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Abstract. Graphs play a pivotal role in representing complex relation-
ships across various domains, such as social networks and bioinformatics.
Key to many applications is the identification of communities or clus-
ters within these graphs, with k-edge connected components emerging as
an important method for finding well-connected communities. Although
there exist other techniques such as k-plexes, k-cores, and k-trusses, they
are known to have some limitations.
This study delves into four existing algorithms designed for computing
maximal k-edge connected subgraphs. We conduct a thorough study of
these algorithms to understand the strengths and weaknesses of each al-
gorithm in detail and propose algorithmic refinements to optimize their
performance. We provide a careful implementation of each of these al-
gorithms, using which we analyze and compare their performance on
graphs of varying sizes. Our work is the first to provide such a direct
experimental comparison of these four methods. Finally, we also address
an incorrect claim made in the literature about one of these algorithms.

Keywords: social networks · community detection · graph algorithms ·
k-edge connected components · empirical analysis.

1 Introduction

Graphs have become increasingly important in today’s world due to their ability
to capture complex relationships and provide valuable insights [19]. In practical
scenarios, we often encounter various data and their relationships which can be
effectively depicted using graphs. For instance, they are used in areas like social
networks [16], web searches [20], biochemistry [12], biology [2], and road network
mapping [7]. Given their widespread use and significance, a lot of research is
being conducted to analyze graph data [15].

Identifying communities within graphs, which are essentially clusters of densely
connected vertices, is a vital concept due to its wide-ranging applications [10]. In
social networking platforms, community detection can be leveraged for friend rec-
ommendations, targeted social campaigns, and advertising [28]. Within protein-
protein interaction networks, community detection can be applied to recognizing
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proteins with similar functionality [22]. Meanwhile, in a web-link-based graph, a
community might represent a set of web pages sharing substantial commonality,
aiding in finding similarities among them [3].

One prevalent method for identifying such clusters and communities is by
computing k-edge connected components (cf. [29,1,5,23,6]). These components
are induced maximal subgraphs that remain connected after removing k − 1
edges. While there are alternative notions of graph density, such as k-core (cf.
[21,14,9]) or k-truss (cf. [25,27,8]) components, k-edge connected components
often give well-connected communities that k-core and k-truss fail to discover
(cf. [1] for more details).

Our work 3provides a detailed exploration of four main algorithms for com-
puting k-edge connected components. We implement each of these algorithms,
compare their performance, and suggest optimization strategies when applicable.

The first algorithm we consider, presented in [5], is based on graph decompo-
sition. Its main idea is to decompose the graph until all the remaining connected
subgraphs are k-edge connected. Another algorithm that we explore, introduced
in [1], is based on contracting random edges. The idea behind this method is
repeatedly finding cuts with sizes less than k and dividing the graph along these
cuts. If we reach the point that each connected component has no cut with a
size less than k, then they are k-edge connected.

Subsequently, we investigate another algorithm called the early merge and
split method, presented in [23], which proposes an improvement to the decom-
position algorithm of [5]. Its core idea is to combine vertices that meet the
k-connectivity requirement. Lastly, we study an algorithm, given in [6], that
computes k-edge connected subgraphs by computing specialized cuts. This algo-
rithm is mainly in the theoretical realm and has resisted implementation until
now, which we present in this work.

The main contributions of this paper are summarized as follows:

1. We undertake a thorough implementation and experimental study of the four
aforementioned methods for computing k-edge connected components. Our
comprehensive analysis assesses each method’s strengths, limitations, and
applicability. To ensure a fair comparison, we implemented each method in
the same programming language and evaluated them under identical envi-
ronments and setups, utilizing a range of datasets from small to large.

2. An important contribution of our study is our capability to extract the
unique features of each method, equipping us to optimize each one effectively.
Additionally, we carefully engineer certain algorithms, leading to marked im-
provements in their scalability.

3. Our study features a direct comparison of the algorithms from [5] and [1].
Since both were published around the same time, a direct comparison had
not been previously conducted, resulting in a gap in comparative analysis.
Our work fills this void, providing valuable insights into their relative per-
formance, strengths, and weaknesses.

3 The full version of this paper is available here.

https://drive.google.com/file/d/1wxYNWxk6cTgkvuqCa1trsYnSjFxAACYT/view?usp=sharing
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4. We highlight and correct inaccurate claims made by [23]. Contrary to their
claims, we demonstrate that their proposed improvements do not perform
as effectively in practice.

5. We provide the first implementation of an algorithm presented in [6] to
identify k-edge connected components. This algorithm, due to its abstract
nature, had not been previously implemented, even by its original authors.
Our implementation sheds light on its practical efficiency and applicability.

2 Definitions

In this section, we begin by introducing some terminology and definitions. Our
work deals with undirected and unweighted graphs.

Definition 1. An undirected graph G is denoted as G = (V,E), where V is
the set of vertices and E is the set of undirected edges. Furthermore, we denote
by n and m the sizes of V and E.

The notions of connectivity of a graph and the degree of a vertex are central
to our work.

Definition 2. Graph G is connected if for any two vertices u, v ∈ V , there is
a sequence of edges (u, v1), (v1, v2), . . . , (vk, v) between u and v in G.

Definition 3. For a vertex v ∈ V in G = (V,E), the degree of v, denoted as
deg(v), is defined as the number of edges incident to v.

Next, we describe the notions of induced subgraphs and cuts in graphs needed
to study k-connectedness.

Definition 4. For a subset V ′ ⊆ V , the subgraph G[V ′] induced by V ′ is the
subgraph of G with vertex set V ′ and the edge set E′ ⊆ E that only includes the
edges from G connecting vertices both in V ′, i.e. E′ = {(u, v) ∈ E | u, v ∈ V ′}.

Definition 5. A cut in a graph G = (V,E) partitions its vertices into two
disjoint subsets S and T . The cut set, denoted C(S, T ), consists of all edges with
one endpoint in S and the other in T , whose removal disconnects G. We refer
to |C(S, T )| as the size of the cut.

We now formally define the problem we study.

Definition 6. A graph G is described as k-edge connected if it continues to be
connected even when any k − 1 edges are removed. In other words, G is k-edge
connected if the minimum size of a cut in G is at least k. A k-edge connected
component of a graph G is an induced subgraph H of G that remains connected
even after the removal of any k − 1 edges, and there is no larger subgraph in G
with this property that contains H.
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3 Related Work

Given a graph G. A k-edge connected component within G is defined as a maxi-
mal induced subgraph that retains connectivity despite the removal of any k− 1
edges. Various methodologies have been developed to identify these components.
Decomposition-based algorithms aim to identify k-edge connected components
by iteratively decomposing the graph into connected components until each is a
k-edge connected component [5,23,1]. On the other hand, cut-based algorithms
iteratively cut a graph with connectivity less than k into two parts, continuing
this process until the connectivity of all resulting subgraphs is at least k [6,29].

In the realm of graph theory, there is also an alternate definition for k-edge
connected components, which we are not examining in this study. According to
this other interpretation, a k-edge connected component is recognized as a max-
imal group Vi of vertices within graph G, where each vertex pair is k-connected
in the entire graph G. However, this does not guarantee the same connectivity
within the induced subgraph created by Vi, which could be disconnected. Identi-
fying all such maximal vertex groups presents a unique challenge, different from
identifying the k-edge connected components of G, which is our research focus.
Several studies have explored this alternative concept [11,17,18,24].

The challenge of identifying all k-edge connected components involves deter-
mining the k-edge connected components of graph G for all possible values of k.
The methodology suggested in [4] revolves around the construction of a hierar-
chy tree for G, which effectively finds the k-edge connected components for all
possible k values. The work in [26] identifies all k-edge connected components,
using a definition that targets the discovery of maximal vertex subsets wherein
each pair of vertices is k-edge connected within graph G. Finding all k-edge
connected components is beyond the scope of this study, and we concentrate on
identifying k-edge connected components for a specific k.

4 Algorithms

In this section, we present a thorough analysis of algorithms used to identify
k-edge connected components in graphs. Moreover, we shed light on specific
enhancements we have implemented to boost the performance of some of these
algorithms. Among the studied methods, the graph decomposition algorithm
emerged as the most effective for determining k-edge connected components.

4.1 Graph Decomposition Algorithm

An important algorithm, which we refer to as Graph Decomposition (GD), for
identifying k-edge connected components was introduced by Chang et al. in
[5]. The core idea of the algorithm involves iteratively decomposing graph G.
During each iteration, the algorithm identifies subgraphs that are not k-edge
connected and further decomposes them. This process continues until all result-
ing subgraphs are k-edge connected. The outcome is a list of k-edge connected
components. High-level pseudocode for this algorithm is provided in Algorithm 1.
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Algorithm 1 Computing k-Edge Connected Components

1: Input: A graph G = (V,E) and an integer k.
2: Output: k-edge connected components of G.
3: Initialize a queue Qg with the graph G as its sole member.
4: for each subgraph g in Qg do
5: ϕk(g)← Decompose(g, k);
6: if ϕk(g) consists solely of one subgraph then
7: Output ϕk(g) as a k-edge connected component;
8: else
9: Enqueue all subgraphs of ϕk(g) into Qg;

A key part of the decomposition involves repeatedly applying merge and
split operations on what is called the partitioned graph. The idea of a parti-
tioned graph PG is taking a graph G, consisting of vertices V and edges E,
and appending additional information to each vertex from a domain D. This is
done to track modifications in the graph after vertex merging. In an ordinary
graph, vertices do not have extra associated information, thus D(u) = {v} for
each v in V . However, upon applying a merge operation on vertices vi and vj
these vertices combine into a single super-vertex, u. Specifically, u is added to
PG such that D(u) = D(vi) ∪D(vj). Then, edges (u, x) are added to PG if x
belongs to the neighbor set of either vi or vj . If a vertex x is adjacent to both
vi and vj , in the resulting partition graph a parallel edge from u to x is created.
Following this, vertices vi, vj , and their linked edges are removed from PG.

An important part of the GD algorithm is creating several connected sub-
graphs by removing the edges in a cut of G with a value less than k. This relies
on the Maximum Adjacency Search (MAS) procedure to compute the minimum
cut between a pair of vertices. MAS organizes all vertices of G into a list L.
Assume the last vertex in this list is t, and the vertex immediately preceding it
is s. In this configuration, the edges adjacent to t in G constitute the minimum
s-t cut.

The construction of the list L initiates by randomly selecting a vertex from
V and adding it to L. As long as there are remaining vertices not yet in L, a
vertex u ̸∈ L is selected. This vertex u is the one with the maximum number
of connections to L, mathematically represented as u = argmaxv∈V \L w(L, v),
where w(L, v) denotes the number of edges connecting v with vertices in L. The
selected vertex u is then appended to the end of L.

To optimize the identification of the most tightly connected vertex in MAS, a
specialized data structure is introduced. Let key(v) represent the key of vertex
v during the execution of MAS, where key(v) = w(L, v), indicating the number
of edges between v and vertices in L.

In this data structure, doubly linked lists are employed alongside a head
array. The head array specifically holds the first vertex associated with each
key value x; to clarify, Head[x] = v, where v ∈ V , signifies that v is the head
vertex in the doubly linked list with a key value of x. Within this linked list
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arrangement, three arrays each with a size of |V | maintain the key, and “next”,
and “previous” indexes (pointers) for each vertex in the list.

Example 1. Refer to Figure 1 for an illustrative example that visualizes the
data structure. From this figure, we observe that Head(x) = vi. To identify the
subsequent vertex with a key equal to x, we can use next(vi). Here we have that
next(vi) = vj and vj also has a key of x. Furthermore, we see previous(vj) = vi.

In addition to the head array and doubly-linked list, we also maintain a value
p0, which represents the current maximum key value among all vertices in the
data structure. This value is initialized to 0 and is updated whenever a new
vertex is inserted into the data structure.

To update the key of vertex v from x to y, we first remove v from the doubly-
linked list represented by Head(x), and then insert v into the doubly-linked list
Head(y). Additionally, max-key is updated to y if y > p0.

key(v1) key(vi) key(vj)

... x x... ...

Previous(v1) Previous(vj)

... vi ...

Next(v1) Next(vi)

... vj ...

Head(1) Head(x)

... vi ...

Fig. 1: Data structure

To extract the next vertex with the largest key value, we first decrement p0
until Head(p0) is not null. We then report the first vertex pointed to by Head(p0)
and remove that vertex from the doubly-linked list.

An algorithm called Decompose-LMS integrates the aforementioned ideas into
an efficient method for implementing decomposition. In this algorithm, a method
called MAS-LMS is iteratively applied until the edge set of the graph gets empty.
MAS-LMS employs linear data structures and incorporates early merge and list-
sharing optimizations explained in the following.

During a single iteration of MAS-LMS, it is possible to merge multiple pairs of
vertices, provided each pair is guaranteed to be k-connected in the input graph.
This strategy is known as Early Merge. If MAS-LMS identifies a minimum cut
smaller than k, the minimum cut produced by the subsequent split operation
can be directly obtained from the existing list L. This eliminates the need to
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execute MAS-LMS on the newly formed graph. The capability to reuse the list L
across multiple instances of MAS following split operations is termed List Sharing.

The time complexity of the Decompose-LMS is given by O(l · |E|), where l
denotes the number of repetitions of the MAS-LMS procedure. The overall time
complexity of GD Algorithm using Decompose-LMS for decomposition is O(h · l ·
|E|), where h is a parameter representing the number of times Decompose-LMS
is called within Algorithm 1. As pointed out by [5], h is typically a small integer
for real-world graphs.

4.2 Random Contraction Algorithm

The concept of finding k-edge connected components through random contrac-
tions was introduced by Akiba et al. in [1]. The proposed algorithm, we refer
to as RC, is a unique application of random contraction. This methodology has
historically been a theoretical tool for addressing cut problems, as noted in [13].
The random contraction method of [1] involves selecting edges at random and
contracting them until no edges are left in the graph. Contracting an edge in-
volves the removal of the edge and the subsequent merging of its two endpoints.

In this algorithm, the graph is represented by a dictionary of dictionaries.
For every vertex v, there’s an associated dictionary, hv; the keys are neighboring
vertices, while the values stand for the edge weights.

When an edge (u, v) is contracted, the algorithm merges the dictionaries
hu and hv. To ensure that this merge is done efficiently, the edges from the
smaller dictionary are always inserted into the larger one. So, supposing that hu

is smaller than hv, the transfer process would involve moving edges from hu to
hv. During this transfer, a vertex x from hu to hv, if hv doesn’t already contain
the edge (v, x), then the algorithm simply adds the edge (v, x) to hv. But, if hv

contains the edge (v, x), the weight of (v, x) in hv is increased by the weight of
(u, x) found in hu. Additionally, we add v to hx, with a weight of the edge (v, x).

The next step involves removing u from the overall dictionary. This necessi-
tates navigating through all of u’s neighbors, as specified in hu, and systemati-
cally excluding u from their neighbor lists. Once this step is completed, hu can
be safely removed from the graph.

Algorithm 2 for finding connected-subgraph of G by random contraction
starts with generating a copy of Graph G, denoted as G′. While G′ still contains
edges, it randomly selects an edge for contraction. After this contraction, the
degree of a vertex, say, u, might decrease and become less than k. If this happens,
the subgraph formed by the vertices merged with u is added to the output. Also,
all the edges connected to u are removed, and u is excluded from G′. This entire
set of actions constitutes one iteration.

The iterations are then repeated for each subgraph induced by a connected
component from the preceding iteration, and this is done for a predefined number
of times. The precise number of iterations required depends on the graph and is
determined by checking that no new output is created in some iteration. Akiba
et al. show that the total time complexity of RC algorithm is O(|E| log(n)).
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Algorithm 2 Basic Iteration

1: procedure ContractAndCut(G, k)
2: G′ ← G
3: while G′ is not empty do
4: if exists u ∈ V (G′) such that d(u) < k then
5: U ← original vertices contracted to u
6: output G[U ]
7: Remove u from G′

8: else
9: Choose an edge (v, w) in G′ at random

10: Contract v and w in G′

One crucial observation is that while each iteration yields connected com-
ponents, they may not always be k-edge connected. A component that remains
unbroken in a subsequent iteration is indeed k-edge connected.

To streamline the process, [1] introduces a method called forced contraction.
The underlying principle is simple: if an edge between two vertices, u and v, car-
ries a weight of k or more, it is beneficial to contract these vertices immediately.

The reason behind such immediate contraction lies in the understanding that
if the edge’s weight is at least k, there’s no way to separate the two vertices by
a cut smaller than this weight. So contracting these vertices will not ruin any
potential cut of size less than k and by contracting them, the chances of finding
other cuts smaller than k increase.

The algorithm doesn’t specify the number of iterations, which can lead to
potential errors. However, it is suggested in [1] that by setting the number of
iterations to O(log2 n), the error probability can be reduced to as low as 1

1000 .
In our tests, we carefully chose the number of iterations to accurately determine
maximal-k-edge connected components.

Our contribution in this section is an optimization of the random contrac-
tion implementation, drawing inspiration from a graph representation technique
presented in [5]. This array-based method provides an advantage during graph
traversal: all the graph data resides in a contiguous block of memory. This ar-
rangement accelerates the process compared to traditional adjacency lists. The
RC algorithm, utilizing a streamlined data structure, is named RCF.

In this structure, a graph is represented using four arrays. Central to this
representation is the graph head array. For every vertex v in V , graph-head(v)
indicates the index of the starting neighbor in the value array. The “value” array
keeps the actual neighbors of the vertices in the graph. Using the “next” array,
we can identify the indices of subsequent neighbors.

When next(i) = −1, it indicates the end of that vertex’s adjacency list. The
“previous” array functions like next, but instead points to the preceding neigh-
bor. The bidirectional aspect of the graph is addressed by the reverse array. For
an edge (u, v) located at index i in value array, “reverse” keeps its counterpart
edge (v, u) in a manner that if value(i) = v, then value(reverse(i)) would rep-
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resent u. So based on what we explained, to retrieve all neighbors of a vertex v,
we start at graph-head(v) and keep iterating using the next array until reaching
-1.

When vertices u and v are contracted, we add v’s neighbors to u’s neighbor
list. If a vertex x is a neighbor to both u and v, it will appear twice in u’s list after
the merge. If we store edge weights in a separate array, updating these during
a merge would require checking if a neighbor of v is also a neighbor of u before
adjusting the weight. This check takes O(n) time for our structure. As keeping
weights implies additional running time when using our proposed data structure,
we do not maintain weights in our implementation. As such, we forego forced
contractions, which depend on these weights and hence cannot be applied. Em-
pirical testing on diverse datasets reveals that our array-based implementation
RCF consistently outperforms the original algorithm based on dictionaries.

4.3 Early Merging And Splitting

The early merging and splitting algorithm, known as the MSK algorithm, was
proposed by Sun et al. [23]. It determines the k-edge connected components by
sequentially examining an ordered list of vertices. This order is established based
on each vertex’s connectivity within the graph. As the algorithm processes this
list, it merges any two vertices exhibiting k-edge connectivity into a singular
super-vertex. Conversely, if the vertex pair does not satisfy the condition of
k-edge connectivity (there exists a cut of size less than k separating the two
vertices), the edges of the cut are removed from the graph, and the graph is
decomposed into two subgraphs. This procedure continues iteratively on the
resultant subgraphs until every one of them qualifies as a k-edge connected
component.

This method presents notable similarities to the approach of [5] described
in section 4.1. Both strategies utilize the MAS procedure to find minimum s-t
cuts. Additionally, in either approach, multiple vertex pairs can be merged in
one MAS iteration using the early merging technique, as long as the connectivity
between s and t remains at least k.

The key distinction lies in how the cuts are split. In Decompose-LMS, cuts
are split after completing the list L for the MAS procedure. In contrast, in
MSK, before inserting vertices into L during MAS, we check the weight between
these vertices and those not in L. If this weight is below k, the graph splits into
two subgraphs: one formed by the vertices in L and another from the original
vertices that had merged with vertices in V \ L in prior iterations. So, in MSK,
as soon as the weight between vertices in L and vertices in V \ L is less than
k, we immediately split the cuts and decompose the graph into two subgraphs.
The time complexity of the MSK is O(r ·m) where r indicates the number of
iterations in the MSK algorithm and m is the number of edges in the graph.

Incorrect claim. In the MSK paper, the authors view the algorithm of [5], as
detailed in the graph decomposition section, as an approximation rather than an
exact method for identifying k-edge connected components. This interpretation
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stems from the fact that, during the Decompose-LMS algorithm, there exists a
possibility for two vertices to merge provided their connectivity is at least k in
the input graph. Yet, when certain cuts are removed in subsequent iterations,
the connectivity between these vertices might drop below k.

The authors of [23] incorrectly deduced that the results from a singular
Decompose-LMS invocation amounted to the k-edge connected component for
the graph decomposition procedure as illustrated in Section 4.1. This misinter-
pretation underpins their labeling of the graph decomposition as an approximate
algorithm. However, the true k-edge connected components are extracted from
Algorithm 1 in Section 4.1. Notably, Decompose-LMS is recursively executed until
all components achieve k-connectivity.

Upon unifying the implementation environments of both algorithms and in-
tegrating the heap data structure from Decompose-LMS into MSK to optimize
the MAS procedure, our comprehensive tests favored graph decomposition over
MSK. We delve into the details of these findings in the experiments section.

4.4 Local Cut Detection

Chechik et al. in [6] present yet another algorithm for computing maximal k-
edge connected components in directed graphs [6], which we refer to as LCD.
A directed graph is k-edge connected if it is strongly connected whenever fewer
than k edges are removed. While their algorithm targets directed graphs, it can
also be used for undirected graphs by replacing each undirected edge with two
bidirectional edges.

The main idea of this method is to identify a small subgraph, with at most√
m edges, that’s well separated from the rest of the graph. This is done by

performing DFS traversals that, when starting from some vertex, traverse mostly
the edges within this small subgraph and a few edges outside it. This subgraph is
considered “well-separated” because it isn’t k-edge connected to the other parts
of the graph. After identifying it, the edges connecting this subgraph to the rest
of the graph are removed. This step is referred to as local cut detection.
The local cut detection is repeated until no cut in the graph is smaller than
k. More specifically, a local cut detection identifies a k-edge-out component
of a vertex u, which is a subgraph that contains u and has no more than k
edges extending from the subgraph to the remainder of the graph. Similarly, a
k-edge-in component is computed in the same manner but on the inverse graph.

The algorithm to compute k-edge connected components begins with a given
graph and a list L, which initially contains the vertices of the graph. After
initializing the list L and setting the initial number of edges in the graph as
m, the algorithm checks if the graph has a cut of less than k edges. If not, the
graph is returned as a k-edge connected component. Otherwise, a loop starts
and continues until L is not equal to the empty set and the graph contains more
than 2k

√
m edges. In each iteration, the k-edge-out component and k-edge-in

component are calculated for a vertex u extracted from list L. If either of these
is not equal to the empty set, the algorithm removes the edges with endpoints
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in the result of the k-edge-out or k-edge-in and continues. After the loop, the
strongly connected components (SCCs) of the resulting graph are calculated.

A set U is initialized as an empty set. For each SCC, the algorithm calculates
a k− 1 cut set if it exists, removes the k− 1 cut set, and computes the SCCs of
the resulting graph. Edges between the SCCs are removed and their endpoints
are saved in a list. For each SCC, a list L′ is created and populated with the
vertices of the SCC that are in the saved list of endpoints. The algorithm then
recursively processes the SCC and L′, and unites the results with U .

The run-time of this algorithm that computes k-edge connected components
using local cut detection is (O((2k)k+1 ×

√
m × m log n), where k represents

the edge connectivity. In the paper, k is treated as a constant; hence, the
factor (2k)k+1 is omitted from the analysis. The overall complexity stands at
O(m

√
m log n) when this factor is disregarded. Nonetheless, in real-world ap-

plications, maximum k can be quite large ranging between 30 to 80 for actual
graphs. For such magnitudes, the algorithm presented in [6] becomes impractical.
For instance, in the soc-epinions graph used in our experiments, the maximum
k value is 67. This translates to (2k)2k+1 being roughly 290,000,000. As a re-
sult, computing the 67-connected components for this graph using the current
algorithm is impractical for real-world scenarios.

5 Experiments

Our study conducts a comparative assessment of selected algorithms, emphasiz-
ing their running times as the primary metric. We analyzed the efficiency of each
algorithm under standardized conditions. All algorithms were implemented in
Java to ensure consistency and the source code can be accessed at GitHub 4. We
performed our experiments on Compute Canada’s Cedar5, a high-performance
computing cluster equipped with dual 6-core 2.10 GHz Intel Xeon CPUs. Each
test was allocated 32GB RAM.

We evaluated our algorithms on eight real graphs. Real graphs, derived from
actual data sources, contain inherent structures and patterns that represent real-
world scenarios. All the graphs are obtained from the Stanford SNAP library2,
and detailed descriptions of these graphs can also be found there. The sizes of
these graphs are shown in Table 1. By varying the sizes of these graphs, we can
evaluate our algorithms across different graph structures, from small to large.

5.1 Small Graphs

The small datasets that we considered are bird with 958 edges, feather-lastfm-
social with 27,806 edges, ego-Facebook with 88,234, and feather-deezer-social
with 92,752. We plot the run times achieved by RC, RCF, GD, and MSK on
all the small datasets. However, for LCD, we only recorded its runtime for the
bird dataset. This algorithm was not scalable for the other datasets; it failed to
produce results even after an extended period of 48 hours.

4 https://github.com/Haniehsadri/KECC

https://github.com/Haniehsadri/KECC
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Data Set # Vertices # Edges

bird 129 954
feather-lastfm-social 7,624 27,806
ego-Facebook 4,039 88,234
feather-deezer-social 28,281 92,752
musae-git 37,700 289,003
soc-epinions 75,879 508,837
com-DBLP 317,080 1,049,866
amazon 262,111 1,234,877

Table 1: Datasets

Fig. 2: Performance Analysis on Small Datasets: The figure compares the runtime
of various algorithms on small datasets. It underscores the notable efficiency of
GD and RCF while illustrating the pronounced slower runtime of LCD.

From Figure 2, it is evident that the LCD is significantly slower than the
other algorithms. While most algorithms process the bird dataset in a negligible
time (close to 0 seconds), on average, the LCD algorithm takes 1500 seconds to
process this dataset. From Figures 2.b, 2.c, and 2.d, it is clear that GD requires
less time to complete and outperforms the other algorithms in all instances. RCF
is faster than both the RC and MSK. When comparing RC to MSK for smaller
data sets, there are situations where RC performs better, and in other instances,
the MSK demonstrates a faster runtime. From all the plots in 2, it can be seen
that the GD outperforms other algorithms for small datasets.

5.2 Medium and Large Graphs

For medium and large graphs, we considered several datasets: the musae-github
graph with 289,003 edges, soc-epinions with 508,837 edges, com-DBLP which
contains 1,049,866 edges, and the sizable amazon0302 graph which comprises
1,234,877 edges. We plotted the run times achieved by the four algorithms and
the results can be observed in Figure 3.

In evaluations involving medium and large datasets, the GD algorithm consis-
tently outperforms the other algorithms, much like its performance with smaller
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Fig. 3: Performance Analysis on Medium to Large Datasets: The figure shows
runtime performance for four algorithms on different graph sizes. It highlights
GD’s steady efficiency and RCF’s advantages over RC. For the largest dataset,
amazon, runtime rises with k until k = 5 and then sharply drops at k = 6. This
trend is due to the increase in k-connected components up to k = 5, followed by
a significant reduction at k = 6, as detailed in Table 2.

datasets. The RCF algorithm outperforms both the MSK and the RC algorithms
in terms of efficiency. For medium-sized graphs, MSK yields better results when
compared to RC. However, for larger graphs, MSK starts to falter in terms of
scalability, a trend that’s evident in Figures 3.c and 3.d. We mention here that
we are the first to be able to run our MSK implementation to large datasets.
The original authors were only able to run up to the Soc-Epinions dataset.

A similar trend observed across plots in Figure 3 is that, for most cases, the
processing times of all four algorithms decrease as k increases. As k becomes
larger, the graph, after removing all vertices with degrees less than k, becomes
smaller, leading to faster execution of all algorithms. However, this trend might
vary for certain graphs. For instance, with the amazon dataset (shown in Ta-
ble 2), as k increases, the number of components also increases significantly,
necessitating a considerable increase in the number of iterations for RC. It is
only when k goes from 5 to 6 that the number of components drops drastically
from 2653 to 32. At this point, the running time decreases significantly.

Another analysis we perform is the evaluation of the performance of each
algorithm on datasets of varying sizes, assessing how their efficiency changes
as the data size transitions from small to medium, and from medium to large
(see Figure 4). We demonstrated the experiment with k = 2. However, based on
our experiments with other possible values of k, the results followed the same
pattern as with k = 2.

Starting with the GD algorithm, our experiments show that it performs ef-
ficiently and consistently across graphs of different sizes. Even when the graph
size increases, the increase in time is not significant. As can be seen in Figure 4,
the running time of GD remains consistently low whether the data size changes
from small to medium or from medium to large.

Moving on to the RC algorithm, it performs well for small to medium-sized
graphs. However, its efficiency decreases for larger graphs, such as the amazon
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dataset. Figure 4 shows a noticeable increase in the running time when transi-
tioning from medium to large-sized graphs. The RCF algorithm performs well
for both small and medium datasets. The efficiency of this algorithm slightly
changes when the data size increases from medium to large.

Examining the MSK algorithm, it operates efficiently for small to medium
datasets. Yet, for larger datasets, such as amazon, its performance significantly
drops. There’s a distinct increase in its running time when the dataset size shifts
from medium to large.

Fig. 4: Comparing running times for GD, RC, RCF, and MSK on three datasets
with different sizes for k = 2. The figure underscores the consistent efficiency
of GD, the waning performance of the RC and MSK on larger datasets, and
the subtle transition in the efficiency of RCF from medium to large datasets. A
similar trend was observed for k > 2 (not shown here).

5.3 Evaluation of Optimization Techniques for RC

In this subsection, we evaluate the effectiveness of the optimization techniques
introduced in Section 4.2 for the RC algorithm. The experiments conducted
on various datasets underscore that the RCF method consistently outperforms
the original RC approach in empirical tests even without implementing forced
contraction. To elucidate this distinction further, we examine both algorithms
on the amazon dataset.

We emphasize that the components produced in each iteration of RC and
RCF are connected, but may not always be k-edge connected. Therefore, multiple
iterations with each algorithm are required to achieve the desired number of exact
k-edge connected components. We recall that both RC and RCF are randomized
algorithms, carrying a small (but non-zero) probability of failing to identify all
the k-ecc components. We used the results from GD as a benchmark to determine
the number of iterations needed for RC and RCF to identify these components.

In the plots illustrated in Figure 2 and 3, we executed both the RC and
RCF algorithms using the appropriate number of iterations. From the plots, it
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k=2 k=3 k=4 k=5 k=6

Iter. 1 3 6 1 5 7 11 1 7 14 1 5 14 16 1

RC 355 367 367 681 756 777 777 876 1287 1287 5 2437 2653 2653 32

RCF 350 363 367 402 741 763 777 678 1202 1287 5 2326 2337 2653 32

GD 367 777 1287 2653 32

Table 2: Number of extracted k-ecc’s after each iteration for RC and RCF on
amazon. Also shown are the numbers of k-ecc’s obtained by GD, which serve
as ground truth numbers. Recall that RC and RCF are randomized algorithms
with some small (but non-zero) probability of not being able to discover all the
k-ecc’s. Also, RCF forgoes the forced random contractions that RC does.

is evident that even though the RC needs fewer iterations to reach the desired
number of components, RCF consistently outperforms it time-wise. As an ex-
ample, let us consider the amazon dataset from Table 2, with k = 4. The RC
algorithm identifies the 1,287 4-edge connected components in just 7 iterations.
In contrast, the RCF algorithm needs 14 iterations to compute them. Yet, the
runtime of RCF, even with 14 iterations, stands at 346 seconds, whereas the RC,
with its 7 iterations, takes a significantly longer 1,277 seconds.

6 Discussion

In theory, all the algorithms presented in Section 4 possess linear time, or near
linear, in m, complexity. However, our experiments show variations in their per-
formance across different datasets. From our results, the GD algorithm is the
most efficient in determining k-edge connected components. On the other hand,
the RC algorithm struggles, especially with larger graph sizes. Notably, after
improving its data structures and obtaining RCF, its speed improved consid-
erably, making it more suitable for larger networks. However, even after these
improvements, the optimized version, while better than its predecessor, still lags
behind the GD algorithm.

The MSK algorithm was further refined by incorporating the heap data struc-
ture from GD, reducing its time complexity from O(m + n · log n) to O(m · r).
However, even after these changes, it is outperformed by the GD and RCF algo-
rithms for larger datasets. For smaller and medium-sized datasets, it performs
better than the RC algorithm. But for larger networks, its efficiency decreases,
and RC becomes more efficient.

Regarding the LCD algorithm its practical scalability is limited, deeming it
suitable only for small datasets. The original researchers only assessed its time
complexity without any empirical tests. Its practical application appears limited,
demonstrating feasibility only for very small networks.
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