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ABSTRACT
Algorithmic problems of computing influence estimation and influ-
ence maximization have been actively researched for decades. We

developed a novel algorithm, NoSingles, based on the Reverse Influ-

ence Sampling method proposed by Borgs et al. in 2013. NoSingles

solves the problem of influence maximization in large graphs using

much smaller space than the existing state-of-the-art algorithms

while preserving the theoretical guarantee of the approximation

of (1 − 1/e − ϵ ) of the optimum, for any ϵ > 0. The NoSingles data

structure is saved on the hard drive of the machine, and can be used

repeatedly for playing out “what if” scenarios (e.g. trying different

combination of seeds and calculating the influence spread). We

also introduce a variation of NoSingles algorithm, which further

decreases the running time, while preserving the approximation

guarantee. We support our claims with extensive experiments on

large real-world graphs. Savings in required space allow to success-

fully run NoSingles on a consumer-grade laptop for graphs with

tens of millions of vertices and hundreds of millions of edges.

CCS CONCEPTS
• Information systems → Data structures; Social networks; •
Theory of computation → Data structures design and anal-
ysis; • Computing methodologies → Optimization algorithms;
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1 INTRODUCTION
One of the actively researched problems in graph structure discov-

ery is the problem of influence maximization (IM): in an arbitrary

graph, given the size of a subset S of vertices, find S that maximizes

some influence function. The most popular influence function is

the reachability [9, 12, 22]: the network is modelled as a directed

graph where entities correspond to vertices; a vertex influence is

calculated as a number of other vertices reachable from it. Given a

set of seeds (initial vertices), influence estimation (IE) is calculated

as the total number of vertices reachable from all the seeds in the

set S . Note that influence is seen as spreading from vertex to vertex

via graph paths with some probability: the fact that vertices are

“closely related” does not guarantee the influence spread. That is,

we are dealing with probabilistic reachability.
To capture the probabilistic influence spread, Kempe et al. [12]

introduced the Independent Cascade (IC) model [9]: an independent

random variable is assigned to each directed edge (u,v ); the variable
reflects the level of influence from u to v . Starting from a vertex, in

each step, information spreads to the vertex neighbours with the

probability equal to the level of influence of the vertex over each

neighbour. Kempe et al. showed that IM on the ICmodel encodes the

classic maximum coverage problem and therefore is NP-hard [12].

Chen et al. [5] showed for the IE problem that computing the exact

influence of a single seed is #P-hard. Kempe et al. [12] showed that

IM on the IC model is monotone and submodular, and therefore, a

Greedy algorithm produces provably-good quality solutions. More

precisely, the influence of the approximate Greedy solution with

given number of seeds is (1 − 1/e − ϵ ) of the optimal solution, for

any ϵ > 0 [16]. IC became a standard model of influence spread,

and we are using it for our algorithms.

Building on the Kempe et al. results, substantial research has been
done on developing an approximation algorithm for IM [6–8, 12]

and IE [14, 17]. However in spite of successful speed-up techniques,

modern massive networks require even faster algorithms.

In 2013, a different approach was proposed by Borgs et al. [4]:
Reverse Influence Sampling (RIS) method

1
. The idea in RIS is to

select a vertex v uniformly at random, and determine the set of

vertices that would have influenced v . If a certain vertex u appears

often as influential for different randomly selected vertices, then u
is a good candidate for the most influential vertex. This can be done

1
The latest version 5 of the paper, issued on the 22nd of June 2016, can be found at

https://arxiv.org/pdf/1212.0884.pdf
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by simulating the influence process using the IC model in the graph

with the directions of edges reversed. RIS is a fast algorithm for IM,

obtaining the near-optimal approximation factor of (1−1/e−ϵ ), for
any ϵ > 0, in time O ((m + n)kϵ−2 log(n)), where n is the number

of vertices,m is the number of edges, and k is the number of seeds.

Borgs et al. showed RIS runtime to be optimal (up to a logarithmic

factor). But, just as in case of all other IM algorithms, the required

main memory is so large that to successfully run RIS, large and

expensive computers are needed even for medium-size graphs.

Algorithm in this paper. In this paper, we propose a space-efficient

algorithm NoSingles, which allows to scale-up computing of IM

and IE to massive graphs with billions of edges. The NoSingles

algorithm upholds the theoretical guarantee of Borgs et al., and
can work under other theoretical guarantee bounds, with minor

modifications. NoSingles can successfully run on consumer-grade

machines unlike other IM and IE algorithms with theoretical guar-

antee that require expensive computers with vast amount of main

memory. We compared the time and space performance of NoS-

ingles with state-of-the-art algorithms DIM [20] and D-SSA [18].

NoSingles takes less time and much less space for the same graph

processing than either DIM or D-SSA.

To achieve this result, we used several techniques all aiming at

reducing the data structure size and therefore, memory footprint.

(a) We used Webgraph, a highly efficient, and actively main-

tained graph compression framework [3].

(b) We coded in Java 8, taking advantage of its parallel process-

ing capabilities - streams, lambda expressions.

(c) We developed a new data structure for storing the interme-

diate results of IM computing.

(d) We designed a novel way of processing the graph that greatly

decreases the required space, without affecting the theoreti-

cal guarantee of the approximation.

More specifically, our contributions are as follows. We present

(1) NoSingles - a space-efficient algorithm for computing IM

and IE, with theoretical guarantee on the solution accuracy.

(2) A version of NoSingles algorithm, NoSinglesTopNodes, that

offers a possibility for reducing the running time, with some

increase in space consumption compared to NoSingles.

(3) Experimental comparison of time and space performance

of NoSingles vs. state-of-the-art algorithms DIM [20] and

D-SSA [18]. Memory required for NoSingles is orders of

magnitude smaller than the one for either DIM (up to 5000

times smaller) or D-SSA (up to 3000 times smaller), for the

same number of samples.

(4) Experiments on large graphs conducted on a consumer-grade

laptop, with statistical analysis of the results.

Related Work. A number of IM computing algorithms have been

developed in recent years, both heuristic ([5, 6, 11]) and with the-

oretical guarantee ([10, 18–20, 23, 24]). However, as Arora et al.
demonstrated in [1], none of the existing algorithms satisfies the

triad: quality of spread, runtime efficiency, and low memory foot-

print. For an IM solution on an arbitrary graph, quality of spread

is the most important. Heuristic methods might work well for a

certain category of graphs, but their solution quality is not guar-

anteed. That is why we concentrate on a method with theoretical

guarantee, namely Borgs et al. RIS method.

Most of research teams employing RIS method ([10, 18, 23, 24])

pay particular attention to runtime efficiency, designing sophisti-

cated algorithms aimed at cutting the number of random samples

on the graph and therefore the runtime. We approached the prob-

lem of IM scalability from a different angle: We researched different

data structures used for keeping the intermediate results of IM com-

puting. Our main goal was to cut the memory footprint, making it

possible to run large graphs on consumer-grade machines.

Work [21] reports research on three distinct data structures for

IM. In the present paper, we introduce two more data structures. As

we show, the most scalable one, the NoSingles hypergraph, allows

to drastically cut the memory consumption.

Organization. The remainder of this paper is organized as fol-

lows. Section 2 introduces several definitions and the reverse influ-

ence sampling algorithm. Section 3 proposes to use the Webgraph

framework for storing the hypergraph. Section 4 describes how to

parallelize the hypergraph construction. In Section 5, we present

our proposed NoSingles and NoSinglesTopNodes algorithms and

discuss their advantages. Section 6 reports experimental results on

real-world graphs. Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Notations
LetG = (V ,E,p) be a directed graph, where vertex set |V | = n, edge
set |E | = m, and p : E → [0,1] is a probability function on edges

existence. In this paper, we consider the case where p is constant,

i.e., for some constant number c , it holds that p (e ) = c for all e ∈ E.
In such a case, p acts as a scalar.

2.2 Independent Cascade
Independent Cascade (IC) model [9]: Starting from a set S of seeds,
influence spreads in rounds/steps: each vertex after getting infected

has one possibility to infect its neighbours. IC selects edges from the

seed neighbourhood with independent probabilities. Infected neigh-

bours, in their turn, have one possibility to infect their neighbours

forming a cascade of information propagation. Hence, the name

– Independent Cascade. The influence spread of a seed set S , de-
noted by σ (S ), is defined as the expected total number of reachable

vertices for S .

2.3 IM and IE Problems
Problem 1 (Influence Estimation Problem (IE)). Given a

graph G = (V ,E,p) and a vertex set S ⊆ V , compute the influence
spread σ (S ) of S .

Problem 2 (Influence Maximization Problem (IM)). Given a
graph G = (V ,E,p) and an integer k , find a vertex set S ⊆ V of size
k that maximizes σ (S ).

2.4 RIS Algorithm
In Reverse Influence Sampling (RIS) algorithm, Borgs et al. [4] em-

ployed a “polling” process on a graph: select (uniformly at random,

with replacement) a vertex and find a set of vertices that would have



NoSingles: a Space-Efficient Algorithm for Influence Maximization SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

influenced it. Repeat the polling many times. The intuition behind

this process is that if a vertex appears often in sets of “influencers”

then this vertex is a good candidate for the most influential vertex

in the graph.

2.4.1 Hypergraph Building. To find the “influencers”, Borgs et
al. propose to repeatedly run the graph search on the transpose
(with the directions of edges reversed) graph. This is a randomized

approach, with all the coins tossed beforehand: the probability of

each edge existence in a poll is defined by a given probability func-

tion p. The resulting list of vertices reached by search via existing

edges is called a sketch. Sketches are numbered, and the number

of a sketch is assigned to it as its ID. As a result of multiple polls,

the algorithm creates a structure called by Borgs et al. hypergraph.
In order to determine the time at which we stop polling, we define

the weight of the hypergraph. The weight R of the hypergraph is

defined as the number of edges “touched” during the graph search,

in other words, it is equal to the sum of the in-degree taken over

each vertex in the hypergraph.

2.4.2 Approximating IE with Hypergraphs. We now explain how

to use hypergraphs to approximately estimate the influence spread.

Relying on the nature of the polling process, Borgs et al. have
proven the following observation.

Lemma 2.1. [4, Observation 3.2] Any vertex set S intersects a (ran-
dom) set of influencers with probability σ (S )/n. In particular, the
probability of a vertexu appearance in a set of influencers is σ ({u})/n.

Hence, we are able to obtain an unbiased estimator for the influ-

ence spread by computing the fraction of lists that overlaps with

a given set of vertices (multiplied by n). It should be also noted

that a simple application of Chernoff’s bound tells us that for pre-

cision parameters ϵ ,δ ≥ 0 and a vertex set S , if we have at least
O (ϵ−2 lnδ−1) sets of influencers, the estimator approximates the

value of σ (S ) within an additive error of ϵn with probability at least

1 − δ .

2.4.3 Solving IMwith Hypergraphs. To find the set of seeds (most

influential vertices), the approximate Greedy algorithm is run on

the hypergraph. The highest degree in the hypergraph, that is, the

longest list of sketch IDs, defines the most influential vertex. After

calculating a seed, to avoid overlapping of the spheres of influence,

the seed sketch IDs are removed from the hypergraph, thus decreas-

ing the hypergraph degree for each vertex that participated in the

same sketches as the already found seed. The calculation of the

most influential vertex repeats on the reduced hypergraph, until

the number of found seeds equals the given parameter k .
Theoretically, RIS achieves a near-linear time complexity; Borgs

et al. proved the following theorem establishing the guaranteed

approximation to the optimal solution:

Theorem 2.2. [4, Theorem 3.1] For any ϵ ∈ (0,1), if we set R =
cmkϵ−2 log(n), where c = 4(1 + ϵ ) (1 + 1/k ), then RIS returns a set
of seeds S with σ (S ) ≥ (1 − 1/e − ϵ )OPT , where OPT is the optimal
influence spread, with probability at least 3/5.

Moreover, RIS is shown in [4] to be runtime-optimal (up to a

logarithmic factor) with respect to network size. Despite these

strong results in theory, RIS and its extensions suffer from practical

inefficiency as described below.

2.4.4 Practical Challenges of RIS. Running Time: Though R is

nearly linear to graph size and so is the time complexity, RIS re-

quires a huge number of edges to consider because of rather large

constants. For example, for a relatively small graph with 100K ver-

tices and about 3M edges, RIS needs to “touch” over 150B edges

for k = 10,ϵ = 0.1, and many times more if we need more seeds or

lower error. As a result, if we run RIS on modern social networks

with millions of vertices and hundreds of millions of edges, it takes

days to complete a single run, even for a powerful computer.

Space Consumption: We need to keep the hypergraph in main

memory for the calculation of seeds. How big will it be? Note,

that the hypergraph weight R defines only how many edges of the

original graph RIS has to “touch”, not how many of these edges RIS

will follow. But the hypergraph size is defined by the number of

edges RIS follows. Let us call this number H . Consider the “polling”

process: a vertex v is picked up at random; each outgoing edge of

v is “touched”. With probability p, an edge is selected to follow to

a vertex u, while with probability (1 − p), the edge is ignored. p
is a parameter for RIS run. Since the edge probability is usually

picked up in the range 0.1 – 0.001 for social networks (trivalency

model; see, for example, [11]), it is much more probable that an

edge will be ignored than followed. With each sketch taken, the

weight R will increase much faster than the number of edges in the

hypergraph. This is good news: we do not need to keep R integers,

which would exceed main memory capacity for most machines.

Still, the hypergraph is large: for a graph with 100K vertices and

about 3M edges, the hypergraph took 106 GB (when k = 10,ϵ = 0.1)

in main memory. For larger graphs, the space needed for RIS makes

it impossible to run on a consumer-grade machine.

3 DATA STRUCTURES FOR HYPERGRAPH
We designed three different data structures for hypergraph and the

corresponding algorithms for IM and IE ([21]). The best performing

data structure described in [21] is compressed flat, one-dimensional,

arrays. The custom compression we used in [21] proved to save

space, while not slowing down the algorithm. This result led to the

next idea: to use Webgraph framework for building and storing the

hypergraph.

3.1 Webgraph
Webgraph framework is a highly efficient, and actively maintained

graph compression framework [3]. It based on a compression tech-

nique often allowing to get the graph size down to 10% of its edge

list size. It also includes multiple algorithms implemented in Java

allowing a quick and easy manipulation of compressed graphs. We

used Webgraph in [21] for compressing the input graphs, but this

is the first time we decided to build and store the output of our
algorithm as a Webgraph.

The Borgs et al. hypergraph exists in the main memory for a

short time needed for seeds calculation. The hypergraph is being

corrupted by the process of deleting the sketch IDs for the found

seeds and wiped out when the seed calculation is completed. This

read-once hypergraph is computationally expensive; can we make

the cost-per-usage lower? Our solution is to store the hypergraph
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on a secondary memory medium, with an intention to re-use the hy-

pergraph: for example, we can re-use the hypergraph for computing

the information spread of different sets of seeds.

We implemented and tested two algorithms building the hyper-

graph as Webgraph.

Algorithm 1 TextHypergraph

Input: directed graph G, weight R
Output: hypergraph H
1: Load G, create empty text file edдe_list
2: H_weiдht ← 0

3: while H_weiдht < R do
4: v ← random vertex of G
5: sketch ← BFS

2
from root = v

6: for each u ∈ sketch do
7: new line in edдe_list ← (u,sketchID)

8: H_weiдht ← + = sketch_weiдht

9: save edдe_list on disk

10: sort edдe_list on disk by vertexID

11: convert edдe_list on disk into H (Webgraph)

Algorithm 1, TextHypergraph. TextHypergraph algorithm

builds a text file of hypergraph edges and then converts the edge

list to Webgraph. For each sketch, we place the hypergraph edge

(vertexID, sketchID) on a separate line in a text file. The text file

of edges is saved on, e.g., disk, then sorted by the vertexID and

converted to Webgraph format. We used a custom implementation

of merge sort on disk allowing to sort a text file with the size of

up to 2TB on our laptop. Conversion to Webgraph is easy: it is

one command issued from the command line
3
. This build allows

to format the hypergraph as compressed adjacency lists {vertexID:

sketchIDs}, that is, we get the Borgs et al. hypergraph format, but

compressed into a Webgraph.

Algorithm 2 BuildHypergraph

Input: directed graph G, weight R
Output: hypergraph H
1: Load G, create new empty Webgraph H
2: H_weiдht ← 0

3: while H_weiдht < R do
4: v ← random vertex of G
5: sketch ← reachable vertices in G starting from v
6: append sketch to H
7: H_weiдht ← + = sketch_weiдht

8: return H

Algorithm 2, BuildHypergraph. Webgraph is built directly

in main memory and then saved on disk. There are no ancillary

programs/scripts/commands, the build is coded as part of Java

program implementing the whole process of computing an IM or IE

solution. Webgraph is built by adding, sequentially, each calculated

3
using class ArcListASCIIGraph; http://webgraph.di.unimi.it/docs/it/unimi/dsi/

webgraph/ArcListASCIIGraph.html

sketch to the stack of the previously saved sketches
4
. We end up

with the hypergraph as the compressed adjacency lists in the format

{sketchID: vertexIDs}.

We tested the TextHypergraph and BuildHypergraph algorithms

on several graphs (Table 1), but for brevity, present here only the

results for cnr2000. The results for the other graphs are similar.

We tested the algorithms using Borgs et al. formula from [4, Theo-
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Figure 1: TextFile (Text) vs. Webgraph (WG), varying β

rem 4.1] with coefficient β varied. Fig. 1 shows that Algorithm 2,

BuildHypergraph achieves the overall time performance and space

consumption that are much better than Algorithm 1.

We use Algorithm 2, BuildHypergraph, for our implementation

of Webgraph data structure.

4 PARALLEL BUILD OF HYPERGRAPH
We researched parallel processing applicability to random sampling.

Sequential sampling takes samples on the input graph G, one by
one, and stores the resulting sketches in hypergraph H . As long as

each sketch has a unique ID, they can be computed and stored in

a random order. This makes it possible to take samples in parallel

and then combine the resulting sketches.

We tested the sequential and parallel (8 cores) sampling on four

real-world graphs (Table 1). The weight for the hypergraphs was

defined by Borgs et al. formula
5
, with β = 32 and k = 5.

Dataset n m

uk100K 100 K 3 M

cnr2000 326 K 3.2 M

eu2005 863 K 19.2 M

arabic2005 22.7 M 613 M

Table 1: Datasets for hypergraph build.

As we can see in Fig. 2, time performance of the sequential

and parallel hypergraph builds shows a significant advantage of

the parallel sampling. For all the tested graphs, the overall time is

significantly lower when processing is done in parallel, in spite of

the overhead of separate storing and then combining the partial

hypergraphs. We use the parallel sampling for our implementations.

Note, that the number of samples calculated by a formula can be

4
using class IncrementalImmutableSequentialGraph; http://webgraph.di.unimi.it/docs/

it/unimi/dsi/webgraph/IncrementalImmutableSequentialGraph.html

5
Theorem 4.1 in [4], version 5, updated June 22, 2016.

http://webgraph.di.unimi.it/docs/it/unimi/dsi/webgraph/ArcListASCIIGraph.html
http://webgraph.di.unimi.it/docs/it/unimi/dsi/webgraph/ArcListASCIIGraph.html
http://webgraph.di.unimi.it/docs/it/unimi/dsi/webgraph/IncrementalImmutableSequentialGraph.html
http://webgraph.di.unimi.it/docs/it/unimi/dsi/webgraph/IncrementalImmutableSequentialGraph.html
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(1)UK, CNR (2) EU, Arabic

Figure 2: Time performance Sequential vs. Parallel Sam-
pling. (1) - minutes; (2) - hours.

replaced by the input number of samples; it is an easy modification

of our code that could be used, e.g. for Monte Carlo sampling.

5 THE NO_SINGLES ALGORITHM

Algorithm 3 NoSingles

Input: directed graph G, precision ϵ ∈ (0,1), number of seeds k
Output: seeds set S ⊆ V of size k , spread σ (S )
1: c ← 4(1 + ϵ ) (1 + 1/k )
2: R ← cmkϵ−2 log(n)
3: H ← BuildHypergraph(R)
4: return GetSeeds(H )
5: procedure BuildHypergraph(R)
6: sk_deдree ← 0

7: sk_num ← 0

8: while H_weiдht < R do
9: v ← random vertex of GT

10: sk ← BFS in GT
starting from v

11: sk_num = sk_num + 1
12: for each u ∈ sk do
13: count (u) ← count (u) + 1
14: sk_deдree ← sk_deдree +GT .outdeдree (u)

15: if sk_cardinality > 1 then
16: append sk to hypergraph H

17: H_weiдht ← H_weiдht + sk_deдree

18: return H
19: procedure GetSeeds(H )

20: S ← ∅
21: σ (S ) ← 0

22: for i = 1, . . . ,k do
23: vi ← argmaxv {count (v )}
24: S .insert (vi )
25: σ (S ) ← σ (S ) + count (vi ) ∗ n/sk_num
26: scan H
27: if vi ∈ skj then
28: for each u ∈ skj do
29: count (u) ← count (u) − 1

30: count (vi ) ← 0

31: output S , σ (S )

In this section, we present our main algorithm, NoSingles, which

significantly reduces the space for storing the RIS hypergraph,

while fully preserving the approximation guarantee. We show the

pseudocode in Algorithm 3, and describe its main features next.

The idea behind the NoSingles algorithm is simple: why keep

the single-vertex sketches? If random sampling picked up a vertex

v , attempted to run Breadth-First-Search (BFS) with v as the root,

and found no edges to follow, v gives us no information about its

possible “influencers”. So, NoSingles keeps the two-or-more-vertex

sketches, but not the single-vertex sketches. It must be noted that as

we are using Borgs et al. bound for calculating the required number

of samples, we have to include the single-vertex sketches into the

marginal influence calculation. We do it by increasing by 1 the

count of sketches for the vertex.

The major differences of NoSingles algorithm comparing to RIS

and other RIS-based algorithms:

(1) After computing BFS, we store the sketch in the format

{sketch ID: vertices reached by BFS}. A stack of the sketches

will form the NoSingles hypergraph.
(2) We do not store all the sketches taken. Instead, while count-

ing all the sketches, the algorithm stores only the sketches

with two or more vertices (hence, the name for this algo-

rithm).

(3) NoSingles stores the hypergraph in a compressed form (using

Webgraph) on a secondary memorymedium (e.g., hard drive).
(4) On a secondary memory medium, in a binary file, we also

store an array, node_cover, with the count of sketches for

each vertex. Note that while we do not store single-vertex

sketches, we do count them and store the count of sketches

for each vertex.

(5) For computing the seed set, the algorithm loads the NoSin-

gles hypergraph and node_cover, and processes them. This

way, we scan only the stored two-or-more-vertices sketches.

But we use the saved total number of sketches for calculating

the marginal influence.

5.1 Analysis of NoSingles algorithm
Observation 1. NoSingles hypergraph can be seen as the trans-

pose Borgs et al. hypergraph.

Indeed, if we imagine Borgs et al. hypergraph to be a “normal”

graph presented as adjacency lists, we can see the NoSingles hyper-

graph as its transpose: Borgs et al. {vertex: sketch IDs} adjacency

lists are replaced by {sketch: vertex IDs}.

Theorem 5.1. Algorithm NoSingles correctly computes a set of
seeds preserving the approximation guarantee proved in [4, Theorem
3.1].

Proof. Let us describe the process of finding the seeds by NoSin-

gles algorithm and compare it to [4, Algorithm 1] .

(1) NoSingles is taking the same number of samples, R, as man-

dated in [4]. In lines 1 and 2, the targeted weight of the

hypergraph, R, is calculated by Borgs et al. formulae, in

lines 12 and 15, thewhile loop calculates the current weight,

H_weiдht , and in line 7, makes a decision of taking more

samples, if H_weiдht < R.
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(2) Each sketch is adding +1 to the count of sketches for each

vertex participating in it. f or loop in lines 10 – 12 scans the

sketch and updates the counts. These counts exactly corre-

spond to the degrees of vertices in Borgs et al. hypergraph.
(3) Line 13 (i f statement) checks the number of vertices in the

sketch and line 14 appends the two-or-more-vertex sketches

to the hypergraph.

(4) In line 21, the next seed is found as the vertex with the largest

count of sketches. The seed is added to the set of seeds S in

line 22, and the influence spread σ is updated in line 23. This

step corresponds to finding the vertex with the maximum

degree in Borgs et al. hypergraph.
(5) Calculating the marginal influence after each seed is found,

NoSingles scans the hypergraph looking for all the sketches

containing the most recently found seed (line 24). When

such a sketch is found (line 25), all the vertices in it have

their sketch counts decreased by 1. In Borgs et al. Algorithm
1, this step is exactly the same, but performed by scanning

the Borgs et al. hypergraph and decreasing the degree of

vertices.

(6) NoSingles sets the count for the most recently found seed to

zero in line 28. After that step, we have got the updated num-

ber of sketches for each vertex. The same result is achieved

in Borgs et al. Algorithm 1 by deleting all the sketches from

the hypergraph row for the seed.

(7) NoSingles recurses to Step 4, to find the next seed, exactly

like Borgs et al. Algorithm 1 does.

The NoSingles hypergraph contains only the sketches with more

than one vertex. Will this affect any step in the above description?

Yes, Step 5: after Step 5 completed, the sketch count for the seed

could be not zero, because the seed could participate in single-

vertex sketches and they were included in the count, but NoSingles

hypergraph did not store them. So, after updating the seed count by

scanning the NoSingles hypergraph, the count for the seed was not

decreased by the number of single-vertex sketches it participated

in. In Borgs et al. algorithm, the degree of seed is always zero

after deleting the seed sketches. But NoSingles rectifies it in Step 6:

the sketch count is set up to zero, making the updated NoSingles

hypergraph exactly the same as transpose updated Borgs et al.
algorithm.

Thus, NoSingles solves IM problem by following all the steps of

the RIS algorithm (subsection 2.4), and the approximation guarantee

proved in [4, Theorem 3.1] holds for NoSingles algorithm. ■

5.2 Advantages of the NoSingles algorithm
A list of major advantages of NoSingles algorithm comparing to

other RIS implementations includes the following:

(1) Speeding up the building of the hypergraph using paral-

lelization. Storing sketches in the form {sketch: vertex IDs}

allows for an easy implementation of parallelization: the

sketches are appended to the data structure, one after the

other. Each processor core does it independently. As the

process of selecting the initial vertex (the root for BFS) is

random, the order of sketch numeration does not matter. As

long as each sketch ID is unique, the algorithm creates a

valid NoSingles hypergraph by simply appending the core

Dataset n m type
uk100K 100 K 3 M web graph

cnr2000 326 K 3.2 M web graph

eu2005 863 K 19.2 M web graph

ljournal2008 5.4 M 79 M social network

arabic2005 22.7 M 613 M web graph

Table 2: Datasets for statistics.

partial hypergraphs one after the other. It is not easy to do

for updating the two-dimensional (2D) list of vertices {vertex:

sketch IDs} (Borgs et al. hypergraph), as sketches must be

uniquely numbered. If we create several 2D lists of vertices,

one in each core, the problem of merging them is not trivial:

each node, in each core, with have different sketches listed

under the same ID. For example, in each core a node will

have sketch0; but these sketches are, in fact, different sam-

ples taken by every core independently. If, alternatively, we

decide to update a global list of vertices by each core, we run

into the problems of locks, deadlocks, and collision.

(2) Significant savings in space by not storing single-vertex

sketches, while preserving the approximation guarantee, as

proved in Theorem 5.1. It is not possible to do for the Borgs

et al. hypergraph: if we do not include the IDs of one-vertex

sketches, these vertices degrees in Borgs et al. hypergraph
will be wrong (too low) and their influence will be calculated

incorrectly.

(3) NoSingles allows to scale up and compute the IM and IE

solution for the graphs of millions of vertices and hundreds

of millions of edges using a consumer-grade laptop.

(4) Furthermore, it is possible to build and store NoSingles hyper-

graph once, and use it multiple times for different scenarios.

For example, in the context of viral marketing, it is possible

to play “what if” scenarios varying seeds and calculating

the influence for each set (IE problem).

5.3 Statistics of sketch cardinality
We gathered statistics on the proportion of single-vertex sketches.

For this purpose, we sampled 1M sketches and recorded their car-

dinality. Tables 3, 4 show some of the statistics gathered for the

graphs listed in Table 2.

Dataset min max median 1vertex
sketches

uk100K 1 55743 1 66%
cnr2000 1 16222 1 75%
eu2005 1 462386 1 58%
ljounal2008 1 1841214 1 58%
arabic2005 1 4381431 1 69%
Table 3: Sketch Cardinality Statistics (p = 0.1).

Statistics clearly show that for the real-world web graphs and so-

cial networks, excluding the single-vertex sketches greatly reduces

the number of sketches in NoSingles hypergraph. Specifically, we

made the following observations:
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Dataset min max median 1vertex
sketches

uk100K 1 2925 1 91%
cnr2000 1 794 1 96%
eu2005 1 858 1 90%
ljounal2008 1 78018 1 90%
arabic2005 1 20708 1 93%

Table 4: Sketch Cardinality Statistics (p = 0.01).

(1) in all the tests, median value of sketch cardinality is 1; that

is, at least 50% of the sketches include just one vertex;

(2) in the last column of the Tables 3, 4, we see howmany single-

vertex sketches are computed in each graph. It is at least 58%

when p = 0.1, and at least 90% when p = 0.01;

(3) space saving depends on the probability of edge existence:

the smaller the probability, the bigger the space saving achieved

by NoSingles.

Experimental comparison of time and space performance of

NoSingles vs. other state-of-the-art algorithms is described in sub-

section 6.1.

5.4 The NoSinglesTopNodes algorithm
A consequence of NoSingles hypergraph format, {sketch: vertex

IDs}, is the necessity to scan the full hypergraph after each seed

is computed, as shown in Algorithm 3. The scan finds all the seed

sketches, deletes the sketches, and decreases by one the counts for

all the vertices in each found sketch. This takes a lot of time as is

shown in the Experimental Results, subsection 6.2: as the number

of seeds to compute grows, the seeds calculation time is growing

significantly.

For the hypergraph in the Borgs et al. format, {vertex: sketch IDs},

it is often advantageous to use an accelerated version of the greedy

algorithm called Lazy Greedy [13, 15], where only highly influential
vertices are getting updated after each seed. To use this technique on

NoSingles hypergraph, we propose NoSinglesTopNodes algorithm,

with the following enhancements to procedure GetSeeds:
(1) put the vertices into a priority queue in the order of their

influence; the head of the queue is the first seed;

(2) for the top vertices in the priority queue, create a partial

hypergraph in the format {vertex: sketch IDs};

(3) use Lazy Greedy acceleration on the partial hypergraph.

The pseudocode for the updated GetSeeds procedure is shown in

Algorithm 4. Analysis of NoSinglesTopNodes algorithm. We

used Pareto principle for defining the top nodes as 20% of all the

graph vertices, which have the highest positions in the priority

queue. The priority queue vertices are constantly shifting their

positions (lines 13 – 15 in Algorithm 4). When the next head of the

queue is pulled, its influence is decreased, if it has any sketches in

common with already found seeds. Then the vertex is placed back

into the priority queue according to its decreased influence and

marked as “recalculated”. This re-shifting of the queue continues

until the algorithm gets the head which was already recalculated.

This head becomes the next seed.

As the hash map is holding only 20% of the graph vertices, it

might happen that the priority queue head is in the rest 80% of

Algorithm 4 GetSeeds_topNodes

Input: hypergraph H , array node_cover with vertex counts

Output: seeds set S ⊆ V of size k , spread σ (S )
1: S ← ∅
2: σ (S ) ← 0

3: priority queue pq ← vertices in order of influence

4: MAP: hash map top_map ← top 20% vertices from pq
5: for seed s = 1, . . . ,k do
6: PULL: pull pq_head
7: if pq_head ∈ top_map then
8: if pq_head marked “recalculated” then
9: S .insert (pq_head ) as the next seed s
10: σ (S ) ← σ (S ) + count (s )
11: count (s ) ← 0

12: else
13: update count(pq_head) in node_cover
14: put pq_head back into pq
15: mark pq_head “recalculated”
16: go to PULL

17: else
18: go to MAP with current pq

19: output S , σ (S )

the vertices. In this case, the algorithm will re-build the hash map

using the current positions of vertices in the queue. This way, we

will always have only 20% of the vertices converted into format

{vertex: sketch IDs}. However, it increases the required memory

space for the algorithm completion, compared to NoSingles. Here

we are dealing with the tradeoff between the runtime and memory

consumption: we can significantly speed up the seeds calculation,

especially if we need many seeds, but we will not be able to run

the algorithm on larger graphs due to memory limitations.

Testing and comparison of NoSingles vs. NoSinglesTopNodes is
described in subsection 6.2.

6 EXPERIMENTAL RESULTS

Dataset n m type
uk100K 100 K 3 M web graph

dblp2010 326 K 1.6 M collaboration network

cnr2000 326 K 3.2 M web graph

amazon2008 735 K 5.2 M e-commerce graph

in2004 1.4 M 16.5 M web graph

arabic2005 22.7 M 631.2 M web graph

Table 5: Test datasets ordered by the number of edgesm.

We implemented all the algorithms in Java 8 and usedWebgraph [3]

as a graph compression framework (http://webgraph.di.unimi.it).

Datasets. The graphs we used were obtained from

the Laboratory for Web Algorithmics [2, 3] (http://law.di.unimi.it/

datasets.php). They vary from smaller to medium to larger sizes (Ta-

ble 5). We picked up graphs of different types, to test our algorithms

performance on an arbitrary graph.

http://webgraph.di.unimi.it
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
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Figure 3: NoSingles vs. DIM, varying k

Equipment. All the experiments were conducted on a laptop

with processor 2.2 GHz Intel Core i7 (4-core), RAM 16GB 1600 MHz

DDR3, running OS X Yosemite. An exception: the tests in subsection

6.1 were conducted on a different machine, as described below.

6.1 NoSingles vs. DIM and D-SSA
A large comprehensive review and testing of the existing state-of-

the-art IM algorithms was conducted by Arora et al. [1]. Arora et
al. tested several renown IM algorithms, among them CELF++ [10],

TIM [24], IRIE [11], PMC [19], and presented a comparative analysis

of their performance, both runtime and memory consumption. The

algorithms Arora et al. tested were published before May 2016, so

they did not include some recent interesting and promising IM

algorithms. We decided to test our NoSingles algorithm vs. new IM

algorithms, DIM [20] and D-SSA [18], and perform a comparative

analysis of the results.

Comparison of time and space performance of NoSingles with

DIM and D-SSA algorithms was done on an expensive and powerful

machine with the following characteristics: CPU=Intel(R) Xeon(R)

CPU E5-2680 v3 @ 2.50GHz, running OS CentOS, with RAM=1TB.

We could not test these algorithms on the laptop, because both

DIM and D-SSA require large memory to run IM and IE even on

medium-size graphs. In [21], we show how quickly DIM consumes

all the available memory on our laptop (RAM=16 GB).

6.1.1 NoSingles vs. DIM. Fig. 3 shows testing results when NoS-

ingles was compared to DIM ([20]) while processing IM for graph

cnr2000 - a medium-size web graph with 326K vertices and 3.2M

edges.

Both algorithms use RIS method, with the lower bound on the

hypergraph weight as defined in Theorem 4.1 in [4], version 5,

updated June 22, 2016. Parameters used by both algorithms were

identical throughout testing: Borgs et al. coefficient β = 32, number
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Figure 4: NoSingles vs. D-SSA

of calculated seeds varied: k = 5,10,25,50, and the probability of

edge existence was taken as p = 0.1,0.01,0.001. This ensures that

the IM solutions computed by NoSingles and DIM have the same

approximation guarantees.

NoSingles uses parallel sampling described in subsection ?? and
builds NoSingles hypergraph (Section 5), while DIM implements

RIS by sequential sampling and builds Borgs et al. hypergraph
(Subsection 2.4).

Charts in Fig. 3 demonstrate that:

(1) space consumed by NoSingles is orders of magnitude smaller:

roughly, 450 times smaller for p = 0.1, 500 times smaller for

p = 0.01, and 5000 times smaller for p = 0.001,

(2) time taken by the whole processing (Total Time), is lower

for NoSingles, for all tested k , but
(3) time taken by the seed calculation (Seeds Time), is lower for

DIM.

Space. Space consumption is shown in Fig. 3 (1), (2), and (3). In our

testing, we assigned the same p for all graph edges. Missing values

for DIM in Fig. 3 (2) and (3) mean that for smaller probability p
and larger k (and the correspondingly larger hypergraph weight),

DIM consumed all the memory (1 TB) and stopped processing.

While taking a sample, algorithm (NoSingles or DIM) compares

an independent random variable x (0 ≤ x ≤ 1) with p and either

follows the edge (if x < p) or ignores it. It is obvious that the smaller

p gets, the more edges the algorithm has to compare to x before

finding the edge to follow. This leads to creating many light-weight

sketches: the algorithm did not find many edges to follow, and the

information spread is low. This, in turn, leads to increase in the

number of sketches to take for a given hypergraph weight, and a

corresponding expansion of the space needed for keeping these

sketches. And here is the explanation of NoSingles great advantage

in space performance: NoSingles does not keep the lightest-weight

sketches, e.g., single-vertex sketches, while DIM keeps them all.

NoSingles space advantage grows with lowering p, and when DIM

stops processing without producing a solution, NoSingles actually

lowers its memory consumption for the same hypergraph weight:

compare Fig. 3 (2) and (3) for k = 25,50.

RunTime. RunTime consists, mostly, of the time for building

the hypergraph and the time for calculating the seeds. Fig. 3 (4), (5),

and (6) shows that NoSingles spends overall less time for calculating

IM solutions, for all k . The main reason for this advantage is parallel

processing (8 cores) of sampling employed by NoSingles. It also

helps that NoSingles hypergraph is much smaller, and not much

time is spent by memory manager for allocating additional space

as hypergraph grows.

Seeds Time. Fig. 3 (7), (8), and (9) shows that the time for cal-

culating seeds is much lower for DIM than for NoSingles. This

happens because of different format of each hyperedge in the hy-

pergraph: DIM creates Borgs et al. hypergraph {vertex: sketch IDs},

and NoSingles builds NoSingles hypergraph {sketch: vertex IDs}.

DIM evaluates themarginal influence as the degree of the vertex’ hy-

peredge, and can quickly update the hypergraph using Lazy Greedy

acceleration [15]. NoSingles has to scan the whole hypergraph after

each computed seed, and cannot use Lazy Greedy technique for

update.

6.1.2 NoSingles vs. D-SSA. Fig. 4 shows testing results when

NoSingles was compared to D-SSA ([18]) while processing IM for

graph cnr2000 - a medium-size web graph with 326K vertices and

3.2M edges.

Both algorithms use RIS method, but different techniques for

calculating the hypergraph weight to ensure the approximation

guarantee. The weight of the hypergraph is the number of edges

considered by the algorithm. While NoSingles uses a pre-calculated

weight and builds the hypergraph till the weight is reached, D-SSA

(Dynamic Stop-and-Stare Algorithm) starts with building a small

hypergraph, then explores it to decide whether it is enough for

calculating IM solution, and either continues building a larger hy-

pergraph, or stops building and starts computing seeds. On the same

graph, D-SSA can decide that a smaller hypergraph is appropriate

for computing a large number of seeds, while a larger hypergraph

is needed for computing a small number of seeds. This difference

in calculating the hypergraph weight makes it impossible to use

the same parameters for testing as we did in 6.1.1.

This is how we overcame the challenge of fair comparison be-

tween NoSingles and D-SSA:We tested D-SSAwith different param-

eters, and recorded the weight of its hypergraph and the memory

used for its storage. Then we tuned the parameters for NoSingles in

such a way that the NoSingles hypergraph weight would be close



SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Diana Popova, Naoto Ohsaka, Ken-ichi Kawarabayashi, and Alex Thomo

(within +20%) to D-SSA hypergraph weight. In all the tests, we

picked up the higher weight for NoSingles giving some advantage

to D-SSA. In the charts presented on Fig. 4, the X axis shows differ-

ent weights for the hypergraph calculated by D-SSA.While taking a

sample, algorithm (NoSingles or D-SSA) compares an independent

random variable x (0 ≤ x ≤ 1) with p and either follows the edge

(if x < p) or ignores it. We assigned the same p for all graph edges,

in both algorithms.

Charts in Fig. 4 demonstrate that for all hypergraph weights, the

space consumed by NoSingles is orders of magnitude smaller than

D-SSA required space: roughly, 35 times smaller for p = 0.1, 300

times smaller for p = 0.01, and 3000 times smaller for p = 0.001.

Charts show that NoSingles space advantage grows with lower p.
Testing D-SSA algorithm clearly shows that NoSingles space

advantage does not depend on a particular method used for calcu-

lating the weight of the hypergraph. For any hypergraph weight,

NoSingles lowers the required space to store the hypergraph to the

orders of magnitude smaller value.

6.2 NoSingles vs. NoSinglesTopNodes
performance

NoSinglesTopNodes design (subsection 5.4) is aiming at cutting

down the time for seeds calculation. NoSingles hypergraph format,

{sketch: vertex IDs}, necessitates a full scan of the hypergraph for

each seed. With the hypergraph sizes into billions of edges, the

seed calculation takes too long. NoSinglesTopNodes transposes

part of the hypergraph into format {vertex: sketch IDs}, which

makes it possible to use Lazy Greedy acceleration [13, 15] and

significantly speed up the seeds calculation. We ran NoSingles

and NoSinglesTopNodes algorithms on five graphs (Table 5) and

compared their time performance. We picked up the graphs of

different types, with different density and vastly different structures:

for example, amazon2008 depicts similarities between books, while

in2004 is a web graph of the .in domain crawled by the Nagaoka

University of Technology. Our intentionwas to test the performance

of NoSinglesTopNodes when dealing with different graph types

and density. Fig. 5 shows the total time for completion, and Fig.

6 shows the seeds calculation time, while varying the number of

seeds k .
Missing values. If a value is missing from a chart, it means that

the algorithm did not complete the run and issued an OutOfMem-

ory exception. a. In all the tests, the NoSingles hypergraph was

successfully built and stored; 16 GB memory was enough. Note that

the hypergraphs are identical (if we disregard randomness) for NoS-

ingles and NoSinglesTopNodes. b. In almost all the tests, NoSingles

successfully computed the seeds. The two tests not completed by
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Figure 5: RunTime (hrs) NoSingles vs. NoSinglesTopNodes; 1st row p = 0.1, 2nd p = 0.01, 3rd p = 0.001.
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Figure 6: Seeds Time (sec) NoSingles vs. NoSinglesTopNodes; 1st row p = 0.1, 2nd p = 0.01, 3rd p = 0.001.

NoSingles are shown in charts 5.4 and 6.4. In these charts for ama-

zon2008, the NoSingles values are missing for k = 25 and k = 50.

amazon2008 structure proved rather difficult for IM calculation: the

average degree of vertices is low and most vertices have the same

degree. The graph appears almost homogeneous, which is natural

for the depiction of similarities between books. For our algorithms,

it means to process very large hypergraphs with most sketches

containing 2 – 3 vertices. Actually, for this kind of graph it might be

sufficient to pick up the seeds at random, without any calculations.

c. For all the tests, NoSinglesTopNodes issues the OutOfMemory

exception at lower number of seeds (and, correspondingly, smaller

hypergraphs). From the presented 60 tests, NoSinglesTopNodes

failed to complete in 14 tests compared to only 2 failed tests for

NoSingles. This is to be expected, as NoSinglesTopNodes requires

additional memory for the transpose partial hypergraph.

Impact of p value.We tested our algorithmswith different values

of p (probability of edge existence). In Fig. 5, 6, the first row shows

results for p = 0.1, the second row – for p = 0.01, and the third row

– for p = 0.001. The value of p proved to significantly impact the

test result: the lower p makes the sketches contain fewer vertices,

with all the other factors fixed. If we follow the charts for the same

graph from top row down, we see fewer and fewer missing values;

this means that less memory is needed for the hypergraph and

seeds calculation. The explanation for this effect is the growing

number of single-vertex sketches that we do not save. It is true for

both algorithms, NoSingles and NoSinglesTopNodes.

Time performance. The motivation for NoSinglesTopNodes de-

velopment was to significantly decrease the seed calculation time,

especially when we need a large number of seeds. a. The tests show
that the best time performance for NoSinglesTopNodes compared

to NoSingles is achieved for larger k . If we follow a chart in Fig.

6, e.g. Fig. 6(7), we see how the advantage of NoSinglesTopNodes

grows with the growing k . The same effect is observed in any chart

of the last row. b. However, when p = 0.1, the effect of using NoSin-

glesTopNodes is negative: the overhead of building Map containing

the transpose hypergraph exceeds the possible gain in speed for

seed calculation. In most tests with this p we saw the Map being

re-build several times (for the updated top 20% vertices), and this

process slows down the seed calculation to the point of making

NoSinglesTopNodes useless.

Bottomline. We recommend to use NoSinglesTopNodes algo-

rithm when you need large number of seeds calculated for a social

network with low probability of information diffusion (for exam-

ple, 0.001). You also need sufficient memory on your machine for

building the partial hypergraph in the format {vertex: sketch IDs}.
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6.3 IM for a large graph on a laptop
To test the scalability of NoSingles, we successfully ran arabic2005

on our laptop (RAM=16 GB). We used full Borgs et al. hypergraph
weight formula ([4, Theorem 3.1]). Parameters, intermediate values,

and results are presented in Tables 6 – 8, where n is the number of

graph vertices,m – the number of edges, ϵ – the allowed error, p –

the edge existence probability, k – the number of seeds to compute,

R – the calculated weight of the hypergraph, sk – an abbreviation

for “sketches”, H – an abbreviation for “hypergraph”.

Dataset n m ϵ p k

arabic2005 22.7 M 0.63 B 0.2 0.001 5

Table 6: Parameters.

R sk, total sk, saved H size, edges

6.4 T 2.5 B 36.3 M 2.7 B

Table 7: Intermediate results.

H space H time Seeds time accuracy confidence

1 GB 90.5 hrs 136.5 sec 0.43 0.6

Table 8: Results.

The results demonstrate that NoSingles can store all the relevant

information for an IM solution in a very compact format. In the ex-

ample, a large graph with tens of millions of vertices and hundreds

of millions of edges was processed by a customer-grade laptop

using the full Borgs et al. bound, with guaranteed accuracy (the

guaranteed approximation to optimal) and guaranteed confidence.

Moreover, the IM hypergraph is stored on a secondary memory

medium, and can be loaded into the main memory and re-processed,

for example, for evaluating the information spread for a set of given

seeds.

7 CONCLUSIONS
For decades, researchers have been chipping away, step by step,

from the unsurmountable complexity, both time and space, of the

influence maximization problem. We presented NoSingles - a novel

algorithm for computing influence estimation and influence max-

imization on large graphs. With this algorithm, and its variant

NoSinglesTopNodes, we were able to compute influence maximiza-

tion in large graphs using much smaller space than the existing

state-of-the-art algorithms, while preserving the Borgs et. al. theo-

retical guarantee of the approximation. Furthermore, the NoSingles

data structure is saved on external storage, and as such, can be

used repeatedly for playing out “what if” scenarios. We presented

extensive experiments, comparing our algorithm versus state-of-

the-art and achieve drastic improvement in space consumption,

making possible to compute influence maximization even on a

consumer-grade laptop.

The source code for this paper can be found at:

https://github.com/dianapopova/InfluenceMax

REFERENCES
[1] A. Arora, S. Galhotra, and S. Ranu. Debunking the myths of influence maximiza-

tion: An in-depth benchmarking study. In Proceedings of the 43rd ACM SIGMOD
International Conference on Management of Data, pages 651–666, 2017.

[2] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multires-

olution coordinate-free ordering for compressing social networks. In Proceedings
of the 20th International Conference on World Wide Web, pages 587–596, 2011.

[3] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques.

In Proceedings of the 13th International Conference on World Wide Web, pages
595–602, 2004.

[4] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in

nearly optimal time. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 946–957, 2014.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent

viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1029–1038, 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social

networks. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 199–208, 2009.

[7] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based influence max-

imization and computation: Scaling up with guarantees. In Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management, pages 629–638, 2014.

[8] N. Du, L. Song, M. G. Rodriguez, and H. Zha. Scalable influence estimation in

continuous-time diffusion networks. In Proceedings of the Advances in Neural
Information Processing Systems 26, pages 3147–3155, 2013.

[9] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems

look at the underlying process of word-of-mouth. Marketing Letters, 12(3):211–
223, 2001.

[10] A. Goyal, W. Lu, and L. Lakshmanan. CELF++: Optimizing the greedy algo-

rithm for influence maximization in social networks. In Proceedings of the 20th
International Conference on World Wide Web, pages 47–48, 2011.

[11] K. Jung, W. Heo, and W. Chen. IRIE: Scalable and robust influence maximization

in social networks. In Proceedings of the 12th IEEE International Conference on
Data Mining, pages 918–923, 2012.

[12] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through

a social network. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 137–146, 2003.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
420–429, 2007.

[14] B. Lucier, J. Oren, and Y. Singer. Influence at scale: Distributed computation

of complex contagion in networks. In Proceedings of the 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 735–744,
2015.

[15] M. Minoux. Accelerated greedy algorithms for maximizing submodular set

functions. Optimization Techniques, 7:234–243, 1978.
[16] G. L. Nemhauser, L. A.Wolsey, andM. L. Fisher. An analysis of approximations for

maximizing submodular set functions—i. Mathematical Programming, 14(1):265–
294, 1978.

[17] H. T. Nguyen, T. P. Nguyen, T. N. Vu, and T. N. Dinh. Outward influence and

cascade size estimation in billion-scale networks. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 1(1):20:1–20:30, 2017.

[18] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling

algorithms for viral marketing in billion-scale networks. In Proceedings of the 42nd
ACM SIGMOD International Conference on Management of Data, pages 695–710,
2016.

[19] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi. Fast and accurate

influence maximization on large networks with pruned monte-carlo simulations.

In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pages 138–144,
2014.

[20] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi. Dynamic influence

analysis in evolving networks. Proceedings of the VLDB Endowment, 9(12):1077–
1088, 2016.

[21] D. Popova, A. Khot, and A. Thomo. Data structures for efficient computation of

influence maximization and influence estimation. CoRR, abs/1602.05240, 2017.
[22] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral

marketing. In Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 61–70. ACM, 2002.

[23] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A

martingale approach. In Proceedings of the 41st ACM SIGMOD International
Conference on Management of Data, pages 1539–1554, 2015.

[24] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time com-

plexity meets practical efficiency. In Proceedings of the 40th ACM SIGMOD
International Conference on Management of Data, pages 75–86, 2014.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Independent Cascade
	2.3 IM and IE Problems
	2.4 RIS Algorithm

	3 Data Structures for Hypergraph
	3.1 Webgraph

	4 Parallel Build of Hypergraph
	5 The No_Singles algorithm
	5.1 Analysis of NoSingles algorithm
	5.2 Advantages of the NoSingles algorithm
	5.3 Statistics of sketch cardinality
	5.4 The NoSinglesTopNodes algorithm

	6 Experimental Results
	6.1 NoSingles vs. DIM and D-SSA
	6.2 NoSingles vs. NoSinglesTopNodes performance
	6.3 IM for a large graph on a laptop

	7 Conclusions
	References

