
Vectorising 𝑘-Core Decomposition for GPU Acceleration
Amir Mehrafsa

University of Victoria
Victoria, BC, Canada
mehrafsa@uvic.ca

Sean Chester
University of Victoria
Victoria, BC, Canada
schester@uvic.ca

Alex Thomo
University of Victoria
Victoria, BC, Canada

thomo@uvic.ca

ABSTRACT
𝑘-Core decomposition is a well-studied community detection prob-
lem in graph analytics in which each 𝑘-core of vertices induces a
subgraph where all vertices have degree at least 𝑘 . The decomposi-
tion is expensive to compute on large graphs and efforts to apply
massive parallelism have had limited success. This paper presents
a vectorisation of the problem that reframes it as a composition
of vector primitives on flat, 1d arrays. With such a formulation,
we can deploy highly optimised Deep Learning GPU and SIMD
frameworks. On a moderate GPU, using PyTorch, we obtain up to
8× improvement over the best parallel state-of-the-art implemented
in C++ and running on an expensive 32-core machine. More impor-
tantly, our approach represents a novel abstraction showing that
redesigning graph operations as a series of vectorised primitives
makes highly-parallel analytics both easier and more accessible for
developers. We posit that such an approach can vastly accelerate
the use of cheap GPU hardware in complex graph analytics.

KEYWORDS
graph analytics, 𝑘-core decomposition, parallel algorithms, vector-
ization, GPGPU, SIMD, PyTorch

1 INTRODUCTION
Abstractions simplify the complex. They make experienced devel-
opers more efficient and allow novice developers to do what they
otherwise could not. This paper abstracts graph analytics on GPUs.
Similar to how [6] and [11] reframed shortest paths and reachability
queries in terms of the declarative operators well known to rela-
tional databases, we reframe 𝑘-core decomposition in terms of the
vector primitives well known tomodern Deep Learning frameworks
like PyTorch and Tensorflow. We focus on a high-level declaration
of how wide, data-level parallelism can be exposed, leaving the
mechanics of parallelisation to highly-optimised libraries.

Graph analytics, in general, is notoriously difficult to parallelise
effectively because of the pointer-chasing, unpredictable, irregu-
lar access patterns and poor thread saturation. 𝑘-Core decomposi-
tion [9] is a well-studied graph analytics problem that we describe
in Section 2 and illustrate in Figure 1. It is particularly difficult to
parallelise because work-efficient solutions incur substantial syn-
chronisation. We "vectorise" the algorithm (in the ML sense); that
is to say, we show how to re-express the sequential state-of-the-
art [2, 9] by composing vector operations on flat 1d arrays.

The only existing GPU algorithm [12] is outpeformed by pre-
existing multi-core algorithms [3, 4, 7], based on numbers reported
in each paper. Compared to the multi-core algorithms, we obtain
4–8× speed-up on real data using an approach that is both easier
and more accessible. In summary, our contributions are as follows.

1 2

3 45
6

7

8

9

10

11 12
13

14

Figure 1: Example graph with an illustration of its 𝑘-core
decompostion. The coreness of nodes is: 1-core = red, 2-core
= orange, 3-core = purple. The 1-core graph includes the 2-
core graph which includes the 3-core graph.

(1) We provide a compelling example for re-framing graph ana-
lytics in terms of Deep Learning frameworks.

(2) We present an efficient expression of a new vector primitive,
namely retrieving all the neighbors of a set of vertices, which
is of independent interest for other graph analytics problems.

(3) We improve upon on the 𝑘-core decomposition state-of-the-
art by 4–8×, using more readily available and cost-efficient
hardware (a GPU versus a 32-core server).

2 BACKGROUND
We represent networks using undirected graphs. We denote an
undirected graph by 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices,
and 𝐸 is the set of edges. We set 𝑛 and𝑚 to be |𝑉 | and |𝐸 |, respec-
tively. Given a vertex 𝑣 , we denote by 𝑑𝐺 (𝑣) the degree of 𝑣 . We set
𝑑max (𝐺) = max{𝑑𝐺 (𝑣) : 𝑣 ∈ 𝑉 }.

Let 𝐾 ⊆ 𝑉 be a subset of vertices of a graph 𝐺 = (𝑉 , 𝐸). Graph
𝐺 (𝐾) = (𝐾, 𝐸𝐾), where 𝐸𝐾 = {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝐾} is called the
subgraph of 𝐺 induced by 𝐾 .

Now, 𝐺 (𝐾) is a 𝑘-core iff the following conditions are true: (De-
gree) for each 𝑣 ∈ 𝐾 , 𝑑𝐺 (𝐾) (𝑣) ≥ 𝑘 , and (Maximality) for each𝐾 ′,
such that 𝐾 ⊂ 𝐾 ′there exists 𝑢 ∈ 𝐾 ′ \ 𝐾 , such that 𝑑𝐺 (𝐾 ′) (𝑢) < 𝑘 .

From the maximality condition it follows that for each 𝑘 =

1, 2, . . . , 𝑑max (𝐺), there exists exactly one 𝑘-core in 𝐺 (which could
possibly be empty). Given 𝑘 ∈ [1, 𝑑max (𝐺)], we denote the 𝑘-core
of 𝐺 by 𝐶𝑘 (𝐺). Finally, we have that a vertex 𝑣 ∈ 𝐺 has coreness 𝑘 ,
denoted 𝑐 (𝑣), if and only if it is a vertex in graph 𝐶𝑘 (𝐺).
Example Figure 1 gives a graph where vertices are coloured by
their coreness. The 3-core is given by 𝑣1–𝑣4; the 2-core, vertices 𝑣5–
𝑣6; and the 1-core, 𝑣7–𝑣14. All cores > 3 are empty. 𝑣7 illustrates why
the problem is challenging: although it has degree 3 and neighbours
two degree-2+ vertices, the 1-coreness of 𝑣14 cascades all the way
to 𝑣7, leaving 𝑣7 with only one neighbour in the 2-core.

3 EXISTING APPROACHES
There are two general approaches to 𝑘-core decomposition: peeling
algorithms (based on [2, 9]) and vertex-centric algorithms [10].

Peeling Graph peeling is an O(𝑚) process for computing cores. At
a high level, it works as follows:

(1) Set the coreness of every vertex to equal its degree
(2) Iteratively delete the vertex 𝑣 of smallest coreness 𝑐 (𝑣).
(3) Decrement 𝑐 (𝑢) for each neighbour 𝑢 of 𝑣 s.t. 𝑐 (𝑢) > 𝑐 (𝑣).

The O(𝑚) asymptotic efficiency comes from only visiting each
edge a constant number of times and by using an efficient, dynamic
data structure to maintain the list of vertices in ascending order of
coreness. Given the small domain of possible coreness values, this
sort order can be maintained by combining a preliminary bin sort
by coreness with the insight that vertices can move at most one bin
per iteration of the algorithm and only once per incident edge [2].

Vertex-Centric The vertex-centric approach [10] was designed for
shared-nothing architectures. At a high level, it works as follows:

(1) Each vertex 𝑣 obtains coreness estimates from its neighbours.
(2) The estimate of 𝑐 (𝑣) is updated per the neighbour estimates.
(3) The process is iterated until convergence.

This approach reduces communication and scales out well, but
has a cost linear in 𝑛 per iteration. It has been shown to be slower
than peeling approaches in a shared-memory, single-core setting [8];
we confirm this also for multi-core architectures (c.f., Section 5).

Shared-MemoryParallelAlgorithms State-of-the-artmulti-core
approaches [3, 4, 7] have followed the peeling paradigm. They ex-
pose parallelism in recognising that multiple vertices typically tie
for the smallest coreness value. They can all be concurrently deleted
and the coreness of their neighbours can be concurrently decre-
mented (perhaps multiple times). The algorithm implemented in
the Julienne software [4] (revisited in [5]) focuses on maintaining
asymptotic work-efficiency by introducing methods to generalise
the bin-sorted data structure to multiple threads. The PKC [7] algo-
rithm improves memory performance by reconstructing the graph
in parallel once a large percentage of the vertices have been deleted.
The ParK [3] algorithm exposes more parallelism, but by means of
increasing the (sequential) asymptotic complexity to O(𝑚 +𝑛𝑘max),
where 𝑘max denotes the largest coreness value in the graph.

GPUs There is very little work on GPUs for 𝑘-core decomposi-
tion [12]. This is unsurprising given that graph peeling does not
expose enough data-level parallelism even to saturate a multi-core
machine (c.f., Section 5). In contrast, GPU research has focused on
different problems that are more compute- and memory-intensive,
such as temporal core [15] and k-truss [1, 14] decompositions.

The algorithm in [12] proceeds with two directions of peeling.
At each iteration, it uses peeling to determine the maximum core-
ness in the graph, 𝑘max; then, it removes that 𝑘-core, i.e., it peels
from highest coreness to lowest. This exposes more parallelism and
shrinks the graph faster, by focusing first on the highest-degree
vertices, but at the cost of computing a 𝑘max value 𝑘max times. On
a common moderate dataset we use, soc-LiveJournal1, the runtime
that [12] reports (60.755 sec) is orders of magnitude higher than our
runtime (102 ms) using an identical GPU processor (c.f., Section 5).

Algorithm 1: Our vectorized algorithm.
input : 𝐼 , 𝐷, 𝐼 𝐼
output :𝐾

1 𝑘 = 1 // Processing 𝑘𝑡ℎ coreness

2 𝑁 = 𝐼 (𝑛) // Numerical range from 0 to 𝑛 − 1
3 𝐶𝐷 = 𝐷 // Immutable copy of array 𝐷

4 𝐵 = 𝑁 [𝐷 [𝑁] <= 𝑘] // Vertices with degree ≤ 𝐾

5 while 𝑁 .𝑠𝑖𝑧𝑒 () > 0 do
6 while 𝐵.𝑠𝑖𝑧𝑒 () > 0 do
7 𝐷 [𝐵] = 0
8 𝐾 [𝐵] = 𝑘
9 𝐽 = 𝐼 [𝐼 [𝐵] ⋄𝐶𝐷 [𝐵]]

10 𝐻,𝑇 = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝐽 [𝐷 [𝐽] > 0])
11 𝐷 [𝐻]− = 𝑇

12 𝐵 = 𝐻 [𝐷 [𝐻] <= 𝑘]
13 𝑘 + +
14 𝑁 = 𝑁 [𝐷 [𝑁] >= 𝑘]
15 𝐵 = 𝑁 [𝐷 [𝑁] == 𝑘]

Algorithm 2: The multi-arange operation𝑀 = 𝑆 ⋄𝐶 .
input :𝑆,𝐶
output :𝑀

1 𝑅 = 𝑧𝑒𝑟𝑜𝑠 (𝑠𝑖𝑧𝑒 (𝑆))
2 𝑅 [1 :] = 𝑐𝑢𝑚𝑠𝑢𝑚(𝐶) [: −1]
3 𝑇 = 𝑜𝑛𝑒𝑠 (𝑠𝑢𝑚(𝐶))
4 𝑇 [𝑅] = 𝑆
5 𝑇 [𝑅 [1 :]]+ = 1 − (𝑆 [: −1] +𝐶 [: −1])
6 𝑀 = 𝑐𝑢𝑚𝑠𝑢𝑚(𝑇)

4 PROPOSED APPROACH
We follow the peeling paradigm, but take a different approach to
parallelising it. We reframe the problem in terms of vector primi-
tives to maximally expose SIMD parallelism, then compose these
primitives using highly optimised GPU vector processing libraries.

Algorithm 1 describes the overall procedure, following the “fancy”
and “boolean” array notation of advanced array indexing in Numpy
and the Torch libraries of Python [13]. Function unique() applies
to a pre-sorted array and returns two arrays representing unique
values and their frequency.

InputThe algorithm requires three vectors as input, which together
form a flattened adjacency list. Vector 𝐼 is of length𝑚 and contains
the destination of each edge, sorted by origin. Vector 𝐷 is of length
𝑛 and contains the degree of each vertex. Finally, 𝐼 𝐼 is also of length
𝑛 and provides the index in 𝐼 where each vertex’s neighbours begin.

Determining Coreness The procedure begins at coreness 𝑘 = 1
by initialising a sorted array 𝑁 of all vertex ids and loops until 𝑁 is
empty, iteratively peeling away cores. At each iteration, we obtain
the set of vertices, 𝐵, whose degree does not exceed the current
coreness value (Line 4, 12 & 15). All vertices in 𝐵 are assigned
coreness of 𝑘 (Line 8) and are deleted (by zeroing their degree in 𝐷
(Line 7)). Lines 9–11 retrieve the neighbours of vertices in 𝐵 with

nonzero degree (including duplicates) and decreases their degree
by the number of neighbours they have in 𝐵. We increment 𝑘 and
update 𝑁 whenever 𝐵 is empty.

multi-arange Operation An essential part of Algorithm 1 is the
multi-arange operation, ⋄, called in Line 9. The multi-arange op-
eration is not defined directly in the Numpy or Torch libraries.
Here we show how to define it in terms of optimized vector primi-
tives. multi-arange is a binary operation that transforms two equal-
length vectors, 𝑆 and 𝐶 , into an output vector of length Σ𝑐∈𝐶𝐶 . 𝑆
denotes a set of start indices and𝐶 denotes a set of counts. For each
(𝑠𝑖 , 𝑐𝑖) ∈ (𝑆,𝐶), it generates the series 𝑠𝑖 , 𝑠𝑖 + 1, . . . , 𝑠𝑖 + 𝑐𝑖 − 1. For
example, [2 4 1] ⋄ [2 1 3] = [2 3 4 1 2 3]. This function is used in
the main algorithm to quickly generate the indices in array 𝐼 of the
neighbors of a selected set of vertices based on their start positions
stored in vector 𝐼 𝐼 and their degree.

Algorithm 2 describes it in terms of vector primitives. The func-
tion accepts two vectors of same length, 𝑆 and𝐶 . It uses the cumsum()
function, which returns the cumulative sum of all the elements of
the input vector and has a linear order. A naive alternative solu-
tion for this function is to use two nested loops over arrays 𝑆 and
𝐶 and generate the indices in subsequent memory locations. But
the cumsum() function introduced in the Torch library is a parallel
vector operation and using that along with other primitive vector
operations like simple arithmetic and assignment results into a fully
parallel vector function as a whole with linear order.

Our solution for this function is initializing a vector of output
size in a way that applying a cumsum() function will produce the
desired values. As the output vector consist of multiple segments of
independent series, we require some reset values along the output
vector before applying cumsum(). The indices for these reset values
are stored in vector 𝑅. The values of the vectors for the above
example [2 4 1] ⋄ [2 1 3] after each line are follows. (1) 𝑅 = [0 0 0],
(2) 𝑅 = [0 2 3], (3) 𝑇 = [1 1 1 1 1 1], (4) 𝑇 = [2 1 4 1 1 1], (5) 𝑇 =

[2 1 1 − 3 1 1], (6) 𝑀 = [2 3 4 1 2 3].

5 EXPERIMENTS
5.1 Experimental setup
Implementations We compared the vectorized algorithm (Vectr)
with four state of the art algorithms designed for multi-core CPU
architectures: Park [3], PKC and PKC-o [7] and the vertex-centric
MPM [4]. We also implement the sequential state-of-the-art, BZ [2].

We implemented Vectr on a CUDA 8.0 platform with Torch
library version 20171030 using Python 3.7. We implemented the
multi-core algorithms in C++, starting from C implementations
made publicly available by [7]. We use OpenMP 2.1.1 and compile
with the Intel 2016.4 compiler, using the -O3 optimisation level. Our
source code is publicly available.1

Hardware We use a Tesla P100-PCIE-12GB GPU and a dual-16
core, Intel®Xeon®CPU E5-2683 v4 @ 2.10GHz (Broadwell microar-
chitecture) CPUwith hyper-threading disabled, i.e., 32 cores in total.
The OS was a CentOS Linux release of 7.5.1804 (Core).

1https://github.com/mexuaz/vetga

Abbr. Nodes Edges Size 𝑑avg 𝑑max 𝑘avg

AM 403k 4.9M 37 MB 7 1,076 7.2
LJ 4.8M 85.7M 658 MB 15 19,409 9.4
H09 1.1M 112.8M 860 MB 100 11,468 60.0
H11 2.2M 229.0M 1747 MB 105 13,107 61.0

Table 1: Statistical properties of the datasets

Datasets The datasets are real data and taken from the Labora-
tory for Web Algorithmics2 and Standford SNAP collection.3 Iso-
lated vertices have been removed and the directed graph (LJ) was
transformed to be undirected. Table 1 summarises the statistical
properties of the datasets.

amazon-2008 (AM) is a dataset of books, where a bidirectional
edge between books indicates that they are similar. soc-LiveJournal1
(LJ) is a social network, where a directed edge (𝑢, 𝑣) indicates that
user 𝑢 has befriended user 𝑣 . hollywood-2009 (H09) is a social graph,
captured in 2009, in which an edge indicates that two actors/ac-
tresses have co-appeared in a movie. Finally, hollywood-2011 (H11)
is the evolved actors/actresses graph in 2011.

5.2 Results and Discussion
Table 2 shows the raw execution times for each algorithm on each
dataset and each applicable core count, starting from the point that
the graph has been loaded into memory and a common, flattened
adjacency list has been created. Vectr includes the PCIe3 transfer
to the GPU device.
Baselines and Fairness Observe in Table 2 that PKC is consis-
tently within 2× of BZ, indicating a small and easily amortizable
parallel overhead, despite the extra term in the asymptotic com-
plexity. Figure 2 illustrates the parallel speed-up obtained by each
algorithm on each dataset. AM is very small, so all algorithms strug-
gle to expose enough parallelism for 32 cores. Despite having 32
physical cores on 2 sockets, no multi-core algorithm consistently
obtains more than an 8× speed-up. ParK often gets better parallel
scalability than PKC, but the parallel speed-up of PKC is competi-
tive and, additionally, PKC has better single-threaded performance;
thus, it is still faster on 32 cores.
Relative Performance Figure 3 illustrates the performance of
each algorithm, relative to PKC. A 𝑦-value of 1.0 indicates parity
with PKC; a value larger (or smaller) than 1.0 indicates better (or
2http://law.di.unimi.it/datasets.php
3https://snap.stanford.edu

AM H09 H11 LJ

5

10

Pa
ra
lle
lS
pe
ed
up

(×
)

MPM PKC PKC-o ParK

Figure 2: Speedup of baselines on 32 cores versus 1 core.

https://github.com/mexuaz/vetga
http://law.di.unimi.it/datasets.php

Dataset BZ MPM PKC PKC-o ParK Vectr
1t 1t 32t 1t 32t 1t 32t 1t 32t GPU

amazon-2008 354 1411 151 190 24 191 23 262 46 6
soc-LiveJournal1 6953 34272 8911 5198 864 10193 1113 10029 761 102
hollywood-2009 5555 36405 8394 4844 1113 11532 1440 10785 1538 245
hollywood-2011 11936 96203 27433 9787 2162 14852 2535 14281 1161 488

Table 2: Execution times (ms) for algorithms over selected datasets, using 1 (1t) and 32 cores (32t)

AM H09 H11 LJ

0

2

4

6

8

Sp
ee
du

p
vs
.P

KC
(×
)

MPM PKC PKC-o ParK Vectr

Figure 3: Speedup of algorithms versus PKC as a baseline.
Vectr uses the GPU; all others were run on 32 physical cores.

worse) performance. It is clear that the vertex-centric MPM algo-
rithm is non-competitive, about an order of magnitude slower on
all datasets. We also see that PKC, PKC-o, and ParK have similar
performance profiles; which is fastest depends on the dataset.

Our algorithm, Vectr, obtains a consistent improvement of 4×,
even on the small AM dataset (where one would not expect to
saturate a GPU). It obtains a performance improvement of > 8× on
the social network LJ, where the degree distribution is less regular.

In addition to our 4− 8× speed-up, we also note three key points:
• The multicore machines use a full, expensive 32-core server,
available to us only thanks to a national HaaS provider.

• Peeling algorithms already struggle to expose enough paral-
lelism formulti-core architectures, sacrificingwork-efficiency.

• Any moderately competent Python programmer could easily
and quickly implement our algorithm with a similar level of
success, thanks to the availability of toolkits like PyTorch.

As a final note, we compare indirectly to the results presented in
[12], which also does peeling on a GPU, and reports an 8× speed-up
over ParK on LJ on a similar dual-18-core Broadwell CPU and 16GB
P100 GPU. Note, however, that their implementation of ParK is
≈ 700× slower on LJ (the only common dataset) than our imple-
mentation of ParK is, and that our results are consistent with [3, 7].
On our 8GB GPU, their implementation runs out of memory.

6 CONCLUSION
We can see from the experiments that vectorizing algorithms could
benefit from multiple aspects. The first and most important, we

could achieve considerable speed up by doing our experiments on
GPU accelerated machines. Besides, in recent years, many libraries
introduced APIs for basic operations on large arrays like Torch,
Octave, OpenAcc and Thrust. Employing these APIs could save the
algorithm designers from the hassle of developing parallel programs
while benefiting from it. Most of these libraries adopt a unique
syntax for different multi-core hardware platforms ranging from
CPU and GPU to DSP. So it allows the developer to experiment with
the algorithm on different platforms without necessarily applying
any changes to the source code.

ACKNOWLEDGMENTS
This research was enabled in part by support provided by the
WestGrid organization (https://www.westgrid.ca) and by Compute
Canada (https://www.computecanada.ca).

REFERENCES
[1] Mohammad Almasri et al. 2019. Update on k-truss Decomposition on GPU. In

HPEC. 1–7.
[2] Vladimir Batagelj and Matjaž Zaveršnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. arXiv:cs/0310049
[3] Naga Shailaja Dasari et al. 2014. ParK: An efficient algorithm for k-core decom-

position on multicore processors. In Big Data 9–16.
[4] Laxman Dhulipala et al. 2017. Julienne: A Framework for Parallel Graph Algo-

rithms Using Work-Efficient Bucketing. In SPAA ’17 293–304.
[5] Laxman Dhulipala et al. 2018. Theoretically Efficient Parallel Graph Algorithms

Can Be Fast and Scalable. In SPAA ’18 393–404.
[6] Jun Gao et al. 2011. Relational Approach for Shortest Path Discovery over Large

Graphs. PVLDB 5, 4 (2011), 358–369.
[7] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-Core Decomposition on

Multicore Platforms. In IPDPSW. 1482–1491.
[8] Wissam Khaouid et al. 2015. K-core Decomposition of Large Networks on a

Single PC. PVLDB 9, 1 (Sept. 2015), 13–23.
[9] David W Matula and Leland L Beck. 1983. Smallest-last ordering and clustering

and graph coloring algorithms. JACM 30 (1983), 417–427. Issue 3.
[10] Alberto Montresor et al. 2013. Distributed k-Core Decomposition. IEEE Trans

Par Distrib Sys 24, 2 (2013), 288–300.
[11] Mohamed Sarwat et al. 2013. Horton+: A Distributed System for Processing

Declarative Reachability Queries over Partitioned Graphs. PVLDB 6, 14 (2013),
1918–1929.

[12] Alok Tripathy et al. 2018. Scalable K-Core Decomposition for Static Graphs Using
a Dynamic Graph Data Structure. In Big Data. 1134–1141.

[13] Jake VanderPlas. 2016. Python Data Science Handbook: Essential Tools for Working
with Data (1st ed.). O’Reilly Media, Inc., Boston, MA, 78–83.

[14] Chad Voegele et al. 2017. Parallel triangle counting and k-truss identification
using graph-centric methods. In HPEC.1–7.

[15] Heng Zhang et al. 2017. Accelerating Core Decomposition in Large Temporal
Networks Using GPUs. In Neural Information Processing, 893–903.

https://www.westgrid.ca
https://www.computecanada.ca
http://arxiv.org/abs/cs/0310049

	Abstract
	1 Introduction
	2 Background
	3 Existing Approaches
	4 Proposed Approach
	5 Experiments
	5.1 Experimental setup
	5.2 Results and Discussion

	6 Conclusion
	Acknowledgments
	References

