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ABSTRACT
Graphlet enumeration is a basic task in graph analysis with many

applications. Thus it is important to be able to perform this task

within a reasonable amount of time. However, this objective is

challenging when the input graph is very large, with millions of

nodes and edges. Known solutions are limited in terms of scalability.

Distributed computing is often proposed as a solution to improve

scalability. However, it has to be done carefully to reduce the over-

head cost and to really benefit from the distributed solution. We

study the enumeration of four-node graphlets in undirected graphs

using a distributed platform. We propose an efficient distributed

solution which significantly surpasses the existing solutions. With

this method we are able to process larger graphs that have never

been processed before and enumerate quadrillions of graphlets

using a modest cluster of machines. We show the scalability of

our solution through experimental results. Finally, we also extend

our algorithm to enumerate graphlets in probabilistic graphs and

demonstrate its suitability for this case.

KEYWORDS
distributed computing, graph mining, massive networks, subgraph

enumeration

1 INTRODUCTION
Many problems in network/graph analysis require enumeration

and/or counting of small subgraphs. Such problems can be found in

various fields: in biology [13, 20] chemistry [8, 26], social study [4,

11], network analysis and classification [36], and more. Here we

focus on graphlets, which are defined as small induced subgraphs.

Furthermore, we are only interested in connected graphlets, hence

throughout this paper graphlet is defined as a small induced con-

nected subgraph. Some applications require the enumeration of

all graphlets up to a certain degree. For example, Milenkovic and

Przulj [20] used 2, 3, 4, and 5 node graphlets to analyse Protein-

Protein-Interaction (PPI) networks.

Graphlet enumeration problem is challenging when the size of

the input graph is large. In fact, until the recent work [28] (for single

machine), it was believed that subgraphs beyond three nodes are dif-

ficult to enumerate, and that an enumeration algorithm, which has

to touch each subgraph, cannot terminate in a reasonable time [24].

The computational complexity grows exponentially on the order

of subgraphs that we want to enumerate. This can be understood

combinatorially. Suppose we want to find subgraphs of 𝑘 nodes in a

graph of𝑛 nodes, then there are
(𝑛
𝑘

)
= 𝑛(𝑛−1) . . . (𝑛−𝑘+1) possible

combinations that we need to check. If 𝑛 ≫ 𝑘 , this is approximately

𝑛𝑘 . With a graph of a million nodes, each increment of the subgraph

order, 𝑘 , would cost a million times more in the computation. On

the other hand, an order of magnitude increase in 𝑛 would increase

the complexity by 10
𝑘
. Of course, in practice, not all combinations

need to be checked. Efficient algorithms were built by minimizing

unnecessary checking. Nonetheless, it is generally true that the

number of subgraphs grows rapidly with the size of the graph.

From this perspective, triangle is a special case. It is small enough

to enumerate and yet has important role in graph analysis includ-

ing computing the clustering coefficient [21] and truss decompo-

sition [34]. The best known solution for triangle enumeration can

process a graph of five billion nodes [22]. Four-node subgraph enu-

meration is already challenging. Known solutions are limited in

term of scalability, or the size of the graph that can be processed in

a reasonable amount of time. Counting (either exact [12, 24] or ap-

proximate [3, 25]) can do more, but we focus on enumeration which

is a more challenging problem. Using a distributed platform is an

obvious option to increase the computing power, where we can add

more compute nodes to get more done within a given time budget.

Nevertheless, bringing a single machine solution to a distributed

platform has its own challenge. If it is not done properly, we will

get a poor scalability which would not justify the economical cost

of the distributed platform [19].

Induced subgraphs are more difficult to enumerate than the non-

induced ones, because for induced subgraphs we need to check all

possible connections as well as non-connections among the nodes.

Recently, an efficient algorithm for four-node graphlets enumera-

tion had been proposed in [28]. It has a run time which is much

better than 𝑂 (𝑛𝑑𝑘−1), where 𝑑 is the maximum degree. Moreover,

it enumerates all types of four-node graphlets in a single run. This

is different from other solutions which do one pattern at a time.

Nonetheless, it is designed for a single machine, hence restricting

its scalability. This motivates us to search for methods to bring

this algorithm onto a distributed platform, such that the solution is

optimal for this particular problem.

Furthermore, it is well known that some real world networks

are not deterministic. That is, the edges in these networks do not

exist with certainty, only with some probabilities. In this case, the

graphs are known as probabilistic graphs, or uncertain graphs [10,

16, 33]. This provides us with a motivation to extend our solution

to enumerate graphlets in probabilistic graphs.

1.1 Contribution
Our contributions are summarized as follows:

• We devised an efficient distributed algorithm for enumer-

ating all induced four-node graphlets on a single run. This

includes optimizations that are particular to this problem.

We provide detailed analyses on this algorithm to prove its

correctness and efficiency.

• We built an implementation of our proposed solution in

Spark. Available at https://github.com/D4GE/D4GE.
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• We did extensive experimentation with it on several massive

graphs, and we compare our code with the state of the art

(SotA). The results show that our solution has better perfor-

mance compared to the SotA. We succeeded in processing a

larger graph of a size that had never been processed before

in a reasonable amount of time, enumerating quadrillions of

graphlets using a modest cluster of machines.

• Wealso extended our algorithm to enumerate 4-node graphlets

in probabilistic graphs. We tested it through experiments on

large datasets and demonstrate its effectiveness.

2 RELATEDWORK
Subgraph enumeration has received a lot of attention in the litera-

ture quite recently. There are many papers on triangle enumeration,

including [29] and [14]. On higher order subgraphs, most papers

focus on the counting, such as [1, 2, 12], among others. Previous so-

lutions for the induced subgraph enumeration, such as FanMod [35]

and Rage [17], do not perform well on million-scale graphs. Cliques,

or complete subgraphs, are easier to enumerate, with the latest

solution is in [7].

Distributed solutions have been studied extensively in the last

two decades. For the triangle enumeration problem, partition-based

solution was discussed in [30], where some load-balancing prob-

lem was exposed. Park et al. proposed a more efficient solution

called PTE (Pre-partitioned Triangle Enumeration) [22]. They later

generalized PTE to enumerate query subgraphs of various order,

and called their solution PSE (Pre-partitioned Subgraph Enumer-

ation) [23]. It uses VF2 algorithm [6] as its serial enumeration

algorithm. We consider PSE as the state of the art for distributed

solution of subgraph enumeration problem.

There are several distributed methods/frameworks for graph

processing published in the literature, notably Arabesque [32]

and its descendant Fractal [9], DistGraph [31], GraphZero [18],

G-Miner [5], G-thinker [37], RADS [27] and DISC [38]. They are

multipurpose graph applications that can be used to enumerate

subgraphs as well. They are query based, where the users need to

supply the subgraph finding algorithm. In general, they are more

suitable for non-induced subgraphs.

In [28], an algorithm to enumerate all induced four-node (as well

as three-node) graphlets in a single run on a single machine has

been proposed. We use this algorithm, with some modification, as

the serial algorithm for our distributed solution.

Probabilistic graphs have recently gained more attention [10, 16,

33]. In a probabilistic graph, each edge has a probability of existence.

The probabilities add more complexity to the graphlet enumera-

tion problem as we have to consider whether to output a graphlet.

Considering all possibilities is computationally expensive [16].

To the best of our knowledge, there has not been a distributed

solution to simultaneously, and fully, enumerate all the induced

4-node graphlets, both for deterministic and probabilistic cases, that

can scale to large graphs using a modest cluster of machines.

3 PRELIMINARIES
3.1 Graphs and Partitions
Graph. A graph, denoted by 𝐺 = (𝑉 , 𝐸), is an entity consisting of a

set of nodes/vertices, 𝑉 , and a set of edges among the vertices, 𝐸.

Figure 1: Three node graphlets: a wedge and a triangle.

Figure 2: Four node graphlets: a 3-path, a 3-star, a rectangle
or 4-cycle, a tailed-triangle or lollipop, a diamond, and a 4-
clique.

The number of nodes, 𝑛 = |𝑉 |, is the order of the graph, and the

number of edges,𝑚 = |𝐸 |, is the size of the graph. Here we assume

that the graph is undirected, and without multi-edges or self-loops.

The set of neighbouring vertices of vertex 𝑢 is denoted by 𝑁 (𝑢).
The degree of vertex 𝑢 is denoted by 𝑑 (𝑢) = |𝑁 (𝑢) |.

Induced subgraph. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) ⊆ 𝐺 = (𝑉𝐺 , 𝐸𝐺 )
is an induced subgraph if for every pair of nodes 𝑢, 𝑣 ∈ 𝑉𝐻 , edge
𝑢𝑣 ∈ 𝐸𝐻 if and only if 𝑢𝑣 ∈ 𝐸𝐺 .

Edge-induced subgraph. An edge-induced subgraph is formed by

choosing a set of edges from the graph and include all and only end

nodes of those edges.

Note that edge-induced subgraph is not the same as induced

subgraph, as induced subgraph is a subgraph of chosen vertices

while edge-induced subgraph is a subgraph of chosen edges. As we

will see below, induced subgraphs are related to graphlets while

edge-induced subgraphs are used for the partitioning.

Graphlets. A graphlet is an induced connected subgraph. There

are two types of three node graphlets: wedge and triangle as shown

in Fig. 1. There are six types of four node graphlets, shown in Fig. 2.

They are 3-path, 3-star, rectangle, lollipop, diamond and 4-clique.

Cliques. A complete graph is a graph with any pair of nodes

connected by an edge. In a complete graph of order 𝑛 (denoted by

𝐾𝑛) the number of edges is therefore 𝑛(𝑛 + 1)/2. We may think of

cliques as complete sub-graphs. However, these terms are often

interchanged in the literature. Thus, a triangle is also a 3-clique,

and a 𝐾𝑛 is an 𝑛-clique.

For distributed computation we partition the graph using a color-

ing scheme as in [22]. Here are definitions for this partition scheme.

Coloring. Coloring refers to a technique of applying a modulo

function with respect to a chosen number of colors, 𝜌 , to each edge

𝑢𝑣 ∈ 𝐸. An edge 𝑢𝑣 has "color" (𝑖, 𝑗) where 𝑖 = 𝑢%𝜌 , 𝑗 = 𝑣%𝜌 and

% is the mod operator. Edges with the same color can be grouped

together to form an edge-induced sub-graph.

Edge-orientation. Edge-orientation is a technique widely used

in sub-graph enumeration because following an orientation helps

eliminating duplicate outputs and speeds up the enumeration. It

assigns orientation to each edge in an undirected graph by follow-

ing a prescribed rule. A common rule is as follows. First, define a

function 𝜂 which determines a total ordering of the nodes in 𝑉 . An

edge 𝑢𝑣 = 𝑣𝑢 is orientated by 𝜂, such that if 𝜂 (𝑢) < 𝜂 (𝑣), we list
only 𝑢𝑣 but not 𝑣𝑢. This oriented edge is then denoted by (−−→𝑢, 𝑣). As
is common in practice, we use the degrees of the nodes to define the



total ordering 𝜂, i.e., if 𝑑 (𝑢) < 𝑑 (𝑣) then 𝜂 (𝑢) < 𝜂 (𝑣). If the degrees
are equal we just use the node labels to determine the order.

Directed acyclic graph. Using edge-orientation, the undirected

input graph is transformed into a directed acyclic graph (DAG),

denoted by

−→
𝐺 (𝑉 ,−→𝐸 ). The out-neighbouring vertices of vertex 𝑢 is

denoted as 𝑁 + (𝑢). The out-degree of vertex 𝑢 is denoted as 𝑑+ (𝑢).
Edge set. An edge set 𝐸𝑖 𝑗 is an edge-induced sub-graph of the

undirected input graph formed by all edges with color (𝑖, 𝑗).
Symmetrization. Symmetrization is the process of making all

edges in a directed graph bi-directional.

Directed edge set. A directed edge set 𝐸∗
𝑖 𝑗

is an edge-induced

sub-graph of the edge-oriented DAG, where each edge (−−→𝑢, 𝑣) of 𝐸∗
𝑖 𝑗

points from color 𝑖 to color 𝑗 . Directed edge set 𝐸∗
𝑖 𝑗
is a subset of

edge set 𝐸𝑖 𝑗 . For 𝑖 ≠ 𝑗 , 𝐸∗
𝑖 𝑗
∪ 𝐸∗

𝑗𝑖
= 𝐸𝑖 𝑗 . For 𝑖 = 𝑗 , 𝐸∗

𝑖𝑖
= 𝐸𝑖𝑖 .

Sub-problems. A sub-problem refers to the union of edge-sets

of particular colors, or more precisely the problem of finding the

graphlets in that union-set. For a 𝑘-order graphlet enumeration,

we denote sub-problems by 𝑆 {𝑐0,𝑐1,...,𝑐𝑙 } where |{𝑐0, 𝑐1, ..., 𝑐𝑙 }| ∈
{1, 2, ...𝑘} and 𝑐𝑙 ∈ {1, 2, ...𝜌}. For example, for 𝜌 = 3 and 𝑘 = 3

(triangle), the sub-problems are: 𝑆0, 𝑆1, 𝑆2, 𝑆01, 𝑆02, 𝑆12 and 𝑆012,

where, 𝑆𝑖 = 𝐸𝑖𝑖 , 𝑆𝑖 𝑗 = 𝐸𝑖𝑖 ∪ 𝐸𝑖 𝑗 ∪ 𝐸 𝑗 𝑗 , and 𝑆𝑖 𝑗𝑘 = 𝐸𝑖 𝑗 ∪ 𝐸𝑖𝑘 ∪ 𝐸 𝑗𝑘 .
Note that 𝑆𝑖 ⊂ 𝑆𝑖 𝑗 , but 𝑆𝑖 𝑗 ⊄ 𝑆𝑖 𝑗𝑘 .

3.2 Graphlets Enumeration
Compact-Forward [15] is the de-facto serial algorithm for triangle

enumeration. For a given order-by-degree input DAG

−→
𝐺 (𝑉 ,−→𝐸 ),

Compact-Forward enumerates all triangles with 𝑂 ( |−→𝐸 |3/2) oper-
ations. A single machine algorithm for enumerating all six types

of 4-node graphlets in a single run was introduced in [28], and

we call this algorithm S4GE (Simultaneous 4-node Graphlets Enu-

meration)
1
. It searches four node graphlets through triangles and

wedges. That is, it first searches for triangles and wedges, and for

each triangle that it finds it looks around it to see if this triangle

is a part of any tailed triangles, diamonds and/or 4-cliques. Simi-

larly, through wedges it searches for 3-paths, 3-stars and rectangles.

These are done by intersecting the neighbour sets of the three ver-

tices. The details can be found in [28]. S4GE has a running time

𝑂 (𝑇3𝑔 + (|Δ| + |∠ |)𝑑), where 𝑇3𝑔 is the time to enumerate wedges

and triangles.

3.3 Previous Distributed Enumeration
Park et al. [22] proposed a distributed solution for triangle enu-

meration called PTE (Pre-partitioned Triangle Enumeration). PTE

employs Compact-Forward algorithm as the local serial algorithm.

On each distributed worker, PTE does𝑂 (𝑚1.5/𝜌3) amount of work.

Summing over all𝑂 (𝜌3) sub-problems, PTE recovers𝑂 (𝑚1.5) amount

of work overall, which is the same asymptotic behaviour as the

Compact-Forward on a single machine. Note however, that because

of the distribution of the subproblems there are inherently some

redundant computations. Park et al. was able to reduce the total

number of operations by a factor of 2 − 2

𝜌 by employing color

directions to minimize this redundancy.

Park et al. generalised PTE to support non-induced sub-graph

query of an arbitrary order, called PSE (Pre-partitioned Subgraph

1
This algorithm was not named in the original paper.

Enumeration) [23]. PSE takes a query sub-graph𝐺𝑞 (𝑉𝑞, 𝐸𝑞) of or-
der 𝑘 as input where 𝑘 = |𝑉𝑞 |, and enumerates all the matching

sub-graphs to 𝐺𝑞 . PSE employs VF2 algorithm [6] as the local se-

rial algorithm for query graph matching. We stress that VF2 can

only do one non-induced subgraph query at a time, in contrast

to S4GE which enumerates all types of four-node induced con-

nected subgraphs simultaneously. PSE starts by defining

∑𝑘
𝑙=1

(𝜌
𝑙

)
sub-problems. For example, with 𝜌 = 4 and 𝑘 = 4, PSE first defines

the following sub-problems: 𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆01, 𝑆02, 𝑆03, 𝑆12, 𝑆13, 𝑆23,

𝑆012, 𝑆013, 𝑆023, 𝑆123 and 𝑆0123. Park et al. observed that solving

the sub-problems independently introduces duplicate emissions,

and that some sub-problems can be grouped together to reduce

the duplication. For example, since 𝑆0 ⊂ 𝑆01 ⊂ 𝑆012, enumerat-

ing the sub-graphs from 𝑆012 also enumerates all the sub-graphs

from 𝑆0 and 𝑆01. PSE introduced sub-problem group as the funda-

mental computing task on each distributed worker. For example,

{𝑆012, 𝑆0, 𝑆1, 𝑆2}, is a valid sub-problem group, where solving 𝑆012 is

sufficient to solve for the entire group. Park et al. showed that PSE

requires at most

(𝜌−1
𝑘−2

)
|𝐸 | amount of network read, for querying

𝑘-order sub-graphs from an input graph of size |𝐸 |.

4 PROPOSED METHODS
4.1 Generalized Color-Direction
PSE, while correctly enumerating all sub-graphs that match the

query, discovers certain sub-graphs more than once. Consider the

following: if there is a 4-node sub-graph (𝑢, 𝑣,𝑤, 𝑧) whose color is
(0, 0, 1, 1), it can be discovered from the group {𝑆012, 𝑆0, 𝑆1, 𝑆2} as
well as the group {𝑆013, 𝑆01, 𝑆03}, since the first group 𝑆012 reads
edge sets 𝐸00 ∪ 𝐸11 ∪ 𝐸22 ∪ 𝐸01 ∪ 𝐸02 ∪ 𝐸12, and the second group

𝑆013 reads edge sets 𝐸00∪𝐸11∪𝐸33∪𝐸01∪𝐸03∪𝐸13. Both contains

𝐸00 ∪𝐸01 ∪𝐸11 where (𝑢, 𝑣,𝑤, 𝑧) of color (0, 0, 1, 1) would be found.
We observe that: (1) Given a 4-node graphlet and 𝜌 colors, there

are in total 𝜌4 possible color assignments of the four vertices (de-

noted by 𝐾𝑖 𝑗𝑘𝑙 ). (2) When a 4-node graphlet (𝑢, 𝑣,𝑤, 𝑧) is emitted,

it is imposed that the graphlet edges are oriented following the

ordering of the vertices: (−−→𝑢, 𝑣), (−−→𝑢,𝑤), (−−→𝑢, 𝑧), (−−→𝑣,𝑤), (−→𝑣, 𝑧) and (−−→𝑤, 𝑧).
Combining both observations, each color assignment 𝐾𝑖 𝑗𝑘𝑙 can be

used to represent the set of all possible 4-node graphlets (𝑢, 𝑣,𝑤, 𝑧)
of ordered colors (𝑖, 𝑗, 𝑘, 𝑙), where the edges can only point from

color 𝑖 to colors { 𝑗, 𝑘, 𝑙}, from color 𝑗 to colors {𝑘, 𝑙}, and from

color 𝑘 to color 𝑙 . Any 4-node graphlet can have only one unique

ordered color assignment. Each ordered color assignment contains

all the 4-node graphlets that meets the criteria, and there is no

overlap among different ordered color assignments. Hence, enumer-

ating from all ordered color assignment enumerates all the 4-node

graphlets once and once only. The ordered color assignment can be

viewed as a directed version of a sub-problem. Unlike a sub-problem

𝑆𝑖 𝑗𝑘𝑙 that requires the union of edge sets 𝐸𝑖 𝑗 ’s, a color assignment

𝐾𝑖 𝑗𝑘𝑙 requires the union of directed edge sets 𝐸∗
𝑖 𝑗
’s. A color assign-

ment 𝐾𝑖 𝑗𝑘𝑙 requires knowledge of 𝐸
∗
𝑖 𝑗
∪ 𝐸∗

𝑖𝑘
∪ 𝐸∗

𝑖𝑙
∪ 𝐸∗

𝑗𝑘
∪ 𝐸∗

𝑗𝑙
∪ 𝐸∗

𝑘𝑙
.

However, simply solving all the ordered color assignments on dis-

tributed workers will incur unnecessary network read. The color

assignments therefore are grouped into sub-problems to reduce

the network read, with a strategy introduced below. Sub-problems

become the fundamental task assigned to each distributed worker.



Algorithm 1 D4GE

Input: An undirected graph 𝐺 (𝑉 , 𝐸); the number of colors 𝜌

1: Construct

−→
𝐺 (𝑉 ,−→𝐸 ) by applying edge-orientation to 𝐺 (𝑉 , 𝐸)

2: Symmetrise

−→
𝐺 (𝑉 ,−→𝐸 ) into 𝐺sym (𝑉 , 𝐸sym)

3: Partition 𝐸sym into directed edge sets 𝐸∗
𝑖 𝑗
using 𝜌

4: Generate ordered color assignments and sub-problems {𝑆Cs ↦→
{𝐾𝑖 𝑗𝑘𝑙 }}

5: for all 𝑆Cs, {𝐾𝑖 𝑗𝑘𝑙 } do ⊲ Distributed-for

6: 𝐸map ←ReadEdgeSetsCD (𝑆Cs, 4)
7: for all 𝐾𝑖 𝑗𝑘𝑙 ∈ {𝐶0,𝐶1, ...} do
8: S4GECD (𝐸map, 𝑖 𝑗𝑘𝑙)

Algorithm 2 ReadEdgeSetsCD

Input: Sub-problem 𝑆Cs with 𝐶𝑠 = {𝑐0, 𝑐1, ..., 𝑐𝑙 }; order of query
graph 𝑘

1: Initialize empty map 𝐸map ≡ {(𝑖, 𝑗) ↦→ 𝐸∗
𝑖 𝑗
}

2: for all (𝑖, 𝑗) ∈ 𝐶𝑠2 do
3: if 𝑖 = 𝑗 and |{𝑐0, 𝑐1, ..., 𝑐𝑙 }| ≠ 𝑘 then
4: 𝐸map [(𝑖, 𝑖)] ← 𝐸∗

𝑖𝑖
5: else
6: 𝐸map [(𝑖, 𝑗)] ← 𝐸∗

𝑖 𝑗
return 𝐸map

We call our scheme, applied to four-node graphlets, as Dis-

tributed 4-node Graphlet Enumeration (D4GE). The pseudo code

of D4GE is given as Algorithm 1 and Algorithm 2. We want to

stress that while PTE employs the idea of color-direction to reduce

the amount of work performed, we exploit both the linearity of

the DAG and the color-direction, and are able to observe that the

color-assignment problem is essentially a combination problem,

and the unique relationship between any subgraph to its color as-

signment guarantees the duplication-freeness of our algorithm. In

addition, PTE explicitly lists all the ordered color-tuples in the algo-

rithm, while we use combinations to generalize color-assignment.

This works not only for 𝑘 = 4, but also to any order 𝑘 (with 𝜌𝑘

color-assignments).

D4GE takes a DAG as input and symmetrises it. Symmetrization

is necessary to ensure the correctness of S4GE to enumerate all the

wedge-based 4-node graphlets. Consider the graph in Fig. 3 with

DAG adjacency list: 1: {4}, 2: {4}, 3: {4}, 4: {5,6}, 5: {6}, 6: ∅. If we apply
S4GE algorithm on this adjacency list, we will only find triangle

(4, 5, 6) but will not discover tailed-triangle (1,4,5,6), (2,4,5,6) and

(3,4,5,6), as vertices 1, 2, 3 are not in the adjacency list of of vertex

4. With symmetrization, the adjacency list is now 1: {4}, 2: {4}, 3:

{4}, 4: {1,2,3,5,6}, 5: {4,6}, 6: {4, 5}, and S4GE can now successfully

enumerate the three tailed-triangles, as vertices 1, 2 and 3 are added

into the neighbourhood of vertex 4.

1

2

3

4

5

6

Figure 3: A graph illustrating the need for symmetrization.

Now, we introduce the grouping strategy to form sub-problems

from ordered color assignments. Consider color assignments 𝐾0001
and 𝐾0002. By definition 𝐾0001 requires knowledge of 𝐸∗

00
∪ 𝐸∗

01

and 𝐾0002 requires knowledge of 𝐸
∗
00
∪ 𝐸∗

02
. If these two color as-

signments are computed on two different workers, the partitioned

edge-set 𝐸∗
00

is then loaded twice. To address this, color assignments

𝐾𝑝𝑞𝑟𝑠 are grouped into sub-problems. We use 𝑆𝑖 𝑗𝑘𝑙 to denote a sub-

problem. The color assignments are grouped by the following rule:

𝐾𝑝𝑞𝑟𝑠 belongs to sub-problem 𝑆𝑖 𝑗𝑘𝑙 if the sorted and reduced form

of {𝑝, 𝑞, 𝑟, 𝑠} is {𝑖, 𝑗, 𝑘, 𝑙}, where sorted means {𝑝, 𝑞, 𝑟, 𝑠} is sorted in

ascending order, and reduced means removing the duplicated colors

from the sequence {𝑝, 𝑞, 𝑟, 𝑠}. For example, the sorted and reduced

form of {2, 0, 1, 0} is {0, 1, 2}. Therefore 𝐾2010 belongs to 𝑆012.
It is not hard to see that sub-problem 𝑆𝑖 𝑗𝑘𝑙 contains 4! = 24

color assignments - precisely the number of permutations of the

sequence {𝑖, 𝑗, 𝑘, 𝑙}. To fully cover all the color assignments, D4GE

generates

(𝜌
2

)
number of 𝑆𝑖 𝑗 ,

(𝜌
3

)
number of 𝑆𝑖 𝑗𝑘 and

(𝜌
4

)
number of

𝑆𝑖 𝑗𝑘𝑙 . Sub-problem 𝑆𝑖 𝑗𝑘𝑙 contains all the ordered color assignments

𝐾𝑝𝑞𝑟𝑠 where 𝑝, 𝑞, 𝑟, 𝑠 ∈ {𝑖, 𝑗, 𝑘, 𝑙}; sub-problem 𝑆𝑖 𝑗𝑘 contains all

the ordered color assignments 𝐾𝑝𝑞𝑟𝑠 where 𝑝, 𝑞, 𝑟, 𝑠 ∈ {𝑖, 𝑗, 𝑘}; sub-
problem 𝑆𝑖 𝑗 contains all the ordered color assignments𝐾𝑝𝑞𝑟𝑠 where

𝑝, 𝑞, 𝑟, 𝑠 ∈ {𝑖, 𝑗}. In the special case of ordered color assignments

𝐾𝑖𝑖𝑖𝑖 where all four colors are the same, we omitted 𝑆𝑖 and instead

attach𝐾𝑖𝑖𝑖𝑖 to sub-problem 𝑆𝑖 𝑗 where 𝑖+1 = 𝑗%𝜌 . Each sub-problem

is computed independently on a distributed worker.

For all ordered color assignments under sub-problem 𝑆𝑖 𝑗𝑘𝑙 , there

are only two possible relative orders of two arbitrary colors 𝑝 and 𝑞:

𝑝 precedes 𝑞 or the reverse, meaning for any 𝑝 and 𝑞 from {𝑖, 𝑗, 𝑘, 𝑙},
𝐸∗𝑝𝑞 ∪ 𝐸∗𝑞𝑝 = 𝐸𝑝𝑞 is needed. Hence overall, to fully enumerate 𝑆𝑖 𝑗𝑘𝑙 ,

𝐸𝑖 𝑗 ∪ 𝐸𝑖𝑘 ∪ 𝐸𝑖𝑙 ∪ 𝐸 𝑗𝑘 ∪ 𝐸 𝑗𝑙 ∪ 𝐸𝑘𝑙 needs to be read. Sub-problem

𝑆𝑖 𝑗𝑘 can be treated as 𝑆𝑖𝑖 𝑗𝑘 ∪ 𝑆𝑖 𝑗 𝑗𝑘 ∪ 𝑆𝑖 𝑗𝑘𝑘 to reflect that it requires

𝐸𝑖𝑖 ∪𝐸𝑖 𝑗 ∪𝐸𝑖𝑘 ∪𝐸 𝑗 𝑗 ∪𝐸 𝑗𝑘 ∪𝐸𝑘𝑘 , and sub-problem 𝑆𝑖 𝑗 can be treated

as 𝑆𝑖𝑖𝑖 𝑗 ∪ 𝑆𝑖𝑖 𝑗 𝑗 ∪ 𝑆𝑖 𝑗 𝑗 𝑗 to reflect that it requires 𝐸𝑖𝑖 ∪ 𝐸𝑖 𝑗 ∪ 𝐸 𝑗 𝑗 . Each
of the sub-problems and the associated ordered color assignments

are sent to a distributed worker; the worker iterates all the ordered

color assignments. For each colored assignment the worker reads

the directed edge sets from distributed storage, and enumerates the

4-node graphlets by applying the a modified S4GE algorithm.

4.2 S4GECD

S4GE is modified accordingly so that it is able to enumerate all

4-node graphlets for an ordered color assignment 𝑖 𝑗𝑘𝑙 , and we call

this modified version S4GECD. The pseudocode for S4GECD is given

in Algorithm 3, with the details of the explore-functions are given

in Algorithms 4, 5, and 6 respectively.



Algorithm 3 S4GECD

Input: A mapping from the colors of directed edge set to the edge

set 𝐸map ≡ {(𝑖, 𝑗) ↦→ 𝐸∗
𝑖 𝑗
}; ordered color assignment 𝑖 𝑗𝑘𝑙

1: 𝐸∗
𝑖 𝑗
≡ 𝐸map [𝑖 𝑗], 𝐸∗𝑖𝑘 ≡ 𝐸map [𝑖𝑘], 𝐸∗𝑗𝑘 ≡ 𝐸map [ 𝑗𝑘]

2: for all (𝑢, 𝑣) ∈ 𝐸∗
𝑖 𝑗
do

3: if 𝜂 (𝑢) < 𝜂 (𝑣) then
4: for 𝑢 ′ ∈ 𝑁 (𝑢) ⊂ 𝐸∗

𝑖𝑘
and 𝑣 ′ ∈ 𝑁 (𝑣) ⊂ 𝐸∗

𝑗𝑘
do

5: if (𝑢 ′ > 𝑢) ∧ (𝑣 ′ > 𝑢) then
6: if 𝑢 ′ = 𝑣 ′ > 𝑣 then
7: ExploreTriangle (𝑢, 𝑣,𝑢 ′, 𝐸map, 𝑖 𝑗𝑘𝑙)
8: if (𝑢 ′ < 𝑣 ′) ∧ (𝑢 ′ > 𝑣) then
9: ExploreWedge-1 (𝑣,𝑢,𝑢 ′, 𝐸map, 𝑖 𝑗𝑘𝑙)
10: if 𝑢 ′ > 𝑣 ′ then
11: ExploreWedge-2 (𝑢, 𝑣, 𝑣 ′, 𝐸map, 𝑖 𝑗𝑘𝑙)

Algorithm 4 ExploreTriangle

Input: Given triangle (𝑣,𝑢,𝑤); 𝐸map ≡ {(𝑖, 𝑗) ↦→ 𝐸∗
𝑖 𝑗
}; ordered

color assignment 𝑖 𝑗𝑘𝑙 .

1: 𝑁>𝑢 (𝑢) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑢) |𝐸map [𝑖𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
2: 𝑁>𝑢 (𝑣) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑣) |𝐸map [ 𝑗𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
3: 𝑁>𝑢 (𝑤) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑤) |𝐸map [𝑘𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
4: for all 𝑧 ∈ 𝑁>𝑢 (𝑢 ∩ 𝑁>𝑢 (𝑣) ∩ 𝑁>𝑢 (𝑤) with 𝑧 > 𝑤 do
5: Enumerate4Cliqe (𝑢, 𝑣,𝑤, 𝑧)
6: for all 𝑧 in two sets and 𝑧 > opposite node do
7: EnumerateDiamond (𝑢, 𝑣,𝑤, 𝑧)
8: for all 𝑧 in one set only do
9: EnumerateTailedTriangle (𝑢, 𝑣,𝑤, 𝑧)

Instead of enumerating on a complete graph, S4GECD now enu-

merates on a sub-graph denoted by the color assignment 𝑖 𝑗𝑘𝑙 . The

sub-graph is consisted of a mapping between the ordered color

2-tuples (𝑖, 𝑗) and the corresponding directed edge-sets 𝐸∗
𝑖 𝑗
. For an

ordered color assignment, there are

(
4

2

)
= 6 such 2-tuples: (𝑖, 𝑗),

(𝑖, 𝑘), (𝑖, 𝑙), ( 𝑗, 𝑘), ( 𝑗, 𝑙) and (𝑘, 𝑙). (𝑖, 𝑗), (𝑖, 𝑘), ( 𝑗, 𝑘) and the cor-

responding edge-sets are used to discover the wedge or triangle,

and (𝑖, 𝑙), ( 𝑗, 𝑙), (𝑘, 𝑙) and the corresponding edge-sets are used to

discover the graphlet after the base wedge or triangle have been

discovered. S4GECD inherits the correctness from S4GE since the

actual intersection logic is untouched, whereas S4GECD solely fo-

cuses on a particular edge-induced sub-set of the input graph, with

all the edges pointing from color 𝑖 to 𝑗, 𝑘, 𝑙 , from 𝑗 to 𝑘, 𝑙 and from

𝑘 to 𝑙 .

The modification of S4GE shows the expandability of D4GE

partitioning scheme. Since the intersection is not modified, the

partitioning scheme can be applied to different edge-based enumer-

ation algorithm to suit different needs. All it requires is to modify

the input to accommodate a directed sub-set of the input graph.

4.3 Compact-Forward for 4-clique listing
Since PSE with VF2 only supports one query graph per run, for

the purpose of comparison we build an algorithm to enumerate

4-cliques. Furthermore, we fit it to be used with the color direction

Algorithm 5 ExploreWedge-1

Input: Given wedge (𝑣,𝑢,𝑤); 𝐸map ≡ {(𝑖, 𝑗) ↦→ 𝐸∗
𝑖 𝑗
}; ordered

color assignment 𝑖 𝑗𝑘𝑙 .

1: 𝑁>𝑢 (𝑢) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑢) |𝐸map [𝑖𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
2: 𝑁>𝑢 (𝑣) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑣) |𝐸map [ 𝑗𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
3: 𝑁>𝑢 (𝑤) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑤) |𝐸map [𝑘𝑙 ] , 𝜂 (𝑧) > 𝜂 (𝑢)}
4: for all 𝑧 ∈ 𝑁>𝑢 (𝑣) ∩ 𝑁>𝑢 (𝑤) with 𝑧 ∉ 𝑁>𝑢 (𝑢) do
5: EnumerateRectangle (𝑢, 𝑣, 𝑧,𝑤)
6: for all 𝑧 ∈ 𝑁>𝑢 (𝑢) only do
7: if 𝑧 > 𝑤 then
8: Enumerate3Star (𝑢, 𝑣,𝑤, 𝑧)
9: for all 𝑧 ∈ 𝑁>𝑢 (𝑣) only do
10: Enumerate3Path (𝑤,𝑢, 𝑣, 𝑧)
11: for all 𝑧 ∈ 𝑁>𝑢 (𝑤) only do
12: Enumerate3Path (𝑣,𝑢,𝑤, 𝑧)

Algorithm 6 ExploreWedge-2

Input: Given wedge (𝑣,𝑢,𝑤); 𝐸map ≡ {(𝑖, 𝑗) ↦→ 𝐸∗
𝑖 𝑗
}; ordered

color assignment 𝑖 𝑗𝑘𝑙 .

1: 𝐸∗
𝑗𝑙
≡ 𝐸map [ 𝑗𝑙], 𝐸∗𝑘𝑙 ≡ 𝐸map [𝑘𝑙]

2: 𝑁>𝑢 (𝑣) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑣) |𝐸∗
𝑗𝑙
, 𝜂 (𝑧) > 𝜂 (𝑢)}

3: 𝑁>𝑢 (𝑤) ≡ {𝑧 |𝑧 ∈ 𝑁 (𝑤) |𝐸∗
𝑘𝑙
, 𝜂 (𝑧) > 𝜂 (𝑢)}

4: for all 𝑧 ∈ 𝑁>𝑢 (𝑣) only do
5: if 𝑧 > 𝑤 then
6: Enumerate3Star (𝑣,𝑢,𝑤, 𝑧)
7: for all 𝑧 ∈ 𝑁>𝑢 (𝑤) only do
8: if 𝑧 ≠ 𝑣 then
9: Enumerate3Path (𝑢, 𝑣,𝑤, 𝑧)

Algorithm 7 CF4CD

Input: An edge-oriented edge set 𝐸∗
𝑖 𝑗
, 𝐸∗

𝑖𝑘
, 𝐸∗

𝑗𝑘
, 𝐸∗

𝑖𝑙
, 𝐸∗

𝑗𝑙
, 𝐸∗

𝑘𝑙

1: for all (−−→𝑢, 𝑣) ∈ 𝐸∗
𝑖 𝑗
do

2: for all𝑤 ∈ {𝑁 + (𝑢)
��
𝐸∗
𝑖𝑘

∩ 𝑁 + (𝑣)
��
𝐸∗
𝑗𝑘

} do

3: for all 𝑧 ∈ {𝑁 + (𝑢)
��
𝐸∗
𝑖𝑙

∩ 𝑁 + (𝑣)
��
𝐸∗
𝑗𝑙

∩ 𝑁 + (𝑤)
��
𝐸∗
𝑘𝑙

} do
4: Enumerate (𝑢, 𝑣,𝑤, 𝑧)

scheme of D4GE. This algorithm, called CF4CD, is given as Alg. 7.

Note that CF4 extends the idea of Compact-Forward algorithm from

triangles to four-cliques, hence the name CF4. The correctness of

CF4CD is intuitive. CF4CD does 𝑂 (𝑚2) work for a given graph.

4.4 Analysis
In this analysis , first we show that D4GE with S4GECD correctly

enumerates all the 4-node graphlets. D4GE works by generating

all possible colored assignments of all 4-node graphlets. Any 4-

node graphlet must be found from one and only one of the colored

assignments. D4GE then applies S4GECD algorithm on each individ-

ual color assignment. Since S4GE correctly enumerates all 4-node

graphlets for any given graph, D4GE/S4GECD correctly enumerates

all 4-node graphlets for all color assignments of 𝐺sym (𝑉 , 𝐸sym).



Second, we show that D4GE with S4GECD is expected to re-

quire no more than 2𝑚sym
amount of network read in addition to

PSE, where𝑚sym
is the number of edges in 𝐸sym. For D4GE with

S4GECD, the edge set 𝐸𝑖𝑖 is requested (𝜌−1) times (by sub-problems

𝑆𝑖𝑘 ), and
(𝜌−1

2

)
times (by sub-problems 𝑆𝑖𝑘𝑙 ), hence the amount of

network read is

∑𝜌−1
𝑖=0
|𝐸𝑖𝑖 |

(𝜌
2

)
. The 𝐸𝑖 𝑗 with 𝑖 ≠ 𝑗 is requested once

by sub-problems 𝑆𝑖 𝑗 ,
(𝜌−2

1

)
times by sub-problems 𝑆𝑖 𝑗𝑘 , and

(𝜌−2
2

)
times by sub-problems 𝑆𝑖 𝑗𝑘𝑙 . Thus, the amount of network read is∑𝜌−1
𝑖=0

∑𝜌−1
𝑗=𝑖+1 |𝐸𝑖 𝑗 |

[
1 +

(𝜌−1
2

) ]
. Combining both cases:

𝜌−1∑
𝑖=0

|𝐸𝑖𝑖 |
(
𝜌

2

)
+
𝜌−1∑
𝑖=0

𝜌−1∑
𝑗=𝑖+1

|𝐸𝑖 𝑗 |
[
1 +

(
𝜌 − 1
2

)]
=

(
𝜌

2

) 
𝜌−1∑
𝑖=0

|𝐸𝑖𝑖 | +
𝜌−1∑
𝑖=0

𝜌−1∑
𝑗=𝑖+1

|𝐸𝑖 𝑗 |
 − (𝜌 − 2)

𝜌−1∑
𝑖=0

𝜌−1∑
𝑗=𝑖+1

|𝐸𝑖 𝑗 |

≡
(
𝜌

2

)
𝑚sym − (𝜌 − 2)𝑚sym

≠

(1)

If we assume the edges are distributed evenly, the expected size of

𝑚
sym

≠ is
𝜌2−𝜌
𝜌2

=1 − 1

𝜌 of𝑚sym
. Recall that, for 𝑘 = 4, PSE requires(𝜌−1

2

)
𝑚sym

amount of network read. Thus the difference to PSE is[(
𝜌

2

)
− 𝜌 + 3 − 2

𝜌

]
𝑚sym −

(
𝜌 − 1
2

)
𝑚sym =

(
2 − 2

𝜌

)
𝑚sym

(2)

which is less than 2𝑚sym
.

Last, we show D4GE reduces the amount of work compared to

PSE. For this comparison we are using S4GECD as the localized

algorithm. Since S4GECD enumerates all 4-node graphlets by dis-

covering the base triangle and wedges first, we separate the work

calculation into two parts: one being the amount of work to dis-

cover all the base triangle and wedges, the other to discover the

fourth vertex.

Let us consider the first part.We can see that

∑
(𝑢,𝑣) ∈𝐸sym

(𝑑sym (𝑢)+
𝑑sym (𝑣)) is the amount of work to intersect all pairs of edges for

a symmetrised graph. This sum is bounded by and can be esti-

mated by 2𝑚sym𝑑
sym

max
, where 𝑑

sym

max
is the maximum degree of the

symmetrised graph. Following the analysis to derive expression 1,

D4GE does

2

(
𝜌

2

)
𝑚

sym

= 𝑑
sym

max
+ 2[1 +

(
𝜌 − 1
2

)
]𝑚sym

≠ 𝑑
sym

max
(3)

amount of work for discovering all the base triangles and wedges.

For PSE, each 𝐸∗
𝑖𝑖
is read

(𝜌−1
2

)
times; each 𝐸∗

𝑖 𝑗
with 𝑖 ≠ 𝑗 is read(𝜌−2

1

)
+

(𝜌−2
2

)
=

(𝜌−1
2

)
times. So the total amount of work done by PSE

to list all base triangles and wedges is

2

(
𝜌 − 1
2

)
𝑚

sym

= 𝑑
sym

max
+ 2

(
𝜌 − 1
2

)
𝑚

sym

≠ 𝑑
sym

max
. (4)

Subtracting Expression 3 by Expression 4 yields

2

(
𝜌 − 1
1

)
𝑚

sym

= 𝑑
sym

max
+ 2𝑚sym

≠ 𝑑
sym

max

= 2(𝜌 − 2)𝑚sym

= 𝑑
sym

max
+ 2𝑚sym𝑑

sym

max

(5)

recall that if we assume edges are distributed evenly, the expected

value of𝑚
sym

= is
1

𝜌𝑚
sym

. Thus expression 5 can be simplified to

2(𝜌 − 2)𝑚sym

= 𝑑
sym

max
+ 2𝑚sym𝑑

sym

max

= 2

𝜌 − 2
𝜌

𝑚sym𝑑
sym

max
+ 2𝑚sym𝑑

sym

max

=

(
4 − 4

𝜌

)
𝑚sym𝑑

sym

max

(6)

Now consider the second part - the work required to locate the

fourth vertex after listing all the base shapes. Given a particular base

triangle or wedge (𝑢, 𝑣,𝑤), the amount of work by S4GECD to locate

the 4th vertex 𝑧 through intersection is𝑑sym (𝑢)+𝑑sym (𝑣)+𝑑sym (𝑤).
Similarly, this expression is upper bounded by 3𝑑

sym

max
. Also for

each graph dataset, the numbers of triangles and wedges are fixed.

Denote the uni-color triangles and wedges as Δ𝐼 and ∠𝐼 , the bi-color
ones as Δ𝐼 𝐼 and ∠𝐼 𝐼 , and the tri-color ones as Δ𝐼 𝐼 𝐼 and ∠𝐼 𝐼 𝐼 . For PSE

with S4GE, each Δ𝐼 and ∠𝐼 is emitted

(𝜌−1
2

)
times from 𝐸𝑖𝑖 ; each Δ𝐼 𝐼

and ∠𝐼 𝐼 is emitted

(𝜌−2
1

)
times from 𝐸𝑖𝑖 ∪ 𝐸𝑖 𝑗 ; each Δ𝐼 𝐼 𝐼 and ∠𝐼 𝐼 𝐼 is

emitted 1 +
(𝜌−3

1

)
from 𝐸𝑖 𝑗 ∪ 𝐸 𝑗𝑘 ∪ 𝐸𝑖𝑘 . Hence the total work for

locating the 4th vertex 𝑧, using PSE partitioning scheme and S4GE

serial algorithm is:

3

(
𝜌 − 1
2

)
𝑑
sym

max
( |Δ𝐼 | + |∠𝐼 |) + 3

(
𝜌 − 2
1

)
𝑑
sym

max
( |Δ𝐼 𝐼 | + |∠𝐼 𝐼 |)

+ 3
(
1 +

(
𝜌 − 3
1

))
𝑑
sym

max
( |Δ𝐼 𝐼 𝐼 | + |∠𝐼 𝐼 𝐼 |)

(7)

D4GE/S4GECD enumerates each triangle and wedges 𝜌 times. This

is required because given a triangle or wedge of color (𝑖, 𝑗, 𝑘), the
4th vertex can have 𝜌 different colors. All 𝜌 colors are necessary to

ensure that all graphlets would be enumerated. Thus overall, D4GE

with S4GECD does

3 𝜌 𝑑
sym

max
( |Δ| + |∠ |) (8)

amount of work. Expression 7 minus expression 8 yields

3

((
𝜌 − 1
2

)
− 𝜌

)
𝑑
sym

max
( |Δ𝐼 | + |∠𝐼 |)

− 6𝑑sym
max
( |Δ𝐼 𝐼 | + |∠𝐼 𝐼 | + |Δ𝐼 𝐼 𝐼 | + |∠𝐼 𝐼 𝐼 |)

(9)

which is the amount of extra work PSE/S4GE does compared to

D4GE/S4GECD for enumerating all the 4-node graphlets, after all

the wedges and triangles are discovered.

Now consider expressions 6 and 9. Expression 6 shows that the

extra work performed by D4GE with S4GECD to discover all base

triangles and wedges is sensitive to the size of the symmetrised

graph, ie., the number of edges and degrees; expression 9 shows that

the extra work performed by PSE with S4GE to list the 4th vertex,

has a quadratic growth with respect to 𝜌 , and is sensitive to the

number of uni-color triangles and wedges. Note that for real-world

graphs, the number of wedges plus triangles is often a magnitude

greater than the number of the edges, and for a reasonable-sized

cluster, 𝜌 is often set to a large value. As a result, D4GEwith S4GECD
can often achieve greater performance improvement. This will be

confirmed in the experiments below.



Table 1: The numbers of vertices 𝑛, edges𝑚, wedges |∠ |, and
triangles |Δ|, and themax degree of the symmetrized graphs.

Dataset 𝑛 𝑚 |∠ | |Δ| 𝑑
sym

max

enron 69K 510K 40M 1M 1.6K

cnr 326K 5.6M 7.8B 21M 18K

amazon 735K 7M 38M 4.5M 1.1K

hollywood09 1.1M 114M 33B 4.9B 11K

dewiki 1.5M 33M 51B 89M 118K

hollywood11 2.2M 229M 100B 7.1B 13K

orkut 3M 234M 44B 628M 33K

ljournal 5.4M 100M 8.7B 441M 19K

uk02 18.5M 529M 188B 4.5B 195K

enwiki18 5.6M 235M 297B 378M 248K

indochina 7.4M 304M 392B 61B 256K

5 EXPERIMENTS
Unless specifically stated otherwise, the experiments were con-

ducted using 30 Intel E5430 quad-core machines with 6 GB of RAM

each. This gives equivalently 120 distributed workers
2
and 1.5 GB

of RAM per worker. D4GE is implemented in Apache Spark 2.4.5

with OpenJDK 1.8.0. The graph datasets were collected from http://

law.di.unimi.it/datasets.php in WebGraph format, and symmetrized.

The statistics of the symmetrized graphs are listed in Table 1.

5.1 The impact of 𝜌 on performance
We first address 𝜌’s impact on the overall performance of our dis-

tributed algorithm. In a previous literature, Suri and Vassilvitskii

[30] regarded 𝜌 as a trade off between the network read and the in-

put size of each distributed worker: a larger value of 𝜌 increases the

amount of network read, but also decreases the input size as each

task becomes smaller. Park et al [22] on the other hand adjusted 𝜌

accordingly to the input graph size, to fully utilize the amount of

available memory for each worker.

We show that while 𝜌 affects the amount of network read, a

large 𝜌 value in practice can help with balancing the workload

distribution, even when the number of sub-problems over-saturates

the number of workers. Also, with a large enough 𝜌 , the input size of

each task shall never exceed the allocated memory for each worker.

We experimented with D4GE/S4GECD on three different datasets

and varying 𝜌 = 8, 12, 16 and 20. The result is shown in Fig. 4.

When 𝜌 = 8 there are

(
8

2

)
+
(
8

3

)
+
(
8

4

)
= 154 sub-problems, hence

𝜌 = 8 is the minimum value to saturate our cluster of 120 workers.

Any 𝜌 greater than 8 will over-saturate the cluster. Theoretically, we

should not see any improvement after 𝜌 = 8, but in fact we do. This

is because of better load balancing. From 𝜌 = 8 to 12, we observe im-

provement, consistently on various datasets. This shows that 𝜌 = 12,

with almost 5 times more sub-problems than 𝜌 = 8, gives us a better

workload distribution. However, the improvement diminishes and

the performance would eventually decrease as 𝜌 gets higher. The

overhead of network read and Apache Spark framework itself could

2
Each worker is equivalent to a physical CPU core.
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Figure 4: The enumeration time (minutes) of D4GE/S4GECD
on several graphs, with varying value of 𝜌 . Higher 𝜌 do not
add much overhead; the lines flatten out rather than slop-
ping up perceptibly.

dwarf the computation when 𝜌 is too large. We would like to note

that the network read in our experiment is through internal traffic -

i.e., traffic between distributed workers and distributed storage. In-

ternal traffic is often free even on a commercial platform, and the in-

ternal network connection can be order of magnitude faster than an

external one. Even though a large 𝜌 value introduces more network

read, the performance penalty from the network read is negligible.

5.2 Machine scalability
We investigate the machine scalability of D4GE/S4GE by measuring

the running time on hollywood09 and cnr dataset while varying
the number of distributed workers from 32 to 256. The results

are presented in Figure 5. D4GE/S4GE shows strong scalability:

with slope -0.968 and -0.899 respectively, which are very close to

the perfect value -1. It means that the running time decreases by

2
−0.968 = 1.956 and 2

0.899 = 1.865 times, respectively, when the

number of machines is doubled. We emphasize that this is on-par

with the SotA Map-Reduce based algorithms [22] and [23].

5.3 PSE/S4GE vs D4GE/S4GECD

Next, we modified PSE and replaced VF2 with S4GE in the PSE. We

then compared D4GE/S4GECD against PSE/S4GE. For this experi-

ment we set 𝜌 = 16. The enumeration times are listed in Table 2.

We found that D4GE/S4GECD is more efficient for all of the tested

graphs, and D4GE/S4GECD is able to achieve up to 11x speedup,

which is on the cnr dataset.
A significant speedup is achieved on cnr, hollywood09, hol-

lywood11, orkut and ljournal. For these datasets, the number of

wedges plus triangles are much greater than the number of edges,

as can be seen in Table 1. According to expression 6 and 9, PSE’s

performance is penalized by the number of triangles from type-1

sub-problems and wedges, whereas D4GE’s performance is penal-

ized no more than the number of edges from the symmetrised graph.

This gives advantage to D4GE/S4GECD compared to PSE/S4GE.

For the largest datasets, uk02, enwiki18 and indochina, we
employed a larger cluster on Compute Canada

3
using 14 compute

nodes, with 48 cores and 192 GB RAM per node. This configuration

3
https://docs.computecanada.ca/wiki/Cedar

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://docs.computecanada.ca/wiki/Cedar
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Figure 5: Machine scalability of D4GE/S4GE on cnr and
hollywood09. D4GE/S4GE show very strong scalability with
slope -0.899 and -0.968 which is very close to -1, the perfect
value.

Table 2: The enumeration time (minutes) of D4GE/S4GECD
against PSE/S4GE, with 𝜌 = 16, 120 workers.

Dataset PSE/S4GE D4GE/S4GECD Speedup

enron 0.55 0.18 3.1

cnr 1446 132 11.0

amazon 0.37 0.37 1.0

hollywood09 2190 204 10.7

dewiki > 7days 2328 /

hollywood11 9186 864 10.6

orkut 3799 390 9.7

ljournal 432 47 9.2

Table 3: The outputs of D4GE/S4GECD with 𝜌 = 16, on a clus-
ter of 120 workers.

Graphlets enron cnr amazon hw09

3-path 2.51B 6.12B 372M 21.4T

3-star 8.04B 41.4T 610M 16.7T

square 21.6M 37.9B 2.69M 168B

tailed-triangle 583M 79.4B 92.3M 8.87T

diamond 46.1M 43.0B 13.1M 635B

4-clique 5M 160M 4.19M 1.39T

Running Time (min) 0.18 132 0.37 204

effectively gives us 672 workers with 4 GB RAM per worker, which

can still be considered modest. On this cluster, we set 𝜌 to 25,

which gives us 15,250 sub-problems. The results are shown in Table

5. D4GE/S4GECD was able to complete uk02 in about 30 hours,

enwiki18 in 82 hours and indochina in 124 hours, enumerating

more than 2, 7.5 and 10 quadrillion graphlets in total. We emphasize

that, to the best of our knowledge, there is no existing algorithm

that can enumerate all the 4-node graphlets in a dataset of this scale

Table 4: The outputs of D4GE/S4GECD with 𝜌 = 16, on a clus-
ter of 120 workers.

Graphlets dewiki hw11 orkut ljournal

3-path 10.4T 104T 18.6T 1.81T

3-star 661T 92.8T 97.8T 8.85T

square 13.1B 643B 70.1B 8.55B

tailed-triangle 993B 26.8T 1.51T 190B

diamond 11.9B 1.88T 47.8B 27B

4-clique 158M 728B 3.22B 16.1B

Running Time (min) 2328 864 390 47

Table 5: The outputs of D4GE/S4GECD with 𝜌 = 25, on a clus-
ter of 672 workers.

Graphlets uk02 enwiki18 indochina

3-path 1.9T 66.2T 7.6T

3-star 1.97Q 7.4Q 10.01Q

square 238B 76B 617B

tailed-triangle 6.1T 5.1T 9.3T

diamond 1.8T 61.7B 3.3T

4-clique 157B 876M 99.3T

Running Time (min) 1800 4885 7416

in a feasible amount of time. We estimate that, for each, PSE/S4GE

would take more than 7 days to run using the same cluster, which

is impractical. Note that 1 day = 1440 minutes.

We emphasize that the overall speedup of D4GE against PSE

is also because D4GE guarantees no duplication during the enu-

meration. We obtained Park et al’s PSE+VF2 implementation from

https://datalab.snu.ac.kr/pegasusn/download.php, version 3.0.1. We

modify the source code to count the number of duplicated emis-

sions.We list the percentages of duplicate emissions from PSE/S4GE,

PSE/CF, and PSE/VF2. For PSE/S4GE, we list the median percentage

of the duplications for all six types of 4-node graphlets, and we

query 4-clique against VF2. The results are presented in Table 7. We

can see that PSE partitioning scheme, when combined with S4GE

algorithm, emits aroud 300% of duplicates. The percentages are

around 40% for PSE/CF4, and lower for PSE/VF2. From this table,

we might deduce that PSE was indeed designed to work together

with VF2, but not suited for S4GE.

5.4 PSE/VF2 vs D4GE/CF4CD
Lastly, we compare Park et al’s PSE/VF2 implementation with 4-

clique query, against our D4GE/CF4CD. The results are shown in

Table 6. Comparing our D4GE/CF4CD suite against one of the state-
of-the-art sub-graph enumeration algorithm, up to 5.2 fold speedup

is observed on small graph such as amazon, and > 20 fold speedup

on large graph such as hollywood09.
Comparing the second and the third column of Table 7 on dupli-

cate emissions, we can see that localized VF2 algorithm emits less

https://datalab.snu.ac.kr/pegasusn/download.php


Table 6: Enumeration time (minutes) of D4GE/CF4CD
against PSE/VF2, with 𝜌 = 16

Dataset PSE/VF2 CDext/CF4CD Speedup

enron 0.7 0.15 4.7

cnr 1.1 0.33 3.3

amazon 1.3 0.25 5.2

hollywood09 324 16 20.3

dewiki 4.5 1.5 3.0

hollywood11 288 31 9.3

orkut 16 5.0 3.2

ljournal 11 2.5 4.4

Table 7: Duplicated emissions fromPSE partitioning scheme
with different local algorithms.

Dataset S4GE CF4 VF2(K4)

enron 255% 36% 19%

cnr 245% 32% 14%

amazon 270% 36% 1.2%

hollywood09 379% 41% 29%

dewiki / 39% 25%

hollywood11 305% 41% 29%

orkut 246% 41% 29%

ljournal 309% 41% 26%

duplicated 4-cliques than CF4, when both are using the same PSE

partitioning scheme. Yet, still up to 29% of duplicates are emitted

by VF2, from both of hollywoods and orkut datasets.
The overall results show that D4GE/CF4CD has better perfor-

mance than PSE/VF2 for enumerating 4-cliques. However, we also

acknowledge that, PSE/VF2 might suffer from its generality in

this particular comparison. D4GE/CF4CD is tuned to enumerating

4-cliques only whereas VF2 is capable of answering any 𝑘-order

sub-graph query.

We also want to emphasis that the comparison here is aimed to

show the performance gain of D4GE over PSE; while D4GE/S4GECD

can be revised to query 4-cliques, it is designed for a bigger goal -

enumerating all 4-node graphlets.

5.5 Discussion
It is common in the literature that performance or scalability is

measured against the size of the input graph, either by the number

of vertices or more commonly the number of edges. We would like

to point out that in the context of 4-node graphlet enumeration,

using the S4GE algorithm, the number of vertices or edges should

not be the primary consideration when it comes to the amount of

computation. In [28] it was shown that S4GE algorithm is bounded

by 𝑇3g + (|∠ | + |Δ|)𝑑symmax
, where 𝑇3g is the time to enumerate all

the wedges and triangles. As a consequence, a small graph such as

dewiki can have a much longer runtime than graphs of larger size,

such as ljournal. As can be seen in Table 2, ljournalwhich is three
times larger than the dewiki in size has a runtime that is only 2%

of the dewiki’s. Notice that dewiki has a much larger number of

graphlets, in particular the 3-stars. We plots the enumeration time

of eight small-medium datasets against 𝑑
sym

max
( |Δ| + |∠ |) in Figure 6.

From our experiments, the enumeration time demonstrates high

correlation with respect to 𝑑
sym

max
( |Δ| + |∠ |). This shows that the

total number of graphlets is the important metric to measure the

performance of an enumeration algorithm. The correlation also

shows that the D4GE performs as expected, i.e. it does not distort

the single machine solution expectation.
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Figure 6: Strong correlation between the enumeration time
and 𝑑𝑠𝑦𝑚𝑚𝑎𝑥 ( |Δ| + |∠ |) on the small-medium datasets.

We have stated from the beginning that graphlets are induced

connected subgraphs. Some papers in the literature focus on enu-

merating non-induced subgraphs instead. We should point out that

we can get the non-induced subgraphs from the induced subgraphs,

or vice versa, since they are correlated. However, getting the non-

induced from the induced is easier than the other way around.

Given a set of four vertices, the induced subgraph for this vertices

(there is only one) contains all the non-induced subgraphs. On the

other hand, we need to find the largest non-induced subgraph to

get the induced subgraph. The counts are related by

𝑁 = 𝑀 𝐼 (10)

where 𝑁 is the vector for the non-induced counts (3-path, 3-star,

square, tailed triangle, diamond, 4-clique, in this order), and 𝐼 is for

the induced one. The matrix𝑀 is

𝑀 =



1 0 4 2 6 12

0 1 0 1 2 4

0 0 1 0 1 3

0 0 0 1 4 12

0 0 0 0 1 6

0 0 0 0 0 1


(11)

Another question that the readers might ask is why enumerate

all types of 4-node graphlets in a single run? Why not just one

type at a time, like many other solutions? Our answer is that we

can turn off any pattern that we do not want in the S4GE, and do

some optimization for each. However, if we need all types of the



graphlets, for a complete analysis, it will be more efficient to do

all at once rather than do them one by one. Notice that due to its

design, the running time of S4GE is less than the sum of the times

for enumerating the six graphlet types individually.

6 PROBABILISTIC GRAPHLETS
In this section we turn our attention to Probabilistic Graphs. We

follow the following definitions.

Probabilistic graph. A probabilistic graph is defined as 𝐺̃ = (𝐺, 𝑃),
where 𝐺 = (𝑉 , 𝐸) is a graph, and 𝑃 is a function that assigns each

edge 𝑒 ∈ 𝐸 with a probability 𝑝𝑒 ∈ (0, 1].
In contrast to a deterministic graph 𝐺 where each edge is guar-

anteed to exist, in a probabilistic graph 𝐺̃ each edge only exists

with some probability.

Probabilistic graphlet. The probability of a graphlet 𝑔 in a prob-

abilistic graph 𝐺̃ = (𝐺, 𝑃) to occur is equal to the product of the

probabilities of all edges in the graphlet. That is, 𝑝𝑔 =
∏

𝑒∈𝑔 𝑝𝑒 .
The problem than we want to solve is as follows: Given a prob-

abilistic graph 𝐺̃ = (𝐺, 𝑃), enumerate all graphlets that have a

probability to occur more than a certain value (threshold), 𝛾 . Notice

that answering this question would also answer the question of

how many that has probability greater than the threshold, i.e. the

counts for each type of graphlet.

6.1 Probabilistic Enumeration Algorithm
The naive solution for probabilistic graphlets enumeration is to

post-filter-out the graphlets whose probabilities are less than the

threshold. However, this approach does not take advantage of the

probabilistic nature at all. In fact, with this approach any𝛾 will yield

the same enumeration time, while in principle a large 𝛾 should re-

quire much less computing power as it has less number of graphlets

to enumerate.

We found that S4GE is suitable to answer this question. We

leverage the fact that S4GE is an intersection based algorithm,

and that it discovers 4-node graphlets gradually: from edges to

wedges/triangles, and then to 4-node graphlets. This gives us a

hint that we can apply probability-based pruning at each stage

of the discovery pipeline. First and foremost, only edges whose

probabilities 𝑝𝑒 ≥ 𝛾 need to be considered. Upon the discovery

for wedges/triangles, only those with probability greater than 𝛾

need to be processed further. Lastly, the surviving wedges/triangles

are used to discover 4-node graphlets. The final probability of the

4-node graphlets is checked against 𝛾 before emitted.

We highlight the additional changes made to Algorithm 1, 3, 4, 5

and 6. On line 3 of Algorithm 1, when partitioning 𝐸sym into edge-

sets, 𝛾 is now taken into account, such that only the edges with

probability 𝑝𝑒 ≥ 𝛾 are partitioned into 𝐸∗𝑖 𝑗 . This not only disqualifies
certain edges, but also reduces the sizes of the directed edge-sets,

hence reduces the network read at the beginning of the enumera-

tion phase. For Algorithm 3, 4, 5 and 6, we insert a probability check

whenever a new triangle/wedge/graphlet is discovered. For Algo-

rithm 3, whenever the third candidate vertex is discovered, we calcu-

late the probability by 𝑃 ((𝑢, 𝑣)) ∗𝑃 ((𝑢, 𝑣 ′)) ∗𝑃 ((𝑣, 𝑣 ′)) for a triangle,
𝑃 ((𝑢, 𝑣)) ∗ 𝑃 ((𝑢,𝑢 ′)) for a Type-1 wedge and 𝑃 ((𝑢, 𝑣)) ∗ 𝑃 ((𝑣, 𝑣 ′))
for a Type-2 wedge. The calculated probability, if greater than or

equal to 𝛾 , is then passed into the respective explore functions for

candidacy check of the 4th vertex, where the probability of the

graphlet is calculated and checked against 𝛾 before the emission.

6.2 Experiments
For our experiments, probabilistic graph datasets are generated

from deterministic datasets used in Section 5 above. We chose

five undirected graphs that require moderate to high workload:

ljournal, hollywood09, orkut, hollywood11 and dewiki. We

used a random number generator that follows uniform distribution

to assign a probability 𝑝 ∈ (0, 1] to each edge of the graphs, and

ran our probabilistic implementation of D4GE/S4GECD on them.

We did several runs with varying threshold, 𝛾 . For each graph,

we increase the probability threshold, from 0.1 to 0.9, at a step of 0.1.

For a reference, the results of deterministic enumerations are also

included, which can be viewed as 𝛾 = 0. The results are displayed

in Figure 8 for all types of 4-node graphlets. The running times are

shown in Figure 7.
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Figure 7: Enumeration time at different probability thresh-
old.

6.3 Discussion
From Figure 7 we can observe the decreasing trend in enumeration

time with the increasing probability threshold. This trend can be

observed in all five sample graphs. If we look at the dewiki curve,
for example, with the probability threshold increased from 0.1 to

0.5, the enumeration is greatly reduced, from above 2.3K minutes

to 285 minutes, a reduction by a factor of 8. The running time keeps

decreasing as the threshold increases. As 𝛾 approaches to 1, the

running time approaches 0, as expected, because there will be no

edge that passes the threshold.

The number of emitted graphlets from different input graphs are

listed from Figure 8a to Figure 8e respectively. Again we can observe

the decreasing trend in the enumerated graphlets of all six types,

across all the inputs. In particular, the 4-clique is the one mostly

impacted by the increasing probability threshold. This is expected

as 4-clique has the highest number of edges, and the probability of a

4-clique is the product of the probabilities of its six edges. Since each

edge has a probability less than or equal to 1, the likely-hood for the

product of six to be smaller than a threshold is always greater than

the product of five (tailed-triangle and diamond), four (square) and

three (3-path and 3-star). Nonetheless, they all should converge to

zero when the threshold is close to one. Also, keep in mind that the



(a) hw09

0 0.10.20.30.40.50.60.70.80.9
10

3

10
8

10
13

Probability Threshold

E
m
i
t
t
e
d
G
r
a
p
h
l
e
t
s

(b) hw11

0 0.10.20.30.40.50.60.70.80.9
10

3

10
9

10
15

Probability Threshold

(c) dewiki

0 0.10.20.30.40.50.60.70.80.9
10

0

10
8

10
16

Probability Threshold

(d) orkut

0 0.10.20.30.40.50.60.70.80.9
10

1

10
8

10
15

Probability Threshold

E
m
i
t
t
e
d
G
r
a
p
h
l
e
t
s

(e) ljournal

0 0.10.20.30.40.50.60.70.80.9

10
5

10
10

Probability Threshold

E
m
i
t
t
e
d
G
r
a
p
h
l
e
t
s

3-path

3-star

square

tailed-triangle

diamond

4-clique

Figure 8: Probability graphlets enumeration results.

probabilistic graphs that we use in this experiment have uniform

probabilistic distribution for the edges.

Overall, the results imply that while enumerating all six types

of 4-node graphlets can be computational challenging, if the use

case allows for omitting edges that meet certain criteria, the com-

putational requirements can be reduced by a large factor.

In a probabilistic graph, each edge has a chance to exist, or

not. Given an input graph 𝐺 (𝑉 , 𝐸) with 𝑚 edges, in principle,

there could be 2
𝑚

probable graphs, 𝐺𝑖 , each with probability 𝑝𝑖 .

Notice that once a probable graph occurs it can be treated as

a deterministic graph, and that each 𝐺𝑖 is a disjoint possibility.

Then, we have

∑
2
𝑚

𝑖=1 𝑝𝑖 = 1. In general, a specific graphlet can be

found inside many probable graphs. The probability of a graphlet

can also be interpreted as the probability for any of the proba-

ble graphs that contain the graphlet to occur. Let 𝑔 be a graphlet.

Then, according to the Law of Total Probability we have Pr(𝑔) =∑
2
𝑚

𝑖=1 Pr(𝑔 ∩𝐺𝑖 ) =
∑
2
𝑚

𝑖=1 Pr(𝑔 |𝐺𝑖 )Pr(𝐺𝑖 ). Now, given that 𝐺𝑖 is de-

terministic, Pr(𝑔|𝐺𝑖 ) = 1 if𝐺𝑖 contains 𝑔 or 0 if𝐺𝑖 does not contain

𝑔. So

Pr(𝑔) =
∑

𝑖 |𝑔∈𝐺𝑖

Pr(𝐺𝑖 ) (12)

From the enumeration we get the cumulative counts of the

graphlets, as shown in Figure 8. We can then compute the dif-

ferential counts in each interval of the threshold, from 0 to 0.1, from

0.1 to 0.2 and so on, from which we can estimate the mean counts

of the graphlets in the given probabilistic graph by

𝑁avg =
∑
𝑗

1 · Pr(𝑔 𝑗 ) ≈
∑
𝛼

𝑛𝛼𝑃𝛼 (13)

where 𝑛𝛼 is the count of graphlets with probabilities within the

interval 𝛼 and 𝑃𝛼 is the middle value of the interval. The estimates

are listed below. The columns are for 3-path, 3-star, rectangle, tailed-

triangle, diamond, and 4-clique, respectively. We can see that, for

example, the average 4-clique for dewiki is estimated to be 16.5M,

just above 10% of the count in the deterministic graph. Keep in

mind that here we employ uniform probability distribution for the

edges. In general, the percentages would depend on the probability

distribution of the edges.

hw09: 𝑁avg 3.93T 2.83T 30.1B 1.18T 80.9B 140B

Pct 18.4% 17.0% 17.9% 13.3% 12.7% 10.1%

hw11: 𝑁avg 18.1T 15.3T 93.1B 3.51T 211B 73.9B

Pct 17.5% 16.5% 14.5% 13.1% 11.2% 10.1%

dewiki: 𝑁avg 1.89T 105T 1.89B 171B 1.51B 16.5M

Pct 18.3% 16.0% 14.5% 17.3% 12.6% 10.4%

orkut: 𝑁avg 3.30T 15.7T 9.44B 232B 5.63B 332M

Pct 17.7% 16.0% 13.5% 15.4% 11.8% 10.3%

ljournal: 𝑁avg 0.33T 1.42T 1.37B 29.8B 3.25B 1.64B

Pct 18.2% 16.1% 16.1% 15.7% 12.0% 10.2%

7 CONCLUSION
In this paper, we have presented D4GE scheme that brings 4-node

graphlets enumeration into the distributed platform. This scheme



is able to suppress duplicate emissions which are unavoidable with

other schemes. We show that, D4GE when combined with S4GE,

requires at most 2𝑚𝑠𝑦𝑚
more network read compared to PSE/S4GE,

and is able to reduce the amount of work relative to PSE/S4GE for

real world graphs, where the numbers of wedges and triangles are

order of magnitudes greater than the number of edges. We experi-

mented D4GE with S4GECD and CF4CD localized algorithms, and

both combinations out-perform the state-of-the-art competitors by

up to 11x. Last but not least, D4GE/S4GECD is the only known algo-

rithm capable of simultaneously enumerating all 4-node graphlets

on dataset with almost 20 million nodes and a half billion edges.

Finally, we have shown that our algorithm can be generalized to

enumerate graphlets in probabilistic graphs. With careful pruning,

the running time can be reduced depending on the probabilistic

threshold. With our solution, we were able to estimate the mean

counts of the graphlets within a reasonable amount of time.
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