
Probabilistic Graph Summarization

Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo

University of Victoria, Victoria, Canada
{hassanlou,maryam,thomo}@cs.uvic.ca

1 Abstract

We study group-summarization of probabilistic graphs that naturally arise in so-
cial networks, semistructured data, and other applications. Our proposed frame-
work groups the nodes and the edges of the graph based on a user selected
set of node attributes. We present methods to compute useful graph aggregates
without the need to create all of the possible graph-instances of the original prob-
abilistic graph. Also, we present an algorithm for graph summarization based
on pure relational (SQL) technology. We analyze our algorithm and practically
evaluate its efficiency using an extended Epinions dataset as well as synthetic
datasets. The experimental results show the scalability of our algorithm and its
efficiency in producing highly compressed summary graphs in reasonable time.

2 Introduction

Graphs are very popular in modeling social networks, protein interactions, web
and communication networks, and semistructured data. Nodes in such graphs
represent objects or users and edges depict relationships between them. Also,
there is often a set of characterizing attributes assigned to each node, such as
age, location, function, etc.

Probabilistic graphs are commonly used to model networks with uncertainties
on the relationships between nodes. An important application of probabilistic
graphs is in social networks, where the users’ influence is modeled as probabilities
on the edges [5,6]. Uncertainty can also be a result of data collection processes,
machine-learning methods employed in preprocessing, and privacy-preserving
processes [11]. Our focus in this work is on graphs where edges (relationships)
have existence or influence probabilities as in [5], and we address the problem of
summarizing such probabilistic graphs.

Summarization is important because the real life graphs are very large, and
thus, there is a pressing need to describe them by focusing on groups of nodes
and their relationships, rather than individual nodes. We consider a graph sum-
marization notion in which nodes are grouped based on node attributes.

Based on the common notion of possible worlds (possible instances) of proba-
bilistic databases [1–3,7], a probabilistic graph G defines a set of regular graphs
called possible instances (PI). Assigned to each possible instance, there is an ex-
istence probability. Although our method uses the possible worlds semantics, it

does not create all of the possible instances of the original graph. Note that, the
number of possible instances is exponential in the number of probabilistic edges
in the graph. We give characterization theorems to compute expected values of
the aggregations included in the summary graph using the edge probabilities.

The massive size of graph data, such as social networks, requires devising
effective management methods that employ disk operations and do not neces-
sarily need to load the entire graph in the memory. We present a summarization
algorithm that is SQL-based and employs relational operations to create the sum-
mary graph. Notably, using relational technology for solving graph problems has
been shown to satisfactorily support other graph problems as well (cf. [9,12,16]).

Experimentally, we evaluate our algorithm by implementing it on the Epin-
ions dataset and show that our presented approach is scalable and efficiently
computes aggregates on large datasets. More specifically, our contributions are:

1. We present a framework for group-based summarization of probabilistic
graphs. Our summarization produces useful expected values for the strength
of inter-group connectedness.

2. We give characterization theorems for the aggregates of our graph summa-
rization. Some of our results involve sophisticated probabilistic reasoning.

3. We present an algorithm to compute the aggregates of our graph summa-
rization that can be implemented completely using relational operators in an
RDBMS. This is a desirable advantage as relational databases are a sound
and mature technology that has been proven to scale for very large data.

4. We conduct a detailed experimental evaluation on a real life dataset and
synthetic datasets. Our experiments show the scalability of our algorithm as
well as the effectiveness of graph summarization regarding the compressibil-
ity/understanding of the original graph.

Organization. We review related work in Section 3. In Section 4 we define our
method for summarizing regular graphs. In Sections 5 and 6 we define proba-
bilistic graphs and introduce our probabilistic graph summarization method. The
theorems and proofs for our probabilistic method are also presented in Section 6.
In Section 7 we propose an algorithm to implement our method. In Section 8 we
explain the implementation of our algorithm on Extended Epinions dataset and
analyze the efficiency and the effectiveness of our method. Section 9 concludes
the paper.

3 Related Work

Summarization of regular (non-probabilistic) graphs has been studied with re-
spect to different aspects (cf. [17, 19, 21]). Various problems have been studied
on probabilistic graphs (cf. [8,10,11,15,22]). However, to the best of our knowl-
edge we are the first to address the problem of summarization of uncertain data
graphs.

Graph mining, uncertain data mining, and probabilistic database manage-
ment issues have motivated several studies in the database and data mining
research communities.

In the general graph mining area, statistical methods have been introduced
in order to present graph specifications (cf. [4, 20, 22, 23]). Graph compression
methods are used to understand the main structure of the underlying large
graphs [18]. Graph summarization can be considered as lossy graph compression,
however, whereas the summarization compresses the graphs based on a user
selected set of attributes, graph compression usually compresses the graphs based
only on the original graph structure.

Graph partitioning algorithms also help discovering dense subgraphs. Find-
ing frequent patterns is another graph mining technique for understanding large
graphs [23]. However, the nature of understandings we obtain from summariza-
tion and frequent pattern mining are different.

The management of databases consisting of incomplete uncertain data could
be challenging enough as well. The management task includes, for example,
query answering techniques [7,14] and aggregations [13]. The possible world se-
mantics is one of the most useful notions which has been used in many uncertain
database mining studies [1, 2]. We take advantage of this concept to summarize
probabilistic graphs.

4 Graph Summarization

Let ∆ = {r, s, . . .} be a finite alphabet of labels. We denote a graph database
as G = (V,E,∆), where V is the set of nodes, and E ⊆ V × ∆ × V is the set
of ∆-labeled edges connecting the nodes. With Er, where r ∈ ∆, we denote the
subset of edges labeled by r.

Furthermore, there is a set of attributes A1, A2, · · · , Ad associated with the
nodes. Attributes can be nominal or numerical. Numerical attributes can be
discretized as in [19].

We represent the attribute values for a node v ∈ V as a d-tuple (a1, a2, · · · , ad),
where ai, for i ∈ [1, d], is the value of Ai for v.

Let A be a subset of node attributes. Using A we group the nodes of G in
the usual GROUP BY way and obtain a set VA of node groups. Now we have

Definition 1. The A-grouping graph is GA = (VA, EA) where

EA = {(g′, r, g′′) : g′, g′′ ∈ VA and ∃v′ ∈ g′ and ∃v′′ ∈ g′′

such that (v′, r, v′′) ∈ Er}.

Definition 2. The A-graph summarization (A-GS) is a node-edge weighting
pair of functions (w1, w2), where

w1 : VA −→ N
w2 : EA −→ N× N× N

w1(g) = |g|
w2(g

′, r, g′′) = (x, y, z), where

x = |{v′ ∈ g′ : ∃v′′ ∈ g′′, s.t. (v′, v′′) ∈ Er}|
z = |{v′′ ∈ g′′ : ∃v′ ∈ g′, s.t. (v′, v′′) ∈ Er}|
y = |{(v′, v′′) : v′ ∈ g′, v′′ ∈ g′′, (v′, v′′) ∈ Er}|.

Fig. 1.(a) shows a simple graph containing seven nodes. Consider the color
of the nodes to be the grouping attribute. Fig. 1.(b) shows the A-graph summa-
rization of the graph in Fig. 1.(a) with the corresponding values of the w1 and
w2 measures.

�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��� ���

�
�

��

�
�

��

�
�

��

�
�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

��
��
��

�
�

��������

�
�

��������

�
�

��������

�
�

��������

�
�

��������

�
�

��������

�
�

��������

Fig. 1. (a) A Graph G. (b) The summary graph of G.

5 Probabilistic Graphs

A probabilistic graph is G = (V,E,∆) (as above), however, associated with each
edge e there is a probability p(e) expressing the confidence on the existence of
e. A probabilistic graph defines a set of possible instances (PIs). We denote the
set of all possible instances of a probabilistic graph G as PI(G) or PI if G is
clear from the context.

A possible instance (PI) of G is denoted as PIi(G) or simply PIi. Each PI
is a regular graph derived from the probabilistic graph where each edge either
exists or does not. The existence probability of each PI is computed as

p(PI) =
∏

e∈E(PI)

p(e) ·
∏

e/∈E(PI)

(1− p(e)) (1)

, where E(PI) is the set of the edges existent in the possible instance PI.
Each edge e in the probabilistic graph G appears in a subset of the PIs. For
a given edge e the probabilities of PIs containing e sum up to the confidence
value (probability) of e, which is denoted as p(e). That is, we have p(e) =∑

E(PI)∋e p(PI). If e has confidence 1, then it appears in all of the PIs.
Since the number of PIs doubles with each additional probabilistic edge in

the input graph, the result of queries on these graphs is exponential in the size
of the input graph.

6 Probabilistic Graph Summarization

We define summarization of probabilistic graphs in a similar way as in Defini-
tion 2. However, having probabilistic edges between nodes in a graph results
in probabilistic edges between groups in the summary graph. Thus, instead of
the exact value of w2 the expected value should be computed for each of its
elements x, y, and z. Note that, the exact value of w1 is computable as in non-
probabilistic case, since in our data model no probabilities are assigned to nodes
or node attributes.

For an easier illustration, we assume a simple graph where all the edges
have identical labels (i.e., |∆| = 1). Let g and g′ be two groups of nodes in
the summary graph GA. In each PI the set of edges that connect the nodes
of these two groups are different, and hence, the exact values of x, y, and z
differ in the summary graph corresponding to each PI. The expected values
for x, y, and z in GA can be computed using the basic formula for expected
value of random variables. For example, for the expected value of x we have
E[X] =

∑
PI xi.p(PIi), where X is the random variable representing the x

measure. Note that, using this formula directly requires building all the possible
instances of the original graph.

In the following we present (and prove) equations that compute E[X], E[Y],
and E[Z] by using only the probability of edges in G with no need to create all
PIs and compute their corresponding w2’s.

Lemma 1. For any subgraph G′ of a probabilistic graph G we have∑
PI∈PI(G′)

p(PI) = 1.

Proof. We prove the lemma for the case when only one of the edges of G is
missing in G′. The proof can then be easily extended to complex cases.

The set of possible instances of G can be divided into two disjoint sets. One
set is the set of PIs where e exists, and the other includes PIs where e does not
exist. Let PIe(G) and PI−e(G) be these two sets of PIs, respectively. We have∑

PI∈PI(G)

p(PI) =
∑

PI∈PIe(G)

p(PI) +
∑

PI∈PI−e(G)

p(PI).

We can write the above equation as

1 =
∑

PI∈PI(G)

p(PI) = p(e) ·
∑

PI∈PI(G′)

p(PI)

+ (1− p(e)) ·
∑

PI∈PI(G′)

p(PI)

=
∑

PI∈PI(G′)

p(PI)

and this concludes the proof. ⊓⊔

Theorem 1. Let g and g′ be two groups in a probabilistic summary graph G,
and let Evj = {e1, . . . , enj} be the set of edges connecting a node vj ∈ g to the
nodes of g′. We have that

E[X(g, g′)] = E[X] =
∑
vj∈g

1−
∏

e∈Evj

(1− p(e))

 .

Proof. LetW = {v1, . . . , v|W |} be the set of nodes in group g which are connected
to the nodes of group g′ in G, and let WPI ⊆ W be the set of nodes in group g
which are connected to the nodes of group g′ in the possible instance PI of G.
Also, let m = |PI(G)|. We have that

E[X] =
∑

PIi∈PI(G)

xi · p(PIi)

= p(PI1) + p(PI1) + . . .︸ ︷︷ ︸
x1 times

. . .

+ p(PIm) + p(PIm) + . . .︸ ︷︷ ︸
xm times

where xi is the number of nodes in g that are connected to some nodes of g′ in
the instance PIi. That is, xi = |WPIi |.

We can organize this equation in a different way. Note that for each node
vj , the term p(PIi) appears once in the right hand summation if vj ∈ WPIi .
Therefore, we can rewrite the equation as

E[X] =
∑

WPI∋v1

p(PI) + · · ·+
∑

WPI∋v|W |

p(PI). (2)

Now we compute the value of each term above. From equality
∑

PI∈PI p(PI) =
1 we have that

∑
WPI∋vj

p(PI) +
∑

WPI ̸∋vj

p(PI) = 1. (3)

As defined, Evj = {e1, . . . , enj} is the set of edges incident to vj which connect
vj to some nodes in g′. The first sum in (3) includes possible instances where at
least one of the edges in Evj exists. The second sum includes possible instances
where none of the edges in Evj exists.

Now, suppose G′ is a probabilistic graph constructed from G by removing all
the edges in Evj . That is, the probability of existence of those edges is zero in
G′. Since each possible instance of G can be constructed from G′ and based on
(1), we can rewrite Equation (3) as

∑
PI∈PI(G′)

p(PI(G′)) ·
∑

S∈2
Evj ,S ̸=∅

(∏
e∈S

p(e) ·
∏
e∈Sc

(1− p(e))

)
+

∑
PI∈PI(G′)

p(PI(G′)) ·
∏

e∈Evj

(1− p(e)) = 1

where PI(G′) is the set of all possible instances of graph G′, and S is a set in
the power set of Evj . Since

∑
PI∈PI(G′) p(PI) = 1 (Lemma 1), we have that∑

WPI∋vj

p(PI(G)) =

∑
PI∈PI(G′)

p(PI(G′)) ·
∑

S∈2
Evj ,S ̸=∅

(∏
e∈S

p(e) ·
∏
e∈Sc

(1− p(e))

)

= 1−
∏

e∈Evj

(1− p(e)) (4)

and using Equations (2) and (4) we have

E[X] =
∑

WPI∋v1

p(PI) + · · ·+
∑

WPI∋v|W |

p(PI)

=
∑

vj∈W

1−
∏

e∈Evj

(1− p(e))

 .

This proves the theorem. ⊓⊔

For the expected value of y we present the following theorem.

Theorem 2. In the summary graph, the expected value for y, E[Y], is the sum
of the probabilities of the edges going from one group to the other.

Proof. Let m = |PI(G)| and let S = {e1, . . . , e|S|} be the set of all probabilistic
edges (with non-zero probability) that connect the nodes of two given groups
in a probabilistic summary graph. Let also E(PIi) be the set of edges in an
instance PIi.

Based on the definition of expected value of a random variable, we have that

E[Y] =
∑

PIi∈PI(G)

yi.p(PIi)

= p(PI1) + p(PI1) + . . .︸ ︷︷ ︸
y1 times

+ · · ·

+ p(PIm) + p(PIm) + . . .︸ ︷︷ ︸
ym times

where yi is the number of edges in S that exist in PIi. Now, we can organize
this equation in a different way. Note that for each edge ej ∈ S, if ej ∈ E(PIi),
the term p(PIi) appears once in the right hand summation. Therefore, we can
rewrite the equation as

E[Y] =
∑

E(PIi)∋e1

p(PIi) + · · ·+
∑

E(PIi)∋e|S|

p(PIi).

On the other hand, for each edge e we have that

p(e) =
∑

E(PIi)∋e

p(PIi).

Thus,

E[Y] = p(e1) + · · ·+ p(e|S|) =
∑
e∈S

p(e),

and this proves the theorem. ⊓⊔

7 Algorithm

In this section we present our algorithm to build the summary graph of a proba-
bilistic graph. We assume that the probabilistic graph is represented using some
database tables. The first primary table is Nodes table which consists of all the
nodes in the graph and their attribute values. The second is the Edges table
which stores all the node connections (edges) in the graph. We assume that each
edge has an existence probability which is stored in the same table as a separate
column.

The algorithm starts by grouping the nodes based on the desired attributes.
Grouping can start by sorting nodes according to their values on the selected
attributes. Then, computing E[X], E[Y], and E[Z] elements of the w2 measure
for group pairs can be done by using the theorems and formulas provided in
Section 6.

The following algorithm uses the Nodes and Edges tables illustrated in Fig. 2
and returns the w2 measure in the Summary table depicted in Fig 3. All the
steps of our algorithm can be expressed in SQL. Due to space constraint we only

nId A1 ... Ad

1 a11 ... a1d

2 a21 ... a2d

...

n an1 ... and

nId1 nId2 prob

1 2 p12
2 1 p21
...

i j pij

Fig. 2. Tables Nodes and Edges

gId1 gId2 E[X] E[Y] E[Z]

g1 g2 x12 y12 z12
g2 g1 x21 y21 z21
...

gi gj xij yij zij

Fig. 3. Table Summary

give the plain language description of the steps here and refer the reader to the
full version1 of the paper.

Algorithm 1

Input:
1. Table Nodes including records of nodes and their attribute values.
2. Table Edges containing records of edges with their existence probabili-

ties.
3. Grouping attribute set A, which is a subset of node attributes.

Output: Table Summary consisting of all possible pairs of groups and their
expected measures E[X], E[Y], and E[Z].

Method:
1. Assign a group identifier, gId, to each node in the Nodes table based on

the user selected attributes.
2. Update table Edges and add two new columns called gId1 and gId2.

Then, for each record insert the corresponding group Ids of node 1 (nId1)
and node 2 (nId2) into gId1 and gId2, respectively.

3. Group records in Edges based on nId1, gId1, and gId2 using the product
of (1 − prob) as the aggregation function, then, insert the result into a
temporary table called K1 with the aggregate field as product.

4. Group records in Edges based on nId2, gId1, and gID2 using the product
of (1 − prob) as the aggregation function, then, insert the result into a
temporary table called K2 with the aggregate field as product.

5. To compute element E[X] in w2 measure, group records in K1 based on
gId1 and gId2 using sum of (1 − product) as the aggregation function
and store the result in table Summary.

1 http://webhome.cs.uvic.ca/∼maryam/probgraphsum05.pdf.

6. To compute element E[Z] in w2 measure, group records in K2 based on
gId1 and gId2 and sum of (1− product) as the aggregation function and
update table Summary.

7. To compute element E[Y] in w2 measure, sum up prob values from table
Edges by grouping records based on gId1 and gId2 and update table
Summary.

8. Return the Summary table.

8 Evaluation

In this section we describe the implementation of our algorithm on a real dataset
and evaluate its efficiency. We then analyze the scalability of our algorithm by
implementing it on synthetic data.

8.1 Dataset

The real dataset we use for the evaluation is a trust network dataset from Epin-
ions2. Epinions is a website in which users write reviews for different products
of different subjects and express trust to each other. This can be competitive
for users because they can get paid based on how valuable their reviews are. In
order to see which reviews are better, a trust system is used.

Two different versions of the Epinions dataset are available in the Trustlet
website (www.trustlet.org). In this paper we use the Extended Epinions dataset.
The ratings in this dataset are about the reviews, also called articles. That is,
the ratings represent how much a user rates a given textual article written by
another user. This dataset contains:

– About 132,000 users
– 841,372 statements (trusts and distrusts)
– Around 85,000 users received at least one statement
– 1,560,144 articles

In this dataset, we are interested in finding the strength of the connections
between subject groups. Using the users information and the statements we
created tables Nodes and Edges, respectively. In order to have edge existence
probabilities, we added the field prob in the Edges table and filled it with a
random number between 0 and 1 for each record. The schemas of the Nodes and
Edges tables created from the Epinions dataset are shown in Fig. 4.

8.2 Implementation of Algorithm 1

Since the Nodes table created from the Epinions dataset contains only one at-
tribute, SubjectId, we use it as the grouping attribute and group Id will be the
SubjectId (see Step 1 of Algorithm 1).

2 http://www.trustlet.org/wiki/Epinions.

Field Type

userId int

subjectId int

Field Type

userId1 int

userId2 int

prob double

Fig. 4. Tables Nodes and Edges (User and Trust information)

To assign the subjectIds to the nodes in the Edges table (Step 2 of Algo-
rithm 1), we join tables Nodes and Edges twice, once on userId1 and the second
time on userId2. The result table called Joint (Fig. 5) represents all the valid
edges in the trust graph. After these joins we end up with much more records
in the Joint table than table Edges. The reason is that in the Epinions dataset
a user/author may have articles in different subjects. Before joining the tables,
we can follow two different strategies.

1. We can consider just one subject for each user and remove the other records
for that user from the Nodes table. In this approach, there will be one node
for each user in the graph. Applying this strategy we built a graph consisting
of 130,068 nodes each corresponding to a record in Nodes table, and 785,286
edges corresponding to the records in the Joint table. The number of distinct
subjects (groups) was 11,224. This graph is large enough and can be useful
for evaluating our algorithm.

2. We can consider each distinct userId-subjectId pair in Nodes table as a node
in the graph. In such a graph, we also need to consider the trust between the
nodes having identical userIds. With the assumption that each user trusts
completely on his/herself, we connect all the nodes having the same userId
to each other with the probability of 1 and add the corresponding records
in the Edges table. The result graph is very large with billions of nodes
and edges. Fig. 6 depicts this strategy to build the desired graph from the
available dataset.

We have followed the second strategy for our evaluation. We performed all
the experiments on a machine with Linux server, 12 GB memory, and 3.4 GHz
CPU. All methods have been implemented as SQL queries. We executed our
queries on MySQL version 5.5.24. In the following section we analyze the results
of our experiments on graphs with different sizes.

8.3 Analysis

In this section we analyze the complexity, the effectiveness, and the efficiency of
our algorithm based on the experimental results obtained in the previous section.

8.4 Complexity of the Algorithm

In the first step, a sorting or hashing can be performed to group by the nodes
based on their attribute values (the value of subjectId). The rest of the algorithm

Field Type

userId1 int

gId1 int

userId2 int

gId2 int

prob double

Fig. 5. Table Joint

��������	
�

��
�
�	
�

�
������

�����

�������� ��
�
�	
�

�
�����

�������

�� ��

�����������	 �����
�
�	

����
�����������������
�
�	

����
������

���

���

���

���
��

�

� ���

���

Fig. 6. Graph generation strategy.

can be completed by scanning the edges in two passes to compute the E[X], E[Y]
and E[Z] values.

Considering memory space, our algorithm can keep the information of all
the groups in the memory. If there is not enough memory, only the information
about the groups for which the expected values are requested are kept in the
memory. The algorithm can even run in a memory of size equal to the space
needed to store statistics variables for only a pair of groups. This is because the
algorithm can work with just two groups at a time and compute the expected
values of the statistics. However, in this case we would need one pass for each
pair of groups.

8.5 Efficiency of the Algorithm

We ran the algorithm on two graphs with different sizes created from the Epin-
ions dataset. The first graph had 840,971 nodes and 103,419,023 edges. The
algorithm finished in 113 seconds and created the summary graph containing
85 different nodes (which is exactly the number of different subjects in the base
graph) and 1,691 edges. The experimental results on both graphs are illustrated
in Fig. 7.

8.6 Scalability Experiments

In order to analyze the scalability of the algorithm we took advantage of syn-
thetic graphs created based on the trust network structure of the Epinions data.

���������	
����������� �
���������	
�����������

����

�����

����

�����

����

�
������

����

������

����

������

�����

���������

���	��������

������

����������� �����	� �
 ����� �
 ������ �����

	�
���� ������� ������ �
��
� ������ ���� �
�
�

���������	
����������� �
���������	
�����������

����

�����

����

�����

����

�
������

����

������

����

������

�����

���������

���	��������

������

����������� �����	� �
 ����� �
 ������ �����

	�
���� ������� ������ �
��
� ������ ���� �
�
�

Fig. 7. The experimental results on the Epinions dataset.

We generated random graphs of different sizes and different number of groups.
Each time we simply assigned random group identifiers to each node of the orig-
inal graph. The experimental results on the datasets having different number of
subjects or different graph sizes are shown in Fig. 8.

The left figure in Fig. 8 illustrates the execution time of the summarization
algorithm (in seconds) as a function of the number of different groups (subjects)
in a graph having 10,000,000 edges. The figure shows that when the graph size is
constant, depending on how we group the nodes and how many different groups
we get, the execution time can change. The result shows that as the number of
different groups increases, the execution time would increase as well in an almost
linear manner. Therefore, we can handle the summarization of graphs with large
number of groups in reasonable time.

The right figure in Fig. 8 shows the execution time of the algorithm on some
graphs of different sizes. In this experiment we group the nodes into exactly
300 different categories each time. The result shows that in the case of constant
number of groups, the execution time increases almost linearly based on the
graph size. This result shows the scalability of our algorithm.

 10

 12

 14

 16

 18

 20

 22

100 200 300 400 500 600

T
im

e
(S

ec
on

ds
)

Number of Subjecs

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8

T
im

e
(S

ec
on

ds
)

Number of Edges (×105)

Fig. 8. Left: Execution time vs. number of subjects, Right: Execution time vs. graph
size (number of edges).

8.7 Effectiveness

The experiments on large datasets show that our method is practical. To show
the effectiveness of our algorithm we define a measure called compression degree
which is the percentage of 1 minus the fraction of the number of edges in the
summary graph to the number of edges in the original graph. We use this metric
in order to demonstrate how powerful our proposed method is in compressing
very large graphs.

Fig. 9 shows the compression degree as functions of the number of groups
(subjects) and graph sizes. These figures verify that our algorithm is effective
in building a very concise representation of large probabilistic graphs while it
maintains the statistics of the original graphs. The compression degree assess-
ment shows that when the number of different groups is constant, the compres-
sion degree increases as the number of edges increases. In the case of a constant
graph size, when the number of groups increases, the degree of compression is
still high (more than 90%) in spite of some overall decrease. For instance, when
the number of different groups is 1000, the compression degree is 90%.

 90

 92

 94

 96

 98

 100

100 200 300 400 500 600

C
om

pr
es

si
on

 D
eg

re
e

(%
)

Number of Subjecs

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10

C
om

pr
es

si
on

 D
eg

re
e

(%
)

Number of Edges (×105)

Fig. 9. Left: Compression degree vs. number of subjects, Right: Compression degree
vs. graph size (number of edges).

9 Conclusions

This paper addressed the problem of summarizing probabilistic graphs using
a relational database approach. We focused on a useful summarization method
which groups the nodes based on a subset of attributes. In the summary graph we
considered aggregates which reveal significant information about the groups and
the connections between them. We gave theorems to compute these aggregates
without the need to compute all possible data graphs from the original prob-
abilistic graph. We also presented an algorithm, which uses pure SQL queries
to build the summary graph. We evaluated the proposed algorithm on Epinions
data and some synthetic datasets. The evaluation shows that our algorithm is
practically scalable to large graphs and effectively summarizes large graphs with
a very high degree of compression.

References

1. S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In
VLDB, pages 1–12, 1985.

2. S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the representation and querying
of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187, 1991.

3. O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs: Databases with
uncertainty and lineage. In VLDB, pages 953–964, 2006.

4. T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Züfle. Probabilistic
frequent itemset mining in uncertain databases. In KDD, pages 119–128, 2009.

5. C. Budak, D. Agrawal, and A. E. Abbadi. Limiting the spread of misinformation
in social networks. In WWW, pages 665–674, 2011.

6. W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social net-
works. In KDD, pages 199–208, 2009.

7. N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
VLDB J., 16(4):523–544, 2007.

8. E. H. Frank. Shortest paths in probabilistic graphs. volume 17, pages 583–599,
1969.

9. J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational approach for
shortest path discovery over large graphs. CoRR, abs/1201.0232, 2012.

10. J. J. P. III and J. Neville. Methods to determine node centrality and clustering in
graphs with uncertain structure. In ICWSM, 2011.

11. G. Kollios, M. Potamias, and E. Terzi. Clustering large probabilistic graphs. IEEE
TKDE, 2010.

12. C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database approach for statis-
tical inference and data cleaning. In SIGMOD Conference, pages 75–86, 2010.

13. R. Murthy, R. Ikeda, and J. Widom. Making aggregation work in uncertain and
probabilistic databases. IEEE Trans. Knowl. Data Eng., 23(8):1261–1273, 2011.

14. J. Pei, M. Hua, Y. Tao, and X. Lin. Query answering techniques on uncertain and
probabilistic data: tutorial summary. In SIGMOD Conference, pages 1357–1364,
2008.

15. M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-nearest neighbors in uncertain
graphs. PVLDB, 3(1):997–1008, 2010.

16. S. Srihari, S. Chandrashekar, and S. Parthasarathy. A framework for sql-based
mining of large graphs on relational databases. In PAKDD (2), pages 160–167,
2010.

17. Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summa-
rization. In SIGMOD Conference, pages 567–580, 2008.

18. H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression of weighted
graphs. In KDD, pages 965–973, 2011.

19. N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In
ICDE, pages 880–891, 2010.

20. Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In
SIGMOD Conference, pages 819–832, 2008.

21. P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and olap multi-
dimensional networks. In SIGMOD Conference, pages 853–864, 2011.

22. Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs over uncertain graph
databases under probabilistic semantics. In KDD, pages 633–642, 2010.

23. Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent subgraph patterns from
uncertain graph data. IEEE Trans. Knowl. Data Eng., 22(9):1203–1218, 2010.

