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ABSTRACT
Truss decomposition is a popular approach for discovering cohesive

subgraphs. However, truss decomposition on probabilistic graphs

is challenging. State-of-the-art either do not scale to large graphs

or use approximation techniques to achieve scalability. We present

an exact and scalable algorithm for truss decomposition of proba-

bilistic graphs. The algorithm is based on progressive tightening of

the estimate of the truss value of each edge based on ℎ-index com-

putation and novel use of dynamic programming. Our proposed

algorithm (1) is significantly faster than state-of-the-art and scales

to much larger graphs, (2) is progressive by allowing the user to see

near-results along the way, (3) does not sacrifice the exactness of

final result, and (4) achieves all these while processing only an edge

and its immediate neighbors at a time, thus resulting in smaller

memory footprint. Our extensive experimental results confirm the

scalability and efficiency of our algorithm.
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1 INTRODUCTION
An important category of problems in network analysis is detect-

ing dense or cohesive components in graphs. Studying cohesive

subgraphs can reveal important information about connectivity,

centrality, and robustness of the network. Among different notions

of cohesive subgraphs in the literature, the notion of truss is par-
ticularly suited to extracting a hierarchical structure of cohesive

subgraphs [23].

In deterministic graphs, the 𝑘-truss of a graph 𝐺 is defined as

the largest subgraph in which each edge is contained in at least

𝑘 triangles (or (𝑘 − 2) in some works). The highest value of 𝑘 for

which an edge is part of the 𝑘-truss is called truss value of that edge.

The collection of all 𝑘-trusses for different values of 𝑘 forms the

truss decomposition of the graph. This is a hierarchical structure

because 𝑘-truss is contained in (𝑘 − 1)-truss for all 𝑘 > 1. Truss

decomposition has been used in several important applications

such as visualization of complex networks [30] and community

modeling [10].

Truss decomposition in deterministic graphs has been widely

studied in the literature (cf. [10, 22–24, 29]). However, with the

intrinsic uncertainty in many networks such as social, biological,

and communication networks (cf. [6, 26]), it is of great importance

to study truss decomposition in a probabilistic context. However,

in probabilistic graphs, truss computation is challenging and has

received much less attention. Here, we present an efficient algo-

rithm for computing truss decomposition in probabilistic graphs;

the graphs in which each edge has a probability of existence in-

dependent of the other edges. We use the notion of (𝑘, 𝜂)-truss
introduced in [11]. Specifically, we aim to compute the largest sub-

graph in which each edge is contained in at least 𝑘 triangles within

that subgraph with probability no less than a user specified thresh-

old 𝜂. The threshold 𝜂 defines the desired level of certainty of the

output trusses.

Challenges and contributions. The standard approach to com-

puting 𝑘-truss decomposition is the edge peeling process, which is

based on continuously removing edges with less than 𝑘 triangles

(cf. [11]). This process is repeated after incrementing 𝑘 until no

edges remain [21], which results in finding all 𝑘-trusses for differ-

ent values of 𝑘 . Edge peeling is associated with a major drawback:

the edges have to be kept sorted by their current triangle support

(count) at all times which requires maintaining global information

of the graph at each step of the algorithm. This affects the scalability

of the algorithm considerably. Edge peeling becomes even more

challenging in probabilistic graphs, because triangle counting in

such graphs has a combinatorial nature [11]. That is, each edge

should have enough probability to participate in at least 𝑘 triangles

in the input graph. This probability is called support probability

of the edge. The exact computation of the support probability of

an edge 𝑒 = (𝑢, 𝑣) is done using dynamic programming (DP) in

[11]. The process is repeated each time the edge loses a neighbor

during the peeling process. This process does not scale as it involves

many recomputations, especially when there are edges with many

neighbors. An approximation method is proposed in [8], which

is also a peeling algorithm. However, it addresses the problem by

approximating the support probability using statistical techniques,

thus sacrificing the exactness of solution, but without providing

approximation guarantees. This leads us to ask whether there is an

exact and scalable approach to truss decomposition in probabilistic

graphs.

We answer the above question positively by introducing an al-

gorithm which extends the iterative ℎ-index computation, recently

introduced for deterministic graphs in [21], to probabilistic graphs.

In deterministic graphs, triangle support of the edges are ob-

tained at the beginning, and each edge computes the ℎ-index value



for the list of its neighbors’ triangle supports. Neighbors of an edge

are those edges which form a triangle with the given edge. This

process is repeated on these values until convergence to truss val-

ues occurs. Upon termination, the final ℎ-index value of each edge

equals its truss value. The authors in [21] proves that convergence

of support values to the truss values is guaranteed.

Unfortunately, this idea does not work for probabilistic graphs,

since it does not consider uncertainty in such graphs, thus resulting

in wrong truss values. In this paper, we introduce an ℎ-index updat-

ing algorithm that works for probabilistic graphs. In particular, we

design a procedure which considers properties of truss subgraphs

in probabilistic graphs and maintains proper upper-bounds on truss

value of edges until convergence to true truss values. In summary,

our contributions are as follows:

• We propose an algorithm based on ℎ-index updating which

works for probabilistic graphs. Our proposed algorithm is

exact with respect to final result, but also progressive allow-

ing the user to see near-results along the way, and it works

by processing only one edge and its immediate neighbors at

a time, resulting in smaller memory footprint in practice.

• While proving the correctness of the algorithm, we obtain an

upper-bound on the number of iterations that the algorithm

needs for convergence. It shows that the convergence to truss

values can be obtained after a finite number of iterations.

• We evaluate the performance of our approach on a wide

range of datasets. Our experimental results confirm the scal-

ability and efficiency of our algorithm, significantly outper-

forming the exact algorithm in [11] for large datasets. Fur-

thermore, comparisons with the approximate algorithm of

[8] show that the running time of our proposed algorithm is

very close to that of the approximate algorithm. It is indeed

surprising that we can achieve efficiency without sacrificing

the exactness of the solution.

2 RELATEDWORK
In the literature, much research has been done in the area of mining

and querying probabilistic graphs [5, 9, 12, 13, 15, 18, 19, 27, 28, 31],

such as the 𝑘-nearest neighbor search over probabilistic graphs [20],

uncertain graph sparsification [16], and mining top 𝑘 maximal

cliques in probabilistic graphs [32].

Recently 𝑘-truss has attracted a lot of attention due to its co-

hesive structure and the fact that it can be used to compute other

definitions of dense subgraphs, such as 𝑘-clique. In determinis-

tic graphs, truss decomposition has been studied extensively in

different settings (cf. [4, 10, 23, 25]).

For probabilistic graphs, the notion of (𝑘, 𝜂)-truss is introduced
by Huang, Lu, and Lakshmanan in [11]. Their algorithm for comput-

ing (𝑘, 𝜂)-truss is based on iterative edge peeling and uses dynamic

programming for computing support probability of edges. While

this algorithm runs in polynomial time, it does not scale well to

large graphs, especially those having a high maximum vertex de-

gree. To address this problem, Esfahani et al. in [8] propose an

approximate algorithm, also based on edge peeling, which uses

statistical arguments to replace the DP part in the algorithm of [11].

In contrast, in the current paper, we propose instead an exact
algorithm which does not use peeling at all and scales to large

probabilistic graphs.

[11] also proposes the notion of global (𝑘, 𝜂)-truss based on

the probability of each edge belonging to a connected 𝑘-truss in

a possible world. An algorithm based on sampling is proposed in

[11] to find global (𝑘, 𝜂)-trusses. This notion of probabilistic truss

decomposition falls in the category of #P-hard problems and is not

in the scope of our paper.

Probabilistic core decomposition is studied in [3, 7, 14, 17]. Core

decomposition can also produce cohesive subgraphs, albeit less so

than truss decomposition. In general, truss decomposition is harder

to compute than core decomposition.

Symbol Description
G = (𝑉 , 𝐸, 𝑝) probabilistic graph

𝐺 ⊑ G possible world 𝐺 of probabilistic graph G
𝑒 = (𝑢, 𝑣) edge 𝑒 with endpoint vertices 𝑢 and 𝑣

𝑝 (𝑒) existence probability of edge 𝑒

△ = (𝑢, 𝑣,𝑤), △𝑢𝑣𝑤 triangle with vertices 𝑢, 𝑣 , and𝑤

𝑁G (𝑢) set of neighbor vertices to vertex 𝑢 in G
𝑁𝐺 (𝑢) set of neighbor vertices to vertex 𝑢 in 𝐺

𝑘𝑒
��𝑁G (𝑢) ∩ 𝑁G (𝑣)��, for a given edge 𝑒 = (𝑢, 𝑣)

sup𝐺 (𝑒) |𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣) |, for a given edge 𝑒 = (𝑢, 𝑣)
supG (𝑒) integer random variable with range [0, 𝑘𝑒 ]
𝜂 user-specified probability threshold

𝜂-supG (𝑒) largest value of 𝑡 s.t. Pr[supG (𝑒) ≥ 𝑡] ≥ 𝜂
(probabilistic support of 𝑒 in G)

𝑘max max𝑒 {sup𝐺 (𝑒)}
𝑘max,𝜂 max𝑒 {𝜂-supG (𝑒)}
𝜅𝜂 (𝑒) largest 𝑘 s.t. 𝑒 belongs to a (𝑘, 𝜂)-truss

(truss value of 𝑒 in G for threshold 𝜂)

Table 1: Main Notations

3 BACKGROUND
Trusses in deterministic graphs. Let𝐺 = (𝑉 , 𝐸) be an undirected
graph with no self-loops. For a vertex𝑢 ∈ 𝑉 , the set of its neighbors
is denoted by 𝑁𝐺 (𝑢) and defined as 𝑁𝐺 (𝑢) = {𝑣 : (𝑢, 𝑣) ∈ 𝐸}. A
triangle in 𝐺 is defined as a set of three vertices {𝑢, 𝑣,𝑤} ⊆ 𝑉 such

that all three edges (𝑢, 𝑣), (𝑣,𝑤) and (𝑢,𝑤) exist. This triangle is
denoted by Δ𝑢𝑣𝑤 . The support of an edge 𝑒 = (𝑢, 𝑣) in𝐺 , denoted by
sup𝐺 (𝑒), is defined as the number of triangles in graph𝐺 containing

𝑒 . Formally, sup𝐺 (𝑒) = |𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣) |.
The 𝑘-truss of 𝐺 is defined as the largest subgraph 𝐹 of 𝐺 in

which each edge 𝑒 has sup𝐹 (𝑒) ≥ 𝑘 . The set of all 𝑘-trusses forms

the truss decomposition of𝐺 , where 0 ≤ 𝑘 ≤ 𝑘max, and 𝑘max is the

largest support of any edge in 𝐺 .

Probabilistic graphs.Aprobabilistic graph is a tripleG = (𝑉 , 𝐸, 𝑝),
and is defined over a set of vertices 𝑉 , a set of edges 𝐸 and a proba-

bility function 𝑝 : 𝐸 → (0, 1] which maps every edge 𝑒 ∈ 𝐸 to an

existence probability 𝑝 (𝑒). In the most common probabilistic graph

model [3], the existence probability of each edge is assumed to be

independent of other edges.



To analyze probabilistic graphs, we use the concept of possible
worlds, which are deterministic graph instances of G. In each possi-

ble world only a subset of edges appears. For each possible world

𝐺 = (𝑉 , 𝐸𝐺 ) ⊑ G, where 𝐸𝐺 ⊆ 𝐸, the probability of observing that

possible world is obtained as follows:

Pr(𝐺) =
∏
𝑒∈𝐸𝐺

𝑝 (𝑒)
∏

𝑒∈𝐸\𝐸𝐺
(1 − 𝑝 (𝑒)) . (1)

Example 1. Consider probabilistic graph G in Figure 1a. A possible
world𝐺 of G is shown in Figure 1b. Pr(𝐺) = 0.5 · 0.4 · 0.3 · 0.65 · (1−
0.25) = 0.02925.

Given edge 𝑒 = (𝑢, 𝑣), let 𝑘𝑒 =
��𝑁G (𝑢) ∩ 𝑁G (𝑣)��. We define

an integer random variable supG (𝑒) with values in [0, 𝑘𝑒 ] and
distribution:

Pr[supG (𝑒) = 𝑡] =
∑
𝐺⊑G

Pr[𝐺] · 1(sup𝐺 (𝑒) = 𝑡), (2)

where 1(sup𝐺 (𝑒) = 𝑡) is an indicator function which takes on 1 if

edge 𝑒 has support equal to 𝑡 in 𝐺 , and 0 otherwise.

Given a user-specified threshold 𝜂 ∈ (0, 1], the probabilistic
support of an edge 𝑒 , denoted by 𝜂-supG (𝑒), is the maximum integer

𝑡 ∈ [0, 𝑘𝑒 ] for which Pr[supG (𝑒) ≥ 𝑡] ≥ 𝜂.
It should be noted that as 𝑡 increases (decreases), Pr[supG (𝑒) ≥

𝑡] decreases (increases).

Definition 1. Let 𝜂 be a user defined threshold.
• (𝑘, 𝜂)-truss of G is the largest subgraph F of G in which
each edge 𝑒 has probabilistic support in F no less than 𝑘 , i.e.
𝜂-supF (𝑒) ≥ 𝑘 .
• Truss decomposition of G is the set of all (𝑘, 𝜂)-trusses, for
𝑘 ∈ [0, 𝑘max,𝜂 ], where 𝑘max,𝜂 = max𝑒 {𝜂-supG (𝑒)}.
• Truss value of an edge 𝑒 , 𝜅𝜂 (𝑒), is the largest integer 𝑘 for
which 𝑒 belongs to a (𝑘, 𝜂)-truss.

Proposition 1. (𝑘, 𝜂)-truss of G is the subgraph of G containing
all and only the edges 𝑒 in G with 𝜅𝜂 (𝑒) ≥ 𝑘 .

In this paper (as in [8, 11]) we focus on finding the truss val-

ues of the edges in an input graph. Then (𝑘, 𝜂)-truss for any 𝑘 is

constructed by collecting all edges 𝑒 with 𝜅𝜂 (𝑒) ≥ 𝑘 .
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Figure 1: a) Probabilistic graph G, b) A possible world𝐺 of G.

Example 2. Consider Figure 2a, edge 𝑒 = (1, 2), and 𝜂 = 0.20. We
have Pr[supG (𝑒) ≥ 3] = 1 · 0.3 · 0.5 = 0.15 (product of probabilities
that △012, △123, △124 exist), and Pr[supG (𝑒) ≥ 2] = 0.65. Since 0.65
is greater than 𝜂, 𝜂-supG (𝑒) = 2.

Figure 2b shows a (2, 0.15)-truss F of G. Each edge 𝑒 ∈ F , is
contained in 2 triangles with probability 0.15.

Consider 𝑒 = (1, 2) and 𝜂 = 0.15. Now, 𝜂-supG (𝑒) = 3. Edge
𝑒 is in (1, 0.15)-truss (G itself) and (2, 0.15)-truss (F ). There is no
(3, 0.15)-truss, thus, 𝜅𝜂 (𝑒) = 2.
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Figure 2: a) Probabilistic graph G, b) (2,0.15)-truss F of G.

Obtaining 𝜂-supG (𝑒) using Dynamic Programming. To obtain
𝜂-supG (𝑒), we need to compute Pr[supG (𝑒) ≥ 𝑡], which can be

written in the form of the following recursive formula:

Pr[supG (𝑒) ≥ 𝑡] = Pr[supG (𝑒) ≥ 𝑡 − 1] − Pr[supG (𝑒) = 𝑡 − 1],
Computing Pr[supG (𝑒) = 𝑖] for different values of 𝑖 can be done

using dynamic programming as proposed in [11].

4 ALGORITHM FRAMEWORK
Here we propose an algorithm based on ℎ-index updating, which

has been introduced in the context of deterministic graphs by [21].

Given a set of real numbers, the ℎ-index of the set is defined as

the largest number ℎ such that there are at least ℎ elements in the

set that are equal to ℎ or higher. For instance, the ℎ-index of the

set {1, 2, 3, 3, 5} is 3 because the set includes three numbers no less

than 3.

We also have the notion of the ℎ-index of an edge which is

an integer variable initialized to the edge’s initial support (as a

first approximation of the edge’s truss value). Then the algorithm

iterates multiple times over the edges tightening up their ℎ-index

as described below. In fact, truss values are related to ℎ-indices. For

instance, truss value of an edge can be defined as the largest 𝑘 such

that it is contained in at least 𝑘 triangles (or with probability ≥ 𝜂 in

the probabilistic context) whose edges have truss value of at least

𝑘 .

Let 𝑒 be an edge and (𝑒, 𝑒 ′, 𝑒 ′′) be a triangle supporting 𝑒 . For
such a triangle, we define its support to 𝑒 as the minimum of ℎ-

indices of 𝑒 ′ and 𝑒 ′′. The support values of all triangles supporting
𝑒 are collected in a set 𝐿 and its ℎ-index is computed. At each itera-

tion, the ℎ-index of 𝑒 is updated to the smallest of its current value

and the ℎ-index of 𝐿.

In our algorithm, we refer to this process as Phase I. This phase
corresponds to the ℎ-index based algorithm of [21] for the deter-

ministic case. In deterministic graphs, once the process terminates,

the ℎ-index of each edge becomes equal to the truss value of that

edge. However, we show that this does not solve our problem.

Deterministic ℎ-index updating, Phase I . In the following we

provide explanation of Phase I of our algorithm, which is based

on [21].



Definition 2. Given a set 𝐾 of natural numbers, H(𝐾) is the
largest 𝑘 ∈ N such that at least 𝑘 elements of 𝐾 are greater than or
equal to 𝑘 .

Algorithm 1 Phase I

1: function Phase I(G, ℎ, scheduled)
2: update_Phase I← true
3: while update_Phase I do
4: update_Phase I← false
5: for all edge 𝑒 ∈ 𝐸 do
6: 𝐿 ← empty set

7: for all △ containing 𝑒 do
8: 𝑒 ′, 𝑒 ′′ ← the two edges in △ other than 𝑒

9: 𝜌△ ← min {ℎ(𝑒 ′), ℎ(𝑒 ′′)}
10: 𝐿.𝑎𝑑𝑑 (𝜌△)
11: updated-ℎ𝑒 ←H(𝐿)
12: if updated-ℎ𝑒 < ℎ(𝑒) then
13: update_Phase I← true
14: ℎ(𝑒) ← updated-ℎ𝑒
15: scheduled[𝑒] ← 𝑡𝑟𝑢𝑒

Let ℎ(𝑒) denotes the ℎ-index value of edge 𝑒 at each iteration

of our algorithm. Phase I tightens ℎ(𝑒) values for each edge 𝑒 and

iterates until no further updates occur for anyℎ(.) value irrespective
of edge probabilities. The flag update_Phase I is used to check

termination of Phase I (line 3). The flag is initially set to true (line 2),
and stays true as long as there is an update on aℎ(.) value (lines 4,12,
and 13). For each triangle △ = (𝑒, 𝑒 ′, 𝑒 ′′) which contains 𝑒 , the

algorithm computes its 𝜌△ value that is the minimum value of

ℎ(𝑒 ′) and ℎ(𝑒 ′′) and collects them in a set 𝐿 (lines 7-10). Then,

function H is applied on set 𝐿 (line 11). If the ℎ-index of set 𝐿 is

smaller than ℎ(𝑒), it is assigned as a new index for edge 𝑒 in array

ℎ (line 11). The validity of the assigned value is checked by Phase II
in the next iterations of our proposed proHIT algorithm using the

scheduled array (line 15).

We demonstrate how Phase I works in the following example:

Example 3. To illustrate how ℎ-index works on deterministic

graphs, we refer to Figure 3. The figure shows a deterministic

graph with 6 vertices. Initially, the triangle counts of all the edges

are computed and are set as initial values on the ℎ-index of the

edges. Let ℎ0 be the list of these initial values, which are shown

with blue color in the figure. Then, the algorithm starts updat-

ing the ℎ-indices based on the initial values. Let ℎ1 be the list of

updated values at this step (red). Edge 𝑒 = (0, 2), for instance, par-
ticipates in 4 triangles and in each of them, the algorithm finds the

edge neighbor to (0, 2) with minimum ℎ0 value and records this

value in an array. Then the algorithm updates the ℎ-index of 𝑒 . So,

𝐿 = {min(ℎ0 (0, 1), ℎ0 (1, 2)),min(ℎ0 (0, 3), ℎ0 (2, 3)),min(ℎ0 (0, 4),
ℎ0 (2, 4)),min(ℎ0 (0, 5), ℎ0 (2, 5))} = {1, 2, 3, 2}. As a result,ℎ1 (0, 2) =
H(𝐿) = 2. The ℎ-index of edges (0, 4) and (2, 4) are updated simi-

larly. No more updates happen in the next iteration. Since the given

graph is a deterministic graph, at the end, each edge obtains its

truss value (green).

0

1

2 3

4

5

1,
1,
1

4,2,2

2, 2, 2 3, 2, 2

2, 2, 2

1, 1, 1 3, 2,
2

2, 2, 2

2,
2,
2

2,
2,
2

2, 2, 2

Figure 3: A running example of ℎ-index algorithm on a deterministic
graph.

h-index ℎ(𝑒)
edge 𝑒 𝜂-supG (𝑒) ph_I ph_II truss value

(𝑖, 𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 4 2 2 1 1

(0, 1), (0, 2), (1, 4), (1, 5) 1 1 1 1

(2, 6), (3, 6), (3, 7), (4, 7) 1 1 1 1

Table 2: 𝜂-supG (𝑒) , values obtained by Phase I (Ph_I) and Phase II
(Ph_II), respectively, truss values. 𝜂 = 0.2 for Figure 2a.

Algorithm 2 Probabilistic ℎ-index Truss (proHIT)

1: function Probabilistic ℎ-index updating(G,support,𝜂)
2: for all edge 𝑒 ∈ 𝐸 do
3: ℎ(𝑒) ← 𝜂-supG (𝑒), scheduled[e]← true

4: Phase I (G, ℎ, scheduled) ⊲ Deterministic ℎ-index

5: updated← false ⊲ True if any ℎ(𝑒) is updated
6: while true do
7: Phase II (G, ℎ, scheduled)
8: if updated is false then break
9: else
10: Phase I (G, ℎ, scheduled), updated← false
11: for all edge 𝑒 ∈ 𝐸 do 𝜅𝜂 (𝑒) ← ℎ(𝑒)
12: return array of 𝜅𝜂 (·)

Phase II. Since Phase I does not take into account an edge having

enough support probability to be part of a (𝑘, 𝜂)-truss, it may not

converge to the true truss value of the edge.

For an example, consider Figure 2a and 𝜂 = 0.2. In Table 2

we show the execution of our algorithm at each phase. The first

column shows edges in the graph. The last shows their truss values.

Column ph_I shows theℎ-index values at the end of Phase I. Initially
ℎ-index, ℎ(𝑒), of each edge 𝑒 is set to 𝜂-supG (𝑒) (second column).

Now, consider edge 𝑒 = (1, 2). For each triangle containing 𝑒 , Phase
I finds the minimum ℎ-index of the two edges other than 𝑒 in

the triangle, and adds this minimum to a set 𝐿. For 𝑒 , we have

𝐿 = {min(ℎ(0, 1), ℎ(0, 2)),min(ℎ(1, 3), ℎ(2, 3)),
min(ℎ(1, 4), ℎ(2, 4))} = {1, 2, 2}. Since there are two numbers on

this list that are equal to 2, Phase I sets 2 as the ℎ-index of edge 𝑒 .
Further execution of Phase I cannot produce any updates. However,
the truss value of edge 𝑒 is in fact 1 (see last column of Table 2) as

we explain later in this section. Therefore, Phase I is not able to
converge to the truss value of 𝑒 . Nevertheless, we prove that Phase
I can be used to provide upper-bounds to true truss values. The

proof of this fact, Theorem 1, is presented in Section 5.



Algorithm 3 Phase II

1: function Phase II(G, ℎ, scheduled)
2: for all edge 𝑒 ∈ 𝐸 do
3: if scheduled[e] is false then continue

4: Γ ← ConstructGamma(𝑒)
5: ℎ𝑒 -changed← false
6: while Pr[sup(𝑒) ≥ ℎ(𝑒)

�� Γ] < 𝜂 and ℎ(𝑒) ≥ 0 do
7: ℎ𝑒 -changed← true
8: ℎ(𝑒) ← ℎ(𝑒) − 1
9: Γ ← ConstructGamma(𝑒)
10: if ℎ𝑒 -changed is true then
11: updated← true
12: for all edge 𝑒 ′ ∈ 𝐸Γ \ {𝑒} do
13: scheduled[𝑒 ′] ← true
14: scheduled[𝑒] ← false
15: function ConstructGamma(𝑒)

16: Γ ← empty set

17: for all △ containing 𝑒 do
18: 𝑒 ′, 𝑒 ′′ ← the two edges in △ other than 𝑒

19: 𝜌△ ← min {ℎ(𝑒 ′), ℎ(𝑒 ′′)}
20: if 𝜌△ ≥ ℎ(𝑒) then Γ.add(△)
21: return Γ

We tackle the problem by introducing a process we call Phase II.
Although Phase I is not able to compute exact truss values, it can

provide good upper-boundswhich can be used in Phase II. Therefore,
we combine Phase II with Phase I to speed up convergence as Phase
I runs faster than Phase II.
The major steps of our algorithm, probabilistic ℎ-index truss (pro-
HIT ), are summarized in Algorithm 2. At a high level, we maintain

an array ℎ indexed by edges where we initially store the ℎ-index

value for each edge. Then, we tighten up these values using Phase
I and Phase II, and by the end of the iterations, we have the output

truss values in array ℎ.

Checking whether an edge requires processing or not is done by

array scheduled, which is initialized to true for each edge. Variable

updated records whether there is some edge with its ℎ(.) value
changed or not. Line 4 invokes Phase I. Then, Phase II starts and
processes the ℎ(.) values (upper-bound on truss value) of all the

edges for the possibility of gap between current value and truss

value (line 7). If after Phase II terminates, there is some edge with

its ℎ(.) value updated, Phase I (line 10) starts again. The process
continues until each ℎ(.) value achieves convergence (lines 6-10).
The final truss value of each edge is set to the final ℎ-index.

Phase II of our approach is given in Algorithm 3. This part cru-
cially differentiates our approach from ℎ-index based algorithms for
deterministic graphs.

Let 𝑒 be an edge. We define Γ to be the set of (𝑒, 𝑒 ′, 𝑒 ′′) triangles
that contain 𝑒 and ℎ(𝑒 ′), ℎ(𝑒 ′′) ≥ ℎ(𝑒). It is only the triangles in Γ
that can contribute to updating ℎ(𝑒).

Also, we denote by Pr

[
sup(𝑒) ≥ ℎ(𝑒)

�� Γ] the probability that 𝑒

is contained in at least ℎ(𝑒) triangles selected from Γ. Now, in order

to possibly tighten up the current upper bound value of 𝑒 , we check

the condition

Pr

[
sup(𝑒) ≥ ℎ(𝑒)

�� Γ] ≥ 𝜂. (3)

For each scheduled edge 𝑒 , line 4 constructs the set Γ using

function ConstructGamma, and the above condition is checked in

line (6). Checking the condition presents its own challenges and is

presented in detail later in this section. If the condition fails, integer

values less than ℎ(𝑒) are checked one at a time until we find a value

for ℎ(𝑒) for which the condition is true. Set Γ is updated each time

to correspond to the ℎ(𝑒) value being used for edge 𝑒 (lines 8-9).

This guarantees that the assigned value does not go below the true

truss value of each edge. Variable ℎ𝑒 -changed records whether a

new ℎ(𝑒)-value for 𝑒 is obtained or not, and initially is set to false
(line 5).

For instance, let us consider again the example in Fig. 2a. For

𝑒 = (1, 2) in Table 2 with ℎ(𝑒) = 2 (which is obtained by Phase I,
see third column in Table 2), we verify the condition Pr[sup(𝑒) ≥
2

�� Γ] ≥ 𝜂, where Γ = {△123, △124} (set of triangles containing
𝑒 with other edges having an ℎ(.) value of at least 2). We have

Pr[sup(𝑒) ≥ 2

�� Γ] = 0.3 · 0.5 = 0.15 < 0.2. As a result, 𝑒 cannot

have a truss value of 2. As such, we update ℎ(𝑒) to be 1 and check

the condition again. We have Pr[sup(𝑒) ≥ 1

�� Γ] = 1 > 𝜂, where

Γ = {△012, △123, △124} (set of triangles containing 𝑒 with other

edges having an ℎ(.) value of at least 1). Since the new probability

is greater than 𝜂, ℎ(𝑒) is settled to 1.

Let 𝐸Γ be the edges of the triangles in Γ. If a new ℎ(𝑒) value is
obtained and checked in line 10, the edges in 𝐸Γ \ {𝑒} may change

their ℎ(.) values and thus are scheduled to be processed in the next

iteration (lines 12-13).

In the following sections we provide the proof of the correctness

of the algorithm as well as time complexity analysis.

The main challenge in Phase II is efficient checking of condition

3 for different values of ℎ(𝑒) until a proper value is obtained. For
this, we introduce a modified dynamic programming (DP) process

to avoid computation of these probabilities from scratch.

ModifiedDP. This process is invokedwhenwe check the condition
on line 6 of Algorithm 3.

Let 𝐻 = ℎ(𝑒), and Γ be the set of (𝑒, 𝑒 ′, 𝑒 ′′) triangles as defined
earlier. For a triangle △ = (𝑒, 𝑒 ′, 𝑒 ′′) ∈ Γ, we denote by 𝜌△ the

minimum value of ℎ(𝑒 ′), ℎ(𝑒 ′′). We have 𝜌△ ≥ 𝐻 .
The probability Pr[sup(𝑒) ≥ 𝐻

�� Γ] is computed using DP [11].

However, Γ changes in each iteration of the while loop (see line 9).

We would like to avoid the computation of Pr[sup(𝑒) ≥ 𝐻
�� Γ]

from scratch each time. It should be noted that the probability

computation is valid if 𝑒 exists, with existence probability 𝑝 (𝑒). So,
based on statistics we can write:

Pr[sup(𝑒) ≥ 𝐻
�� Γ] = 𝑝 (𝑒) · Pr[sup(𝑒) ≥ 𝐻 �� Γ, 𝑒 exists], (4)

Initially, the following probabilities are computed

Pr[sup(𝑒) = 0

�� Γ, 𝑒 exists], · · · , Pr[sup(𝑒) = 𝐻 �� Γ, 𝑒 exists], (5)

We now cache these probabilities.

Given a Γ set, let Pr(𝐻,Γ) = Pr[sup(𝑒) ≥ 𝐻
�� Γ]. For 𝐻 − 1, we

define T (𝐻−1) =
{
△1, · · · , △𝑗

}
to be the set of △ triangles which

contain 𝑒 , and 𝜌△ = 𝐻−1. Let Γ𝑛𝑒𝑤 be the set of all triangles△which
contain 𝑒 , and have 𝜌△ ≥ 𝐻 − 1. Clearly, Γ𝑛𝑒𝑤 = Γ ∪ T (𝐻−1) . Now,
we need to compute Pr(𝐻−1,Γ𝑛𝑒𝑤 ) efficiently using the probabilities

in Equation 5. For this, we only need to look at set T (𝐻−1) , which
is usually small (i.e., not more than 50 in our tested real graphs). As

such, the computation is done very fast.



Given an edge 𝑒 = (𝑢, 𝑣), let us assume that we have computed

Pr[sup(𝑒) = 𝑘
�� Γ, 𝑒 exists], where 𝑘 = 0, · · · , 𝐻 , and Γ is as before.

We have:

Pr[sup(𝑒) = 𝑘
�� Γ𝑛𝑒𝑤 , 𝑒 exists]

= Pr[sup(𝑒) = 𝑘
�� Γ ∪ T (𝐻−1) , 𝑒 exists]

= Pr[sup(𝑒) = 𝑘
�� Γ ∪ {

△1, · · · , △𝑗
}
, 𝑒 exists] = 𝑇 ( 𝑗, 𝑘) .

By𝑇 ( 𝑗, 𝑘) we denote the probability that 𝑒 participates in𝑘 triangles
selected from Γ ∪

{
△1, · · · , △𝑗

}
, given that 𝑒 exists.

Let △𝑙 = (𝑢, 𝑣,𝑤𝑙 ), where 𝑙 ∈ [1, 𝑗], be a triangle in T (𝐻−1) .
With the assumption that 𝑒 exists, we consider the following two

exclusive events (in terms of possible worlds). Event 1: △𝑙 exists
and 𝑒 participates in 𝑘 − 1 other triangles of T (𝐻−1) . Event 2: △𝑙
does not exist and 𝑒 participates in 𝑘 other triangles of T (𝐻−1) . The
sum of probabilities of events (1) and (2) gives us the probability

that 𝑒 participates in 𝑘 triangles in T (𝐻−1) . Formally,

𝑇 ( 𝑗, 𝑘) = 𝑝 (𝑢,𝑤𝑙 )𝑝 (𝑣,𝑤𝑙 )𝑇 ( 𝑗 − 1, 𝑘 − 1)
+ (1 − 𝑝 (𝑢,𝑤𝑙 )𝑝 (𝑣,𝑤𝑙 ))𝑇 ( 𝑗 − 1, 𝑘). (6)

The base cases for the above formula are: (1)𝑇 (0, 𝑘) = Pr[sup(𝑒) =
𝑘
�� Γ, 𝑒 exists], 0 ≤ 𝑘 ≤ 𝐻 , (2) 𝑇 ( 𝑗,−1) = 0.

As can be seen, in the recursive formula, we use the previously

computed support probabilities to compute new probability values.

This significantly speeds up the process. By multiplying 𝑇 ( 𝑗, 𝑘) by
𝑝 (𝑒) we obtain the desired probability Pr[sup(𝑒) = 𝑘

�� Γ𝑛𝑒𝑤].
Note. The central limit theorem can be used for approximating

Pr[sup(𝑒) ≥ 𝐻
�� Γ] as well as obtaining an estimate for initial

probabilistic support of edges [8]. Approximation can make proHIT
algorithm faster. However, in this work, we focus on proposing an

exact algorithm for solving truss decomposition.

5 PROOFS OF CORRECTNESS
In this section, we present the proofs of correctness of our algorithm,

proHIT, propsed in Section 4. In particular, we show that conver-

gence can be obtained in a finite number of iterations. We start by

showing that the values obtained by Phase I are upper-bounds on
the truss values.

Theorem 1. In every iteration, Phase I provides upper-bounds on
truss values of edges in the input probabilistic graph.

Proof. Given an edge 𝑒 , let assume that the index value by

Phase I is fixed at 𝐻 . This means that 𝐻 is the maximum value such

that there exists at least 𝐻 triangles (regardless of their existence

probability), which contain 𝑒 , and have 𝜌△ ≥ 𝐻 for each triangle △.
Let Γ be the set of (𝑒, 𝑒 ′, 𝑒 ′′) triangles that contain 𝑒 and

ℎ(𝑒 ′), ℎ(𝑒 ′′) ≥ ℎ(𝑒).
Given the threshold 𝜂, the probability Pr[sup(𝑒) ≥ 𝐻

�� Γ] might

be either (1) less than 𝜂 or (2) greater than or equal to 𝜂.

If the first case holds, the truss value of 𝑒 should be in the interval

[0, 𝐻 ).
Now, let us consider the second case. Since 𝐻 is the maximum

value obtained by Phase I, 𝑒 cannot be contained in 𝐻 ′ > 𝐻 tri-

angles, with 𝜌-value at least 𝐻 ′ because otherwise, Phase I would
have produced an estimate of𝐻 ′ for 𝑒 . Thus, the probability that the

truss value of 𝑒 is equal to 𝐻 ′ is 0. Furthermore, since Pr[sup(𝑒) ≥
𝐻

�� Γ] ≥ 𝜂, we can conclude that the truss value of 𝑒 should be in

the interval [0, 𝐻 ], i.e. the truss value of 𝑒 can be 𝐻 but also can be

lowered in future iterations.

Therefore, considering the first and second cases, we can con-

clude that the true truss value of 𝑒 should be in the interval [0, 𝐻 ].
As a result, the theorem follows.

□

In the following, we first generalize some definitions and prop-

erties of deterministic truss decomposition to the probabilistic con-

text.

Let G be a probabilistic graph, and 𝜂 be a user-defined threshold.

Given an edge 𝑒 , recall that by 𝜅𝜂 (𝑒) we denote the largest integer 𝑘
for which 𝑒 belongs to a (𝑘, 𝜂)-truss. Also, the probabilistic support
of 𝑒 , 𝜂-supG (𝑒), is the maximum integer 𝑡 ∈ [0, 𝑘𝑒 ] for which
Pr[supG (𝑒) ≥ 𝑡] ≥ 𝜂, where 𝑘𝑒 =

��𝑁G (𝑢) ∩ 𝑁G (𝑣)��, and 𝑁G (𝑢)
and 𝑁G (𝑣) are the set of neighbor vertices to 𝑢 and 𝑣 , respectively.

Let 𝛿𝜂 (G) be the minimum probabilistic support in G; i.e. 𝛿𝜂 (G) =
min𝑒 {𝜂-supG (𝑒)} . Thus, we have:

Pr[supG (𝑒) ≥ 𝛿𝜂 (G)] ≥ 𝜂, ∀𝑒 ∈ 𝐸 (G), (7)

We use 𝐸 (G) to denote the set of edges in graphG. Moreover, let𝑊

be the set of all the triangles in G which contain 𝑒 . We note that the

computation of Pr[supG (𝑒) ≥ 𝑘] is done by considering the trian-

gles which contain 𝑒 . Thus, the values obtained by Pr[supG (𝑒) ≥ 𝑘]
and Pr[sup(𝑒) ≥ 𝑘

��𝑊 ] are basically the same, and as a result we

use Pr[supG (𝑒) ≥ 𝑘] interchangeably with Pr[sup(𝑒) ≥ 𝑘
��𝑊 ] to

refer to same concept. We have the following proposition.

Proposition 2. Given a subgraph G′ ⊆ G and an edge 𝑒 = (𝑢, 𝑣)
in G′, let𝑊 and𝑊 ′ be the sets of all the triangles in G and G′,
respectively, which contain 𝑒 . We have that Pr[sup(𝑒) ≥ 𝑘

��𝑊 ′] ≤
Pr[sup(𝑒) ≥ 𝑘

��𝑊 ], where 𝑘 = 0, · · · , 𝑘𝑒 . (As mentioned earlier, this
is equivalent to Pr[supG′ (𝑒) ≥ 𝑘] ≤ Pr[supG (𝑒) ≥ 𝑘]) [11].

The following Lemma is a generalization of a property of truss

values in deterministic graphs [21] to the probabilistic context.

Lemma 1. Given threshold 𝜂, for all 𝑒 ∈ 𝐸 (G), we have
𝜅𝜂 (𝑒) = max

G′⊆G
𝛿𝜂 (G′), (8)

where G′ is a subgarph of G which contains 𝑒 (i.e. 𝑒 ∈ 𝐸 (G′)).

Proof. Let F be the (𝜅𝜂 (𝑒), 𝜂)-truss which contains 𝑒 . By the

definition of truss subgraph we have: 𝛿𝜂 (𝐹 ) = 𝜅𝜂 (𝑒). Thus, 𝜅𝜂 (𝑒) ≤
maxG′ 𝛿𝜂 (G′), for any G′ which contains 𝑒 .

Now, we show that 𝜅 (𝑒) ≥ maxG′ 𝛿𝜂 (G′). We use proof by con-

tradiction. Let G′′ be the largest subgraph of G that contains 𝑒 and

has 𝛿𝜂 (G′′) > 𝜅𝜂 (𝑒). Based on Equation 7 we have Pr[supG′′ (𝑒 ′) ≥
𝛿𝜂 (G′′)] ≥ 𝜂, for any edge 𝑒 ′ ∈ 𝐸 (G′′), including 𝑒 . Hence, G′′ is
a (𝛿𝜂 (G′′), 𝜂)-truss and contains 𝑒 . This is a contradiction by the

definition of 𝜅𝜂 (𝑒) which is the largest value of 𝑘 such that 𝑒 is

contained in a (𝑘, 𝜂)-truss. □

Following [21], we define the concept of degree (support) levels

of edges in a probabilistic graph. First, we start with some technical

definitions. Let G be a probabilistic graph, and 𝜂 be a user-defined

threshold. Also, let C(G) be the set of edges and their containing



triangles. We define the following features for edges and triangles

in C(G):
• Triangle △ ∈ C(G), if ∀𝑒 ∈ △, 𝑒 ∈ C(G).
• If 𝑒 is removed from C(G), all △ ⊃ 𝑒 are also removed from

C(G).
Remark. We could have created two separate sets for edges and

triangles, but doing so would significantly complicate the notation

and its use in the proof as maintaining the relationship between

these two sets would be cumbersome. This definition of 𝐶 (𝐺) is
chosen purely for notational convenience and is similar to the

definition used in [21] where it is defined as the set of all 𝑟 -cliques

and 𝑠-cliques.

Definition 3. Degree Levels. We define degree levels in a recur-
sive way in a probabilistic graph G. Let set 𝐿𝑖 denote the 𝑖-th degree
level. 𝐿0 is defined as the set of edges 𝑒 which have minimum proba-
bilistic support in C(G). 𝐿1 is defined as the set of edges which have
minimum probabilistic support in C(G) \𝐿0, and so on. In general, 𝐿𝑖
contains the set of edges which have minimum probabilistic support
in C(G) \⋃𝑗<𝑖 𝐿𝑗 . The maximum value of 𝑖 for which 𝐿𝑖 can be non-
empty is equal to 𝑘max,𝜂 . We recall that 𝑘max,𝜂 = max𝑒 {𝜂-supG (𝑒)}.

Theorem 2. Given integers 𝑖 and 𝑗 such that 𝑖 ≤ 𝑗 and a threshold
𝜂, for any 𝑒𝑖 ∈ 𝐿𝑖 and 𝑒 𝑗 ∈ 𝐿𝑗 , 𝜅𝜂 (𝑒𝑖 ) ≤ 𝜅𝜂 (𝑒 𝑗 ).

Proof. Let 𝐿′ =
⋃

𝑟 ≥𝑖 𝐿𝑟 be the union of all levels 𝑖 and above.

Also, let G′ be the graph such that 𝐿′ = 𝐸 (G′). Based on definition

of levels, for 𝑒𝑖 ∈ 𝐿𝑖 , we have 𝜂-supG′ (𝑒𝑖 ) = 𝛿𝜂 (G′). Moreover,

𝑒 𝑗 ∈ 𝐿𝑗 implies 𝜂-supG′ (𝑒 𝑗 ) ≥ 𝜂-supG′ (𝑒𝑖 ). Since the truss value of
𝑒𝑖 is 𝜅𝜂 (𝑒𝑖 ), there should exist a (𝜅𝜂 (𝑒𝑖 ), 𝜂)-truss F which contains

𝑒𝑖 . We can have two following cases:

(1) 𝐸 (F ) ⊆ 𝐿′. Using Proposition 2 and the fact that each edge

in F is in G′ (because 𝐿′ = 𝐸 (G′)), we have Pr[supF (𝑒) ≥ 𝑘] ≤
Pr[supG′ (𝑒) ≥ 𝑘]. For edge 𝑒𝑖 , 𝜅𝜂 (𝑒𝑖 ) = 𝛿𝜂 (F ). Thus, setting 𝑘 =

𝛿𝜂 (F ), we have 𝜂 ≤ Pr[supF (𝑒𝑖 ) ≥ 𝛿𝜂 (F )] ≤ Pr[supG′ (𝑒𝑖 ) ≥
𝛿𝜂 (F )]. Since 𝜂-supG′ (𝑒𝑖 ) is the maximum value of 𝑘 such that

Pr[supG′ (𝑒𝑖 ) ≥ 𝑘] ≥ 𝜂, we have 𝜂-supG′ (𝑒𝑖 ) ≥ 𝛿𝜂 (F ). Thus,
we obtain that 𝜂-supG′ (𝑒𝑖 ) = 𝛿𝜂 (G′) ≥ 𝛿𝜂 (F ) = 𝜅𝜂 (𝑒𝑖 ). On the

other-hand, based on Lemma 1, for G′ ⊆ G which contains 𝑒 𝑗 ,

𝛿𝜂 (G′) ≤ 𝜅𝜂 (𝑒 𝑗 ). Combining the above, 𝜅𝜂 (𝑒𝑖 ) ≤ 𝜅𝜂 (𝑒 𝑗 ).
(2) 𝐸 (F ) \ 𝐿′ ≠ ∅. This means that there should exist at least

one edge in 𝐸 (F ), but not in 𝐿′ (e.g. in the levels < 𝑖). Let 𝑒 ′ be
one of these edges such that 𝑒 ′ ∈ 𝐸 (F ) ∩ 𝐿𝑏 with the minimum

value of 𝑏, where 𝑏 < 𝑖 . Since 𝑒 ′ ∈ F and F is a (𝜅𝜂 (𝑒𝑖 ), 𝜂)-truss,
then 𝜂-supF (𝑒 ′) ≥ 𝜅𝜂 (𝑒𝑖 ). Set 𝑀 =

⋃
𝑟 ≥𝑏 𝐿𝑟 . It should be noted

that 𝐸 (F ) ⊆ 𝑀 . Let Q be the corresponding subgraph such that

𝑀 = 𝐸 (Q). We have 𝜂-supQ (𝑒 ′) ≥ 𝜂-supF (𝑒 ′) ≥ 𝜅𝜂 (𝑒𝑖 ). Also,
𝜂-supQ (𝑒 ′) = 𝛿𝜂 (Q), because 𝑒 ′ ∈ 𝐿𝑏 . Since 𝑗 > 𝑏 and 𝑒 𝑗 ∈ 𝑀 ,

𝜅𝜂 (𝑒 𝑗 ) ≥ 𝛿𝜂 (Q) (based on Lemma 1). Combining the above, we

conclude 𝜅𝜂 (𝑒𝑖 ) ≤ 𝜅𝜂 (𝑒 𝑗 ). □

We prove the convergence of our proposed algorithm using

ideas similar to the proof of deterministic ℎ-index algorithm in [21].

In Theorem 1 we showed that Phase I provides upper-bounds on
truss values of the input probabilistic graph. In the following, we

prove that upper-bounds are monotonically non-increasing and are

lower-bounded by truss values.

Theorem 3. For all 𝑡 and all edges 𝑒 in G, we have (1) ℎ𝑡+1 (𝑒) ≤
ℎ𝑡 (𝑒), (2) ℎ𝑡 (𝑒) ≥ 𝜅𝜂 (𝑒), where by ℎ𝑡 (𝑒) we denote the ℎ-index of 𝑒
after the 𝑡-th iteration of Phase I and Phase II together.

Proof. (1)We prove this by induction on 𝑡 . Initially, when 𝑡 = 0,

ℎ0 (𝑒) is equal to 𝜂-supG (𝑒) . Let ℎ
𝑝

1
(·) be the processed values after

completion of Phase I at iteration 1. As shown in [21], throughout

Phase I, the upper-bounds can only decrease, so ℎ
𝑝

1
(𝑒) ≤ ℎ0 (𝑒),

for each edge 𝑒 . The ℎ
𝑝

1
(·) values are passed to Phase II. The block

of steps 6-9 of Phase II (Algorithm 3) checks all the values equal

or less than ℎ
𝑝

1
(𝑒) for each edge 𝑒 , and finds the maximum value

for which the condition in line 6 holds. Let ℎ1 (𝑒) be the obtained
maximum value. Thus, we have ℎ1 (𝑒) ≤ ℎ𝑝

1
(𝑒) ≤ ℎ0 (𝑒). Assume

the property is true up to 𝑡 . For iteration 𝑡 + 1, Phase I needs to
process the values ℎ𝑡 (·) obtained from the previous iteration (i.e. 𝑡 )

by Phase II. Let ℎ𝑝
𝑡+1 (𝑒) be the processed values after completion of

Phase I at iteration 𝑡 + 1. For an edge 𝑒 , by the induction hypothesis,

and monotonicity of Phase I itself [21], we have ℎ𝑝
𝑡+1 (𝑒) ≤ ℎ𝑡 (𝑒) ≤

ℎ𝑡−1 (𝑒). Then, this value is passed through Phase II. As discussed
above, this value is processed using lines 6-9 in Algorithm 3 which

make sure that ℎ𝑡+1 (𝑒) ≤ ℎ𝑝𝑡 (𝑒). Thus, we have ℎ𝑡+1 (𝑒) ≤ ℎ𝑡 (𝑒).
(2)We prove the property by induction on 𝑡 . For 𝑡 = 0, ℎ0 (𝑒) =

𝜂-supG (𝑒) ≥ 𝜅𝜂 (𝑒). Let us assume that for 𝑡 , ℎ𝑡 (𝑒) ≥ 𝜅𝜂 (𝑒). Now,
we focus on the computation of ℎ𝑡+1 (𝑒). Using the induction step

and the fact that Phase I provides an upper-bound on 𝜅𝜂 (𝑒) for each
edge 𝑒 (please refer to Theorem 1), we can write: ℎ

𝑝

𝑡+1 (𝑒) ≥ 𝜅𝜂 (𝑒).
Consider the computation of ℎ𝑡+1 (𝑒) by Phase II which is based on

the value produced by Phase I (i.e.ℎ𝑝
𝑡+1 (𝑒)). LetF be (𝜅𝜂 (𝑒), 𝜂)-truss

which contains 𝑒 . Also, let 𝑆 be the set of all supporting triangles △
in F for edge 𝑒 , such that ∀𝑒 ′, 𝑒 ′′ ≠ 𝑒 ∈ △, min(𝜅𝜂 (𝑒 ′), 𝜅𝜂 (𝑒 ′′)) ≥
𝜅𝜂 (𝑒). Using the property of truss value we know that Pr[sup(𝑒) ≥
𝜅𝜂 (𝑒)

�� 𝑆] ≥ 𝜂. To obtain ℎ𝑡+1 (𝑒), Phase II checks the condition
Pr[sup(𝑒) ≥ ℎ𝑝

𝑡+1 (𝑒)
�� Γ] ≥ 𝜂 (line 6, Algorithm 3), where Γ is the

set of all the triangles that contain 𝑒 , and is detected by Phase II
since 𝜌△ ≥ ℎ

𝑝

𝑡+1 (𝑒), for each △ ∈ Γ, where 𝜌△ is the minimum

ℎ-index value of the edges other than 𝑒 in △ (line 19, Algorithm 3).

If Pr[sup(𝑒) ≥ ℎ𝑝
𝑡+1 (𝑒)

�� Γ] ≥ 𝜂 holds, then ℎ𝑡+1 (𝑒) = ℎ𝑝𝑡+1 (𝑒) ≥
𝜅𝜂 (𝑒). Otherwise, all the 𝑘 values smaller than ℎ

𝑝

𝑡+1 (𝑒) are checked.
In the worst case, consider the computation of the probability when

𝑘 becomes equal to 𝜅𝜂 (𝑒). Let Γ be the updated set to contain all

△ with 𝜌△ ≥ 𝑘 . We claim that 𝑆 ⊆ Γ. For each triangle △ ∈ 𝑆 , and
∀𝑒 ′, 𝑒 ′′ ≠ 𝑒 ∈ △, we have 𝜅𝜂 (𝑒 ′), 𝜅𝜂 (𝑒 ′′) ≥ 𝜅𝜂 (𝑒). In addition, based
on Theorem 1, ℎ

𝑝

𝑡+1 (𝑒
′) ≥ 𝜅𝜂 (𝑒 ′) ≥ 𝜅𝜂 (𝑒) = 𝑘 , and ℎ

𝑝

𝑡+1 (𝑒
′′) ≥

𝜅𝜂 (𝑒 ′′) ≥ 𝜅𝜂 (𝑒) = 𝑘 . Thus, 𝜌△ = min(ℎ𝑝
𝑡+1 (𝑒

′), ℎ𝑝
𝑡+1 (𝑒

′′)) ≥ 𝑘 =

𝜅𝜂 (𝑒), which results in △ ∈ Γ. Using Proposition 2, Pr[sup(𝑒) ≥ 𝑘
��

Γ] ≥ Pr[sup(𝑒) ≥ 𝑘
�� 𝑆]. If for 𝑘 = 𝜅𝜂 (𝑒), Pr[sup(𝑒) ≥ 𝜅𝜂 (𝑒)

�� Γ] <
𝜂, then Pr[sup(𝑒) ≥ 𝜅𝜂 (𝑒)

�� 𝑆] < 𝜂, which is a contradiction with

the definition of 𝜅𝜂 (𝑒). As a result, we should have Pr[sup(𝑒) ≥
𝜅𝜂 (𝑒)

�� Γ] ≥ 𝜂. Thus, ℎ𝑡+1 (𝑒) ≥ 𝜅𝜂 (𝑒). □

Theorem 4. Given any level 𝐿𝑖 , for all 𝑡 ≥ 𝑖 , and 𝑒 ∈ 𝐿𝑖 , we have
ℎ𝑡 (𝑒) = 𝜅𝜂 (𝑒).



Proof. We prove this by induction on 𝑖 . For 𝑖 = 0, let us consider

the set of edges 𝑒 with minimum 𝜂-supG (𝑒) in G. For these edges,
ℎ𝑡 (𝑒) = 𝜂-supG (𝑒) = max𝑘 {Pr[supG (𝑒) ≥ 𝑘] ≥ 𝜂} = 𝜅𝜂 (𝑒).
Assume that the theorem is true up to level 𝑖 . As a result, ∀𝑡 ≥ 𝑖 ,
and ∀𝑒 ∈ ⋃

𝑗≤𝑖 𝐿𝑗 , ℎ𝑡 (𝑒) = 𝜅𝜂 (𝑒). Let 𝑒𝑎 be an arbitrary edge in

level 𝑖 + 1, and 𝐿′ = ⋃
𝑗≥𝑖+1 𝐿𝑗 . Consider the partition of all the

triangles which contain 𝑒𝑎 into two sets 𝑆𝑙 and 𝑆ℎ . Triangles in 𝑆𝑙
contain some edge outside 𝐿′, and those in 𝑆ℎ have all their edges

contained in 𝐿′. For each triangle △ ∈ 𝑆𝑙 , there is some 𝑒𝑏 ≠ 𝑒𝑎 ∈ △
such that 𝑒𝑏 ∈ 𝐿𝑘 , where 𝑘 ≤ 𝑖 . Using induction hypothesis, we

have ℎ𝑡 (𝑒𝑏 ) = 𝜅𝜂 (𝑒𝑏 ). Also, since 𝑒𝑎 ∈ 𝐿𝑖+1, using Theorem 2,

we have ℎ𝑡 (𝑒𝑏 ) = 𝜅𝜂 (𝑒𝑏 ) < 𝜅𝜂 (𝑒𝑎) ≤ ℎ𝑡 (𝑒𝑎), where for the last
inequality we have used the property (2) in Theorem 3.

Let us focus on the computation of ℎ𝑡+1 (𝑒𝑎) (lines 6-9, Algorithm 3).

The algorithm checks the condition Pr[sup(𝑒𝑎) ≥ 𝑟
�� Γ] ≥ 𝜂, where

Γ is the set of triangles △ which contain 𝑒𝑎 , and have 𝜌△ ≥ 𝑟 ,

where 𝑟 = ℎ𝑡 (𝑒𝑎). We recall that 𝜌△ = min{ℎ𝑡 (𝑒 ′), ℎ𝑡 (𝑒 ′′)} (line 19,
Algorithm 3), where 𝑒 ′, 𝑒 ′′ ≠ 𝑒𝑎 ∈ △. Set Γ is updated each time to
correspond to the 𝑟 value being used for computation of the condition.
For every △ ∈ 𝑆𝑙 , by the previous argument, there is some 𝑒𝑏 ≠

𝑒𝑎 ∈ △, such that ℎ𝑡 (𝑒𝑏 ) < ℎ𝑡 (𝑒𝑎). Thus, 𝜌△ < ℎ𝑡 (𝑒𝑎), and these

triangles are not considered in the computation. As a result set Γ
will consist of triangles from set 𝑆ℎ only; Γ ⊆ 𝑆ℎ . Let G′ be the
graph such that 𝐿′ = 𝐸 (G′). Using Proposition 2, we can write

Pr[sup(𝑒𝑎) ≥ 𝑟
�� Γ] ≤ Pr[sup(𝑒𝑎) ≥ 𝑟

�� 𝑆ℎ], for any 𝑟, (9)

Since 𝑒𝑎 ∈ 𝐿𝑖+1, 𝜂-supG′ (𝑒𝑎) = 𝛿𝜂 (G′). Thus, we have
Pr[supG′ (𝑒𝑎) ≥ 𝛿𝜂 (G′)] ≥ 𝜂, (10)

Pr[supG′ (𝑒𝑎) ≥ 𝑟 ′] < 𝜂, for any 𝑟 ′ > 𝛿𝜂 (G′), (11)

The above equations are based on the definition of probabilistic

support of an edge: 𝜂-supG′ (𝑒𝑎) = max𝑘 {Pr[supG′ (𝑒𝑎) ≥ 𝑘] ≥
𝜂}. By definition of 𝑆ℎ , edges contained in the triangles of 𝑆ℎ are

part of 𝐿′ = 𝐸 (G′). Thus, triangles in 𝑆ℎ are contained in G′. As
mentioned earlier, since computation of Pr[supG′ (𝑒𝑎) ≥ 𝑟 ′] is done
by considering triangles in 𝑆ℎ , the values of Pr[supG′ (𝑒𝑎) ≥ 𝑟 ′]
and Pr[sup(𝑒𝑎) ≥ 𝑟 ′

�� 𝑆ℎ] are the same. Therefore, Pr[sup(𝑒𝑎) ≥
𝑟 ′

�� 𝑆ℎ] < 𝜂. Combining this with Equation 9, for 𝑟 > 𝛿𝜂 (G′) we
obtain:

Pr[sup(𝑒𝑎) ≥ 𝑟
�� Γ] ≤ Pr[sup(𝑒𝑎) ≥ 𝑟

�� 𝑆ℎ] < 𝜂, (12)

Since Pr[sup(𝑒𝑎) ≥ 𝑟
�� Γ] < 𝜂, the algorithm checks 𝑟 values

less than or equal to 𝛿𝜂 (G′), thus ℎ𝑡+1 (𝑒𝑎) ≤ 𝛿𝜂 (G′). In addition,

based on Lemma 1, we have 𝛿𝜂 (G′) ≤ 𝜅𝜂 (𝑒𝑎). Thus, ℎ𝑡+1 (𝑒𝑎) ≤
𝜅𝜂 (𝑒𝑎). On the other-hand, based on property (2) in Theorem 3,

we have ℎ𝑡+1 (𝑒𝑎) ≥ 𝜅𝜂 (𝑒𝑎). Combining ℎ𝑡+1 (𝑒𝑎) ≤ 𝜅𝜂 (𝑒𝑎) and
ℎ𝑡+1 (𝑒𝑎) ≥ 𝜅𝜂 (𝑒𝑎), we conclude that ℎ𝑡+1 (𝑒𝑎) = 𝜅𝜂 (𝑒𝑎). Since 𝑒𝑎
was an arbitrary edge in 𝐿𝑖+1, this concludes the proof by induction.

□

Based on the above theorem, we can express the following corol-

lary which shows that convergence is guaranteed in a finite number

of iterations.

Corollary 1. Given a probabilistic graph G, and threshold 𝜂, let
𝑙 be the maximum value for the degree level, such that 𝐿𝑙 ≠ ∅. There
exists some 𝑡 ≤ 𝑙 such that ℎ𝑡 (𝑒) = 𝜅𝜂 (𝑒), for all edges.

6 COMPLEXITY ANALYSIS
In this section we present the time complexity of our proposed

algorithm, proHIT.

Theorem 5. Given a probabilistic graph G, proHIT computes the
truss decomposition of G in 𝑂

(
𝑡𝑘max,𝜂𝜓𝑚

)
, where 𝑡 is the total num-

ber of iterations 𝑘max,𝜂 = max𝑒 {𝜂-supG (𝑒)}, 𝜓 is the minimum
number of spanning forests needed to cover all edges of G , and𝑚 is
the number of the edges.

Proof. The time complexity of Algorithm 2 is dominated by the

time complexity of Phase II, since ℎ-index computation of edges is

done by dynamic programming (DP) algorithmwhich has quadratic

time complexity. In contrast, the ℎ-index computation in Phase I
can be done in linear time.

To analyze the time complexity of Phase II (given in Algorithm 3),

we should note that for each edge 𝑒 = (𝑢, 𝑣), the first time computa-

tion of the probability Pr[sup(𝑒) ≥ 𝐻
�� Γ] in line 6 ( Algorithm 3),

takes 𝑂 (𝐻 𝑗0) time, where 𝑗0 = |Γ |, 𝐻 = ℎ(𝑒), and Γ is as given in

the algorithm. For the next iterations in the while loop (line 6, Al-

gorithm 3), usingModified DP, the computation is performed on T 𝑖

only, where 𝑖 = 𝐻 − 1, · · · , 0, and T 𝑖
is as before. In the worst case,

the while loop is repeated 𝐻 times. Let us assume that 𝑗1 =
��T𝐻−1��

,

𝑗2 =
��T𝐻−2��

, · · · , 𝑗𝑘𝑒 =
��T 0

��
. It is obvious that 𝑗0+ 𝑗1+· · ·+ 𝑗𝑘𝑒 = 𝑘𝑒 ,

where 𝑘𝑒 is the number of common neighbors of 𝑢 and 𝑣 . We have

that 𝑘𝑒 ⊆ 𝑂 (min {𝑑 (𝑢), 𝑑 (𝑣)}), where 𝑑 (𝑢) and 𝑑 (𝑣) are the de-

gree of vertices 𝑢 and 𝑣 , respectively. Therefore, the while loop

takes 𝑂 ( 𝑗0𝐻 ) +𝑂 ( 𝑗1 (𝐻 − 1)) + · · · +𝑂 ( 𝑗𝑘𝑒−11) time. In the worst

case then, the time complexity of the while loop is bounded by

𝑂 ( 𝑗0𝑘max,𝜂 ) +𝑂 ( 𝑗1𝑘max,𝜂 ) + · · · +𝑂 ( 𝑗𝑘𝑒−1𝑘max,𝜂 ), which is equal

to 𝑂 (𝑘max,𝜂𝑘𝑒 ) ⊆ 𝑂 (𝑘max,𝜂 min {𝑑 (𝑢), 𝑑 (𝑣)}).
Moreover, the iteration over each neighbor of edge 𝑒 in line 12

(Algorithm 3), takes 𝑂 (min {𝑑 (𝑢), 𝑑 (𝑣)}). As a resul, the time com-

plexity of Phase II is bounded by∑
𝑒∈𝐸

(
𝑂
(
𝑘max,𝜂 min {𝑑 (𝑢), 𝑑 (𝑣)}

)
+𝑂

(
min {𝑑 (𝑢), 𝑑 (𝑣)}

) )
Thus, the time complexity becomes:∑

𝑒∈𝐸
𝑂
(
𝑘max,𝜂 min {𝑑 (𝑢), 𝑑 (𝑣)}

)
⊆ 𝑂

(
𝑘max,𝜂𝜓𝑚

)
.

It should be noted that 𝜓 ≤ min

{
𝑑max,

√
𝑚
}
, where 𝑑max is the

maximumdegree in the graph. Let 𝑡 be the total number of iterations.

The total time complexity is 𝑂
(
𝑡𝑘max,𝜂𝜓𝑚

)
. In the worst case the

number of iterations, 𝑡 , is bounded by the degree levels as discussed

in Theorem 4 and Corollary 1 in Section 5. The number of degree

levels are bounded by 𝛽 = 𝑘max,𝜂 .

□

The running times of the baseline algorithms, PDT and PAPT are

dominated by 𝑂 (𝑑𝑚𝑎𝑥𝜓𝑚). However, proHit algorithm performs

much better in practice. This is because 𝛽 in the above proof is

worst-case upper-bound on 𝑡 , the number of iterations, and is not

representative of practical performance. As shown in our experi-

ments 𝑡 is much less than 𝛽 in practice as the ℎ-index of several

edges will decrease simultaneously in each iteration.

For example, let us consider the flickr dataset, with 𝛽 = 𝑘max,𝜂 =

49. However, as can be seen in Figure 6, for flickr with 𝜂 = 0.1, the



total number of iterations is about 18 which is much smaller than

𝛽 . This trend is also evident for other datasets.

Graph |𝑉 | |𝐸 | |△| Reference

flickr 24,125 300,836 8,857,038 [3]

dblp 684,911 2,284,991 4,582,169 [3]

biomine 1,008,201 6,722,503 93,716,868 [3]

uk-2014-tpd 1,766,010 15,283,718 259,040,749 [1, 2]

itwiki-2013 1,016,867 23,429,644 89,901,299 [1, 2]

in-2004 1,382,908 27,182,946 464,257,245 [1, 2]

ljournal-2008 5,363,260 49,514,271 411,155,444 [1, 2]

enwiki-2013 4,206,785 91,939,728 304,083,160 [1, 2]

Table 3: Dataset Statistics

7 EXPERIMENTS
In this section, we present our experimental results. Our implemen-

tations are in Java and the experiments are conducted on a machine

with Intel i7, 2.2Ghz CPU, and 12Gb RAM, running Ubuntu 18.04.

The statistics for the datasets are shown in Table 3. We report the

number of vertices |𝑉 |, the number of edges |𝐸 |, and the number of

triangles |△|. Datasets with real probability values are flickr, dblp,
and biomine.

flickr is a popular online community for sharing photos. Nodes

are users in the network, and the probability of an edge between

two users is obtained based on the Jaccard coefficient of the interest

groups of the two users [3, 20].

dblp comes from the well-known bibliography website. Nodes

correspond to authors, and there is an edge between two authors if

they co-authored at least one publication. The existence probability

of each edge is measured based on an exponential function of

the number of collaborations between two users [3, 20]. biomine

Dataset 𝒌max,𝜼 max𝒆 {𝜿𝜼 (𝒆)} 𝜼

biomine

151 33 0.1

143 30 0.2

135 28 0.3

125 25 0.4

121 18 0.5

Table 4: 𝒌max,𝜼 , max𝒆 {𝜿𝜼 (𝒆) } , 𝜂.

contains biological interactions between proteins. The probability of

an edge represents the confidence level that the interaction actually

exists [3].

The rest of the datasets are social networks and web graphs

which are obtained from Laboratory of Web Algorithms [1, 2].

For these datasets we generated probability values uniformly dis-

tributed in (0, 1].

7.1 Efficiency Evaluation
In this section we report the running time of our proposed al-

gorithm, proHIT, versus the state-of-the-art peeling algorithms,

whichwe refer to as PDT (peeling-DP-truss) [11] and PAPT (peeling-

approximate-truss) [8]. Both PDT and PAPT algorithms are based

on iterative edge removal process which removes edges 𝑒 with

smallest probabilistic support, 𝜂-supG (𝑒), and updating probabilis-

tic support, 𝜂-supG\{𝑒 } (𝑒 ′), of the affected edges 𝑒 ′ in G \ {𝑒}. PDT

Dataset avg𝜼 {𝒌max,𝜼 } avg𝜼 {max𝒆 {𝜿𝜼 (𝒆)}}

flickr 48 47

dblp 38 11

biomine 135 27

ljournal-2008 911 35

uk-2014-tpd 1252 51

in-2004 1890 35

itwiki-2013 4574 6

enwiki-2013 14429 8

Table 5: The values of avg𝜼 {𝒌max,𝜼 }, and avg𝜼 {max𝒆 {𝜿𝜼 (𝒆) }} over
𝜼 = 0.1, · · · , 0.5.

uses dynamic programming for computing and updating proba-

bilistic support of edges. However, PAPT uses statistical methods

to approximate probabilistic support of edges, and as such, is an

approximate algorithm. We use DP as an abbreviation for dynamic

programming.

In our experiments, we set threshold 𝜂 = 0.1, · · · , 0.5. The run-
ning times in log-scale are shown in Figures 4 and 5. In Figure 4 we

present the running times for flickr, dblp, biomine, and ljournal-2008
using 𝜂 = 0.1 as an example. In Figure 5, we separate the running

times for the rest of the datasets due to different scales in their

plot of running times. For these datasets we show the results for

𝜂 = 0.2, · · · , 0.5, since PDT cannot complete in reasonable time for

𝜂 = 0.1. Moreover, for each dataset, we obtain the average of the

maximum probabilistic support, avg𝜂 {𝑘max,𝜂 }, and the average of

maximum truss value, avg𝜂 {max𝑒 {𝜅𝜂 (𝑒)}}, over 𝜂 = 0.1, · · · , 0.5.
These statistics are shown in Table 5, second and third columns,

respectively.

As can bee seen in Figures 4 and 5, our proHIT algorithm is

significantly faster than PDT, especially on networks containing a

large number of triangles, and having large value of avg𝜂 {𝑘max,𝜂 }.
For instance, for biomine (Figure 4) which is such a dataset, the

gain of our algorithm compared to PDT is 84%, making proHIT six

times faster than PDT. In fact, for biomine, for 𝜂 equal to 0.1 and

0.2, proHIT is even better than the approximate algorithm PAPT,
which, we recall, is an approximate algorithm. For the other 𝜂’s

for biomine, proHIT is slightly slower than PAPT. To reiterate, this

is a welcome surprise because our proposed algorithm, proHIT,
achieves a similar performance as PAPT, but without sacrificing the
exactness of the solution.

In terms of running time on the smaller datasets, flickr and

dblp, proHIT produces the results in 1.5 minutes and 1 minute,

respectively. The number of triangles in flickr is twice larger than
in dblp while having much less edges. We observe that proHit has a
similar performance as PAPT. Both proHit and PAPT are faster than

PDT, except on dblp. We recall that dblp is the smallest dataset in

terms of probabilistic support and truss value of its edges, and as

such it does not cause too much work for Dynamic Programming

needed for PDT. As we see in the rest of the charts in Figure 5

proHIT significantly outperforms PDT and PAPT as the datasets

get larger.

The running times of all algorithms increase for ljournal-2008,
which is reasonable, because this graph has 49 million edges with
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Figure 4: Running time of our proposed algorithm, proHIT, versus PDT and PAPT (baselines) for truss decomposition in probabilistic graphs.
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Figure 5: Running time of our proposed algorithm, proHIT, versus PDT and PAPT edge peeling (baselines) for truss decomposition on larger
datasets with different values of 𝜂.

avg𝜂 {𝑘max,𝜂 } equal to 911. For ljournal-2008, proHIT computes truss

decomposition faster than PDT with a gain of 40 percent.

The running times continue to increase for the remaining datasets.

This is because for these datasets avg𝜂 {𝑘max,𝜂 } is much larger as

shown in Table 5. For instance, for itwiki-2013, avg𝜂 {𝑘max,𝜂 } is 4574.
Moreover, for uk-2014-tpd and in-2004 the ratio of the number of

triangles to the number of edges is much higher than ljournal-2008.

As can be seen, for these graphs, proHIT is again significantly

faster than its counterpart PDT (as an exact method). For instance,

for uk-2014 and itwiki-2013 with 𝜂 = 0.3, proHIT is about 2 and 3

times faster than PDT. Comparing proHIT with PAPT (which is an

approximate method) shows that proHIT is on average 24% faster

than PAPT without sacrificing the exactness of the solution. For

itwiki-2013 with 𝜂 = 0.5, proHIT can complete truss decomposition

in about 4 hours, while PAPT takes about 7 hours. Also, truss de-

composition of in-2004 using proHIT is 30 min faster than the one

using PAPT. A similar trend can be observed for other values of 𝜂.

In general, as the number of edges and triangles in the input

graph increase, the running times of the algorithms becomes larger.

The conclusion that we get is that for large graphs the performance

of the proHIT algorithm is better than the peeling approaches since

they require updating probabilistic supports many times during the

algorithm process to obtain the truss values of the edges.



Note. It should be noted that as 𝜂 increases, probabilistic support

and truss values of edges decrease which lead to decrease in the

running times of the algorithms. In Table 4, we show the trend

for one of our dataset, biomine, in which 𝑘max,𝜂 and max𝑒 {𝜅𝜂 (𝑒)}
decrease as 𝜂 increases.

Next, we discuss why proHIT is faster than PDT. The most ex-

pensive part of both algorithms is executing DP routines, with

quadratic run-times in the number of triangles containing each

edge. However, their number and sizes are different in proHIT and

PDT. Step 6 in Phase II (Algorithm 3) of proHIT uses DP to check

the validity of the upper-bounds on the truss value of edges at

each iteration of the algorithm. Also, at the beginning of proHIT,
the upper-bound of each edge 𝑒 is set to its 𝜂-supG (𝑒) which is

obtained using DP (Algorithm 2, line 3). In PDT, DP is used after

each edge removal, and all the edges that are neighbors of a peeled

edge need to have their probabilistic support recomputed using DP.

Given a probabilistic graph G, and edge 𝑒 = (𝑢, 𝑣), let 𝑘𝑒 be the
number of common neighbors of 𝑢 and 𝑣 used for computing prob-

abilistic support of 𝑒 in G. The time complexity of the computation

by DP is 𝑂 (𝑘2𝑒 ) [11]. We refer to 𝑘𝑒 as the size of DP. In proHIT, in
Phase II, not all neighbors of 𝑢 and 𝑣 are used for DP but rather

only those neighbors that can contribute to the final truss value

of 𝑒 (recall set Γ and Equation 3 in Section 4). As such, in proHIT,
the size of DP is typically smaller than the total number of all the

common neighbors of 𝑢 and 𝑣 . This is in contrast to PDT, which
runs DP using all the remaining neighbors of an edge at that point

in the peeling process. In essence, proHIT performs DP on smaller

and only the effective set of neighbours for each edge, resulting in

a considerable speedup.

We report the average and maximum sizes of DP for both algo-

rithms in Table 6, for flickr, dblp, biomine, and ljournal-2008. As can
be seen, for all the selected datasets, these sizes are much smaller

for proHIT than for PDT. This is particularly important in large

datasets, biomine and ljournal-2008, in which the average size for

proHIT is about 3.5 and 4 times smaller than for PDT. In addition,

in the last column of Table 6, we report the number of times DP

is performed for both PDT and proHIT algorithms. The difference

is noticeable for large datasets. For instance, on ljournal-2008, the
number of executions of DP by proHIT is half of those performed

by PDT.
MemoryUsage. In Figure 7, we compare thememory consumption

of proHIT versus that of PDT and PAPT on selected datasets. The

trend can be verified for other datasets as well. As can be seen, for

biomine the memory consumption of proHIT is 12 times and 6 times

smaller than those of PAPT and PDT, respectively. This also holds

for other datasets. For instance, for ljournal-2008, which is a large

dataset, PAPT requires 90% more space than proHIT. Thus, Figure 7
confirms that proHIT consumes a smaller amount of memory for

computing truss decomposition. This is because PDT and PAPT
are edge peeling based algorithms which require maintaining the

global information of the graph at each step of the algorithm, while

proHIT uses local information only.
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Figure 7:Memory usage of proposed algorithmversus the state-of-the-
art edge peeling algorithms

Dataset

Size of DP # of times

Avg Max Avg Max DP is executed

PDT proHIT PDT proHIT

flickr 154 452 85 280 12 M 1.7 M

dblp 28 220 6 114 2.8 M 3.6 M

biomine 249 27970 62 17042 85.6 M 19.7 M

ljournal-2008 159 4324 44 503 505 M 247 M

Table 6: Average and maximum sizes of dynamic programming (DP),
as well as the number of executions of DP for PDT and proHIT.

7.2 Convergence Speed

In this section we further evaluate the execution of proHIT as it

unfolds with time. We look at the average distance from the truss

values over the sequence of iterations for selected small to large

datasets (see Figure 6). The average distance decreases fast for

flickr, dblp, and biomine, and more gradually for ljournal-2008, in-

2004, and uk-2014-tpd. These results show that proHIT can produce

high-quality near-results in only a fraction of iterations needed for

completion. For instance, for ljournal-2008 with 𝜂 = 0.1, the average

distance becomes less than 0.01 at iteration 20, about one third of

the total number of required iterations (about 60, see the end of the

curve). This can be a desirable property in graph mining where the

user would like to see near-results as the execution progresses.

8 CONCLUSIONS
We presented a novel algorithm, proHIT, for computing truss de-

composition in large probabilistic graphs. Our algorithm is based

on an ℎ-index updating approach. Unlike the edge peeling strategy,

proHIT accesses the edges in a local fashion which makes it memory

efficient. proHIT includes two main phases. Phase I is responsible
for updating the edges’ ℎ-index without considering edge proba-

bilities. This phase can provide a fast-to-compute upper-bound on

truss values of the edges. Phase II takes care of the probabilistic na-
ture of truss decomposition and further tightens the upper-bounds

obtained in the previous phase. proHIT is an exact algorithm and

is significantly faster than the state-of-the-art exact algorithm of

[11]. While being an exact algorithm, proHIT can also produce
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near-results in only a fraction of iterations needed for computing

the full exact solution.
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