of the Galois field

used for encoding. To achieve a high decoding probability, q cannot be small,
and this implies a significant overhead in calculations.

We remark that one could also achieve ubiquitous access by using Reed-
Solomon (RS) codes. In such a case, the decoding is 100% certain. However, the
RS code matrix is in general “denser” (i.e. with more non-zero elements) than
the DEC’s code-matrix, and this translates into more data messaging from the
data nodes to storage nodes.

�
�
�

�
�
�

�
�
�

�
�
�

Fig. 1. A flat WSN (left) requires long-
distance communication. Our scheme has
intra-cluster communication only (right).
Squares are data nodes; circles are stor-
age nodes.

Fig. 2. A sensor netork of 5 clusters: The
data nodes (squares) upload data to stor-
age nodes (circles). The storage nodes are
forwarding (indicated by arrows) the data
among its cluster.

In this paper, we solve this problem by clustering storage nodes. Data items
are propagated only within each cluster. As shown in Figure 1 (right), data
distribution with our method only involves short-range intra-cluster communi-
cations. On the other hand, with a flat architecture, Figure 1 (left), the messages
may be sent to faraway storage nodes. Notably, we have the “luxury” to adopt a
deterministic code (such as RS codes) in a cluster because the number of storage
nodes in a cluster is much smaller than their total number.

Next, we study the case when the data collectors are not fully aware of
the clustering structure of storage nodes. This is motivated by the fact that
the clusters may change dynamically and data collectors may not be always
on the field. Most existing clustering algorithms (cf. [11]) dynamically adjust
cluster heads or structure to balance energy consumption and prolong network
lifetime. Therefore, for full generality, we assume that the cluster assignment is
unknown to data collectors, who would like to decode all the data segments by
simply querying a random set of storage nodes. With a theoretical analysis and
numerical results, we show that the size of the random set can be close to K,
the number of data nodes.

In summary, our contributions are:
1. We propose an architecture that reduces the cost to achieve ubiquitous access.
2. We propose a coding scheme which imposes no memory overhead.
3. We investigate the possibility of ubiquitous access in the case when a data
collector does not know the cluster structure of the network. For this, we present
a mathematical model for the decoding probability and show that, in practical
cases, this probability is sufficiently high for moderate sample sizes.
4. We demonstrate that our coding scheme is more cost-efficient than DEC.

2 System Architecture and Encoding/Decoding scheme

Our architecture is a clustered WSN (See Figure 2). In total, there are K data
nodes and N storage nodes. We assume that the storage nodes are stationary
but data nodes may move with animals as for example in the ZebraNet. An
underlying clustering algorithm partitions the storage nodes into M clusters.
Within a cluster, a cluster-head node maintains the full view of the cluster,
including the number of data and storage nodes, node IDs, etc. Each data node
takes measurements and send its readings to its nearest storage node. As the
data nodes move, they transmit their data to different storage nodes belonging
to different clusters. Suppose that the number of storage nodes in the mth cluster
is Nm for 1 ≤ m ≤ M . We assume that K ≤ Nm for each 1 ≤ m ≤ M . This
can be easily achieved by the underlying clustering algorithm as the common
assumption is that K ≪ N .

We denote by dk, for 1 ≤ k ≤ K, the content of such a data-message gen-
erated by data node k. When a storage node receives dk, it propagates dk in
its cluster and updates its checksum and as follows. We denote by sm,i, where
1 ≤ m ≤ M and 1 ≤ i ≤ Nm, the code-checksums of the storage nodes of clus-
ter m. Let H be the code-matrix of a systematic (Nm + K,K) RS code over a

GF (2w) field, where 2w > Nm + K. The encoding state of cluster m adheres to
the following equation

H ·




d1

...
dK


 =




1 . . . 0
...

...
0 . . . 1

a1,1 . . . a1,K

...
...

aNm,1 . . . aNm,K







d1

...
dK


 =




d1

...
dK

sm,1

...
sm,Nm




.

Based on the above equation, a storage node checksum, say sm,i, will be

sm,i = ai,1d1 + ai,2d2 + . . . + ai,KdK .

Of course, some data nodes may be served by other clusters. For those data
nodes, we consider that they send the value of zero, which we assume is not
a valid content. This coding scheme tolerates up to Nm erasures, which means
that we can find out all of d1, . . . , dK values by selecting K storage nodes only.

Let Km be the number of non-zero dk’s in the mth cluster. Clearly, Km ≤ K.
The question is:

Can we recover the Km non-zero dk’s by selecting only Km (as opposed
to K) storage nodes?

I.e. whether the Km non-zero dk’s are calculated from a system of Km equa-
tions. In order to achieve this, we modify our coding state. We observe that
our erasure scheme is special in that all dk’s are always “erased.” Hence, the
problem boils down to solving (with respect to dk’s) a system of linear equa-
tions obtained by selecting any Km equations from the following system of Nm

equations represented in matrix form as



a1,1 . . . a1,K

...
...

aNm,1 . . . aNm,K







d1

...
dK


 =




sm,1

...
sm,Nm


 .

The above translates into asking that any submatrix of the coefficients’ ma-
trix (on the left), obtained by selecting Km rows, to be invertible.

In other words, because of our particular erasure model, we only need to
find such a “nicely behaved” matrix for computing the sm,i’s. Fortunately, an
Nm × K Vandermonde matrix fits our needs. Such a Vandermonde matrix is




1 1 . . . 1
1 b1 . . . bK−1

...
...

1 bNm−1
1 . . . bNm−1

K−1




where 1, b1, . . . , bK−1 are K different elements of the underlying GF (2w) field.

The desired property of such an Nm ×K Vandermonde matrix is that every
subset of K rows is guaranteed to be linearly independent. Furthermore, the
west part, (1 . . . Nm) × (1 . . . Km), for 1 ≤ Km ≤ K, is also a Vandermonde
matrix with the property that any set of Km rows is linearly independent.

Thus, by using the above Nm ×K Vandermonde matrix as the lower part of
our systematic code-matrix, and by consolidating the non-zero dk’s to be always
the first in the data node vector, we guarantee that with only Km equations (for
sm,i’s) we are able to calculate all the values of the non-zero dk’s. Hence, we
need to query only Km of the storage nodes in order to recover the contents of
the Km data nodes that are in the proximity of cluster m.

When using this scheme, we do not need to store the coefficients since they
can be computed on the fly as powers of b1, . . . bNm

, whereas these elements can
be considered as consecutive powers of a field generator g.

Remark. Vandermonde matrices are commonly used in creating systematic
Reed-Solomon codes for RAID schemes recovering from disk failures (see [10]).
For this, one could start with an (Nm + K)×K Vandermonde matrix and then
apply elementary matrix operations to bring it into a systematic form. The final
matrix is, of course, not Vandermonde anymore.

We emphasize that, having an (Nm +K)×K code-matrix which has a K×K
identity matrix as upper part and an Nm×K Vandermonde matrix as lower part
(as we are proposing) would not (in general) allow us to fully decode having only
K values out of dk’s and sm,i’s. Such a matrix is not good for a RAID scheme as
any disk, regular or redundant, can fail, and we need to recover the data using
the remaining disks (whose number needs to be ≥ K).

On the other hand, in our setting, we need instead to recover Km of dk’s
from sm,i’s. This is to say that, the Km data nodes in the vicinity of the cluster
“always fail” whereas the storage nodes in the cluster are “always alive.” For
this, our proposed code-matrix allows us to decode the data of the Km data
nodes, by querying only Km storage nodes (storing sm,i’s).

3 Decoding and Sampling

The random sampling procedure is as follows. A data collector chooses a random
subset of storage nodes and queries them. The storage nodes reply with their
checksums. Then, the data collector is able to decode if it receives at least Km

checksums from cluster m, for 1 ≤ m ≤ M .
As we mentioned before, the data collector may have no clue of the clustering

structure. As such, when a data collector retrieves information from a WSN, it
randomly queries a set S of sensors from the whole network. We call this set of
sensors a sample. Let Sm be the intersection of S and m-th cluster. Therefore,
there are |Sm| selected storage nodes in the m-th cluster. Let Xm = |Sm| −Km.
Then, the data collector can fully decode if |Sm| ≥ Km (or Xm ≥ 0), for m =
1, . . . ,M . Clearly, the smallest sample size is K = K1 + . . . + KM . We define
Pr(S) to be the probability that the user can decode using sample S. We can
show that

Theorem 1.

Pr(S) =

∑
X1

∑
X2

. . .
∑

XM

(
N1

K1+X1

)(
N2

K2+X2

)
. . .

(
NM

KM+XM

)
(

N

|S|

) .

To illustrate, suppose that we have 3 clusters of 7 storage nodes each. Also
suppose that K1 = K2 = K3 = 4; and thus the smallest sample size is 12. If |S|
is 13, then the extra selected node can be in any cluster. There are three possible

cases for the extra node. Therefore, Pr(S) =
(7

4+1)(
7

4)(
7

4)+(7

4)(
7

4+1)(
7

4)+(7

4)(
7

4)(
7

4+1)
(21

13)
=0.379. Formally, we are solving the following problem.

Find minimum |S|
Subject to

Pr(S) ≥ 1 − ε
Xm,Km, Nm ≥ 0, for 1 ≤ m ≤ M
X1 + X2 + . . . + XM = X
K1 + K2 + . . . + KM = K
N1 + N2 + . . . + NM = N
|S| = K + X
X ≤ N − K

We solve the above problem numerically by calculating Pr(S) of different
sample sizes ranging from K to N . This approach is inefficient since the calcu-
lation of Pr(S) requires at least O(

(
M+X−1

X

)
) time, and the initial value of |S|

may be far from the optimum solution. The rest of this section approximates the
Pr(S) in linear time and provides a “safe” sample size that can be used directly
by data collectors.

For the approximation, suppose that there are N balls in M bins. The balls
are numbered from 1 to N , and the bins are numbered from 1 to M . The number
of balls in the bin m is Nm. Besides, each bin has a threshold value Km. We
randomly pick up a ball, record the ball number and bin number, put it back,
and pick up another ball. We consider the following question.

After we pick |S| times, what is the probability that we pick at least Km

balls from bin m, for m = 1, . . . M?

We denote this probability as Pr′(S) and use Pr′(S) to approximate Pr(S).
Next we show that Pr′(S) is easy to calculate and provides a good lower bound
for Pr(S).

We firstly consider bin 1. Define an indicator random variable

Yi =

{
1 if the ith ball is picked from bin 1
0 otherwise

Let random variable Z1 =
∑

Yi be the number of the ball that we pick from bin
1. And then, we denote E1 as the event that Z1 ≥ K1, and E1 as the event that
Z1 < K1. Clearly, Pr′(S) = 1 − Pr(E1 ∪ E2 ∪ . . . ∪ EM). We use the following
lemma from [2] to analyze Pr(E1).

Lemma 1. Consider a sequence of n Bernoulli trials, where in the ith trial,
success occurs with probability pi and failure with probability qi = 1 − pi. Let Z
be the random variable describing the total number of successes, and µ = E[Z].

Then, for r > 0, Pr(µ − Z ≥ r) ≤ exp[−r2

2n
].

Let p1 = N1/N be the probability that we pick a ball from bin 1, and
let r be |S|p1 − K1. Then, Pr(µ − Z1 ≥ r) = Pr(Z1 ≤ K1) = Pr(E1) ≤
exp[−(|S|p1−K1)

2

2|S|]. If we take the union bound for all bins, we can find the prob-

ability that we fail to decode. We denote it as Pr(fail). Pr(fail) = 1− Pr′(S) ≤∑M

m=1 Pr(Em) =
∑M

m=1 exp[−(|S|pm−Km)2

2|S|]. Assume that the m̃-th bin has the

maximum exp[−(|S|pm−Km)2

2|S|] value among all bins. Let p̃ and K̃ be the proba-

bility that we pick a ball from the m̃-th bin and the threshold value of the m̃-th

bin respectively. We substitute exp[−(|S|ep− eK)2

2|S|] for each exp[−(|S|pm−Km)2

2|S|] value

in Pr(fail). Let the threshold be ε. Then, we have

Pr(fail) ≤ M · exp[
−(|S|p̃ − K̃)2

2|S|] < ε

In our sampling scheme, we sample the network without replacement. In
other words, our scheme has better probability of success than the above ball and
bin game. Finally, we solve the above equation and conclude with the following
theorems.

Theorem 2. The decoding probability Pr(S) is no less than

1 −
M∑

m=1

exp[
−(|S|pm − Km)2

2|S|].

Theorem 3. We can choose a sample size

|S| =
2(p̃K̃ + ln M

ε
) +

√
4(p̃K̃ + ln M

ε
)2 − 4p̃2K̃2

2p̃2

to achieve more than 1 − ε probability of decoding.

4 Performance Evaluation and Conclusion

We use a grid network of N storage nodes as an example. The same analytic
principle is applicable to other network topology. Suppose that the storage nodes
are deployed as a grid in a unit square. Each data node moves around randomly
and uploads its sensor reading to its nearest storage node. A clustering algorithm
partitions the grid into M small squares. Regarding the data distribution, our
coding scheme has a message complexity of

∑M

m=1 KmNm(2/3)
√

Nm, whereas

the DEC has a message complexity of 5N lnK · (2/3)
√

N . For an illustration,

if Nm ≈ N/M and Km ≈ K/M (for 1 ≤ m ≤ M), then the condition for our
scheme to be better than DEC is that

M
K

M

N

M

√
N

M
≤ 5N lnK

√
N ⇒

(
K

5 ln K

) 2
3

≤ M,

which is generally true. The experiments also confirm the same conclusion. We
use 10,000 storage nodes and 100 data nodes in our simulation. The results show
that our decoding probability is sufficiently high, and our data distribution cost
is smaller than DEC’s cost when M > 4. Detailed results and complexity analysis
are in the full version of this paper at http://web.uvic.ca/∼yhl/ssdbm08full.pdf.

In conclusion, we have proposed a cost-efficient coding scheme that fulfills
the ubiquitous access to sensor data. The algorithm is easy to implement on any
clustered WSN. Moreover, we give a mathematical model for the probability
of decoding as well as analysis of our system cost. The experimental results
demonstrate that our coding scheme outperforms DEC.

References

1. P. Bonnet, J. E. Gehrke, and P. Seshadri: Towards Sensor Database Systems,
Proceedings of the Second International Conference on Mobile Data Management,
2001.

2. T. Cormen, C. Leiserson, R. Rivest, and C. Stein: Introduction to Algorithms,
second edition, 1990.

3. A. G. Dimakis, V. Prabhakaran, and K. Ramchandran: Decentralized erasure codes
for distributed networked storage, IEEE/ACM Transactions on Networking, Vol-
ume 14 , Issue SI, June 2006.

4. H. Garcia-Molina, J. D. Ullman, J. D. Widom: Database Systems: The Complete

Book, 2001.
5. C. Intanagonwiwat, R. Govindan and D. Estrin: Directed diffusion: A scalable and

robust communication paradigm for sensor networks, Proceedings of the Sixth An-
nual International Conference on Mobile Computing and Networking (MobiCOM),
2000.

6. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein: Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet, Tenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-X), 2002

7. S. Madden, M. Franklin, J. Hellerstein, and W. Hong: TAG: a tiny aggregation
service for ad-hoc sensor networks, Proceedings of OSDI, 2002.

8. S. Madden, M. Franklin, J. Hellerstein, and W. Hong: The design of an acquisitional
query processor for sensor networks, Proceedings of ACM SIGMOD, 2003.

9. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson: Wireless
Sensor Networks for Habitat Monitoring, Proceedings of ACM WSNA02, 2002.

10. J. S. Plank: A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems, Software – Practice & Experience, 27(9), pp. 995–1012, 1997.

11. X. Shan and J. Tan: Mobile sensor deployment for a dynamic cluster-based target
tracking sensor network, Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems,2005.

12. D. Wang, Q. Zhang, and J. Liu: Partial Network Coding: Theory and Application
for Continuous Sensor Data Collection Proceedings of IWQOS 2006.

