An Optimization Technique for Answering Regular Path
Queries

Gosta Grahne and Alex Thomo
Concordia University

{grahne, thomo}@cs.concordia.ca

ABSTRACT

Rewriting queries using views is a powerful technique that
has applications in data integration, data warehousing and
query optimization. Query rewriting in relational databases
is by now rather well investigated. However, in the frame-
work of semistructured data the problem of rewriting has
received much less attention. In this paper we identify some
difficulties with currently known methods for using rewrit-
ings in semistructured databases. We study the problem in
a realistic setting, proposed in information integration sys-
tems such as the Information Manifold, in which the data
sources are modelled as sound views over a global schema.
We give a new rewriting, which we call the possibility rewrit-
ing, that can be used in pruning the search space for an-
swering queries using views. The possibility rewriting can
be computed in time polynomial in the size of the original
query and the view definitions. Finally, we show by means
of a realistic example that our method can reduce the search
space by an order of magnitude.

1. INTRODUCTION

Semistructured data is a self-describing collection, whose
structure can naturally model irregularities that cannot be
captured by relational or object-oriented data models [2].
Semi-structured data is usually best formalized in terms
of labelled graphs, where the graphs represent data found
in many useful applications such web information systems,
XML data repositories, digital libraries, communication net-
works, and so on. Semi-structured data is queried through
regular path queries, which are queries represented by reg-
ular expressions. The design of the regular path queries is
based on the observation that many of the recursive queries
that arise in practice amount to graph traversals. These
queries are in essence graph patterns and the answers to the
query are subgraphs of the database that match the given
pattern [21, 16, 9, 10]. For example, the regular path query
(" - article) - (- - ref - _* - (ullman + widom)) specifies all
the paths having at some point an edge labelled article, fol-
lowed by any number of other edges then by an edge ref and
finally by an edge labelled with ullman or widom.

In semistructured data, as well as in data integration, data
warehousing and query optimization the problem of query
rewriting using views is well known [20, 25, 9, 19]. Sim-
ply stated, the problem is: Given a query () and a set of
views {v1,...,vn}, find a representation of Q by means of
the views and then answer the query on the basis of this
representation. Several papers investigate this problem for

the case of conjunctive queries [20, 25, 11, 24]. Their meth-
ods are based on the query containment and the fact that
the number of literals in the minimal rewriting is bounded
from above by the number of literals in the query.

It is obvious that a method for rewriting of regular path
queries requires a technique for the rewriting of regular ex-
pressions, i.e. given a regular expression E and a set of
regular expressions E1, E», ..., £, one wants to compute a
function f(FE1, Es, ..., E,) which approximates E. As far as
the authors know, there are two methods for computing such
a function f which best approximates E from below. The
first one of Conway [12] is based on the derivatives of regular
expressions introduced by Brzozowski [7], which provide the
ground for the development of an algebraic theory of fac-
torization in the regular algebra [8] which in turn gives the
tools for computing the approximating function. The sec-
ond method by Calvanese et al [9] is automata based. Both
methods are equivalent in the sense that they compute the
same rewriting, which is the largest subset of the query, that
can be represented by the views. Posed in the framework of
[17], we show that the rewriting produced by these methods
is a (sometimes strict) subset of the certain rewriting. If
we want to be able to produce the complete certain answer,
the only alternative left is then to apply an intractable deci-
sion procedure of Calvanese et al [10] for all pairs of objects
(nodes) found in the views. The contribution of this paper
is an algorithm for computing a regular rewriting that will
produce a superset of the certain answer. The use of this
rewriting in query optimization is that it restricts the space
of possible pairs needed to be fed to the decision procedure
of Calvanese et al. We show by means of a realistic exam-
ple that our algorithm can reduce the number of candidate
pairs by an order of magnitude.

The outline of paper is as follows. In Section 2 we formal-
ize the problem of query rewriting using views in a realistic
framework, proposed in information integration systems, in
which the data sources are modelled as sound views over a
global schema. We give some results about the applicabil-
ity of previous work in our setting. At the end of Section
2 we sketch an algorithm for utilizing simultaneously sev-
eral rewritings in query answering using views. In Section
3 we present our main results and method. First we give
an algebraic characterization of a rewriting that we call the
possibility rewriting and then we prove that the answer com-
puted using this rewriting contains the certain answer of the
query, even when algebraically the rewriting does not con-

a
.
S S
C
d R

Figure 1: An example of a graph database

tain the query. The computation of the possibility rewriting
amounts to finding the transduction of a regular language
and we give the appropriate automata-theoretic construc-
tions for these computations.

2. BACKGROUND

Rewriting regular queries. Let A be a finite alphabet,
called the database alphabet. Elements of A will be denoted
R,S,T,R S, ... ,R1,S1,...,etc. Let V.={Vi,... ,V,} be
a set of view definitions, with each V; being a finite or infinite
regular language over A. We call the set Q = {v1,... ,vn}
the outer alphabet, or view alphabet. For each v; € Q, we
set def (vi) = V;. The substitution def associates with each
“view name” v; in the view alphabet the language V;. The
substitution def is applied to words, languages, and regular
expressions in the usual way (see e. g. [18]).

A (user) query @ is a finite or infinite regular language over
A. A lower-rewriting (l-rewriting) of a user query) using
V is a language Q' over 2, such that

def(Q") C Q.

If for any l-rewriting Q" of @ using V, it holds that def (Q"")
C def(Q') we say that Q' is mazimal. If def(Q') = Q we
say that the rewriting Q' is ezact.

Calvanese et al [9] have given a method for constructing an
l-rewriting Q' from @ and V. Their method is guaranteed
to always find the maximal l-rewriting, and it turns out that
the maximal l-rewriting always is regular. An exact rewrit-
ing might not exist, while a maximal rewriting always exists,
although there is no guarantee on the lower bound. For an
extreme example, if V =), then the maximal rewriting of
any query is .

Semistructured databases. We consider a database to
be an edge labelled graph. This graph model is typical in
semistructured data, where the nodes of the database graph
represent the objects and the edges represent the attributes
of the objects, or relationships between the objects.

Formally, we assume that we have a universe of objects D.
Objects will be denoted a,b,c,a’,b’, ..., a1,bs,..., and so
on. A database DB over (D,A) is a pair (N, E), where
N C D is a set of nodes and E C N x A X N is a set
of directed edges labelled with symbols from A. Figure 1
contains an example of a graph database.

If there is a path labelled Ri, Rs, ..., R; from a node a to

a node b we write a 25 b Let @ be a query and
DB = (N, E) a database. Then the answer to Q on DB is
defined as

ans(Q,DB) =
{(a,b) : {a,b} C N and a 2 b for some W € Q}

For instance, if DB is the graph in Figure 1, and Q =
{SRa T}: then G,TLS(Q, DB) = {(b7 d): (d7 b): (C, a)}

Views and answering queries using views. Let Q =
{v1,...vn} be the view alphabet and let V. = {Vi,... ,V,,}
be a set of view definitions as before. Then a source col-
lection S over (V,Q) is a a database over (D,). A source
collection S defines a set poss(S) of databases over (N, A)
as follows (cf. [17]):

poss(S) =
{pB : sc J

i€{1,...,n}

{(a,vi,b) : (a,b) € ans(V;, DB)}.

Suppose now the user gives a query @ in the database alpha-
bet A, but we only have a source collection S available. This
situation is the basic scenario in information integration (see
e.g. [25, 20, 17]. The best we can do is to approximate Q
by

ﬂ ans(Q, DB).

DBeposs(S)

This approximation is called the certain answer for Q) using
S. Calvanese et al [10], in a follow-up paper to [9] describe
an algorithm Ag s(a,b) that returns “yes” or “no” depend-
ing on whether given pair (a,b) is in the certain answer for
Q@ or not. This problem is coNP-complete in the number of
objects in § (data complexity), and if we are to compute
the certain answer, we need to run the algorithm for every
pair of objects in the source collection. A brute force imple-
mentation of the algorithm runs in time exponential in the
number of objects in §. From a practical point of view it is
thus important to invoke algorithm Ag s for as few pairs as
possible.

Restricting the number of input pairs is not considered by
Calvanese et al. Instead they briefly discuss the possibility
of using rewritings of regular queries in answering queries
using views. Since rewritings have proved to be highly suc-
cessful in attacking the corresponding problem for relational
databases [19], one might hope that the same technique
could be used for semistructured databases. Indeed, when
the exact rewriting of a query Q using V exists, Calvanese et
al show that, under the “exact view assumption” the rewrit-
ing can be used to answer @) using S. Unfortunately, under
the more realistic “sound view assumption! ? adopted in
this paper we are only guaranteed to get a subset of the
certain answer. The following propositions hold:

11f all views are relational projections, the exact view as-
sumption corresponds to the pure universal relation assump-
tion, and the sound view assumption corresponds to the
weak instance assumption. For an explanation of the rela-
tional assumptions, see [26].

THEOREM 1. Let Q' be an I-rewriting of Q using V. Then
for any source collection S over V,

ans(Q',S) C ﬂ

DB¢€poss(S)

ans(Q, DB).

Proof. Let (a,b) € Q'(S) and let DB be an arbitrary
database in poss(S). Since (a,b) € Q'(S) there exists ob-
jects ¢y ...c;, and a path avi, ¢ ...civi,b in S such
that v, ... v, € Q'. Since DB € poss(S), there must be
a path a Wi ciy ... ci,, Wi, ,,bin DB, where W;; € def (vi;),
for j € {1,...,k+1}. Furthermore we have that W;, ... W;,
€ def(Q') C Q. In other words, (a,b) € ans(Q,DB). O

THEOREM 2. There is a query Q and a set of view defini-
tions V, such that there is an eract rewriting Q' of Q using
V, but for some source collections S, the set ans(Q’',S) is a
proper subset of ﬂDBEposs(S) ans(@Q,DB). O

The data-complexity for using the rewriting is NLOGSPACE,
which is a considerable improvement from coNP. There is
an EXSPACE price to pay though. At the compilation time
finding the rewriting requires exponential amount of space
measured in the size of the regular expressions used to rep-
resent the query and the view definitions (expression com-
plexity). Nevertheless, it usually pays to sacrifice expression
complexity for data complexity. The problem is however
that the l-rewriting is guaranteed only to produce a subset
of the certain answer. We would like to avoid running the
testing algorithm Ag s for all other pairs of objects in S.

In the next section we describe a “possibility” rewriting (p-
rewriting) Q" of Q using V, such that for all source collec-
tions S:

ans(Q",8) D ﬂ

DBgposs(S)

ans(Q, DB).

The p-rewriting Q" can be used in optimizing the computa-
tion of the certain answer as follows:

1. Compute Q' and Q" from Q using V.
2. Compute ans(Q’,8S) and ans(Q",S). Output ans(Q’,S)

3. Compute Ag,s(a,b), for each (a,b) € ans(Q",S) \
ans(Q’',S). Output those pairs (a, b) for which Ag,s(a,b)
answers “yes.”

3. COMPUTING THE P-REWRITING

As discussed in the previous section, the rewriting Q' of
a query @ is only guaranteed to be a contained rewriting.
From Propositions 1 and 2 it follows that if we use Q' to
evaluate the query, we are only guaranteed to get a subset
of the certain answer (recall that the certain answer itself
already is an approximation from below). In this section
we will give an algorithm for computing a rewriting Q"' that
satisfies the relation ans(Q",8) 2 M ppeposs(s) 475(Q, DB).
Our rewriting is related to the inverse substitution of regular
languages and as consequence it will be a regular language.

DEFINITION 1. Let L be a language over Q. Then L is a
p-rewriting of a query Q, using V, if for all v, ... v;,, € L,
there exists Wi, ... Wi, € Q such that Wi; € def (vi;), for
j€{1,...,m}, and there are no other words in Q* with this
property.

The intuition behind this definition is that we include in
the p-rewriting all the words in the view alphabet €2, such
that their substitution by def contains a word in . The
p-rewriting has the following desirable property:

THEOREM 3. Let Q" be a p-rewriting of Q using V. Then
ans(Q",8) D NbBeposs(sy ans(Q, DB), for any source col-
lection S.

Proof. Assume that there exists a source collection § and
a pair (a,0) € Mppeposs(s) ans(Q, DB), such that (a,b) ¢
ans(Q",8). Since (a,b) € Mppeposs(s) a38(Q, DB), it fol-
lows that for each database DB € poss(S) there is a path

PRRLUN b, where W € @. Now, we will construct from S a
database DBs such that ans(Q,DBs) # (a,b). For each
edge labelled v; from one object = to another object y in
S we chose an arbitrary word W; € def(v;) and put in
DBs the “new” objects c1,...,ck—1, where k is the length
of W;, and a path z,ci,...,cr—1,y labelled with the word
W;. Each time we introduce “new” objects, so all the con-
structed paths are disjoint. Obviously, DBs € poss(S). It
is easy to see that ans(Q, DBs) # (a,b) because otherwise
there would be a path v;, ...v;, in § from a to b such
that def (vi, ...vi,,) N Q # 0, that is vi; ... v, € Q" and
(a,b) € ans(Q",S), From the fact that ans(Q, DBs) # (a,b)
it then follows that (e o (s) an8(Q, DB) Z (a,b); a con-
tradiction. []

It is worth noting here that the Theorem 3 shows that
ans(Q",S) contains the certain answer to the query Q even
when algebraically def(Q") 2 Q.

Recall that the definition of a view name v; €) is a regular
language def (V;) over A. Thus def is in effect a substitution
from Q to 22", The inverse of this substitution is defined
by, for each W € A*,

def 7' (W) = {U € Q" : W € def(U)}.

It is now easy to see that a p-rewriting Q" of of Q using V
equals def *(Q). This suggests that Q" can be computed
using finite transducers.

A finite transducer (see e.g. [27]) T = (S,1,0,4,s,F) con-
sists of a finite set of states S, an input alphabet I, and
output alphabet O, a starting state s, a set of final states
F, and a transition-output function § from finite subsets of
S x I" to finite subsets of S x O~.

An example of a finite transducer ({qo, q1,¢2}, {v1,v2}, {R, S},
d, {q2}) is shown in Figure 2.

Intuitively, for instance (g1, SRS) € §(qo,v2) means that if
the transducer is in state go and reads word v, it can go to
state g1 and emit the word SRS. For a given word U € I"™,

Figure 2: A finite transducer T

@ v/IFi--Fk C

Figure 3:

@ v/F1 . e/F2 .\\

V,/SRS

Figure 4:

we say that a word W € O™ is an output of T for U if there
exists a sequence (g1, W1) € d(s,Ur), (g2, W2) € d(q1,U2),
cory (g, Wh) € 6(qn—1,U,) of state transitions of T', such
that g, e F,U=U,...U, €I",and W =W;...W,, € O".
We write W € T(U), where T(U) denotes the set of all
outputs of T for the input word U. For a language L C I*,
we define T(L) = Uy, T(U).

A finite transducer T = (S,I1,0,4,s,F) is said to be in
the standard form if ¢ is a function from S x (I U {e}) to
25%(OU{el) Inguitively. the standard form restricts the in-
put and output of each transition to be only a single letter
or e. It is known that any finite transducer is equivalent to
a finite transducer in standard form (see [27]).

From the above definitions, it is easy to see that a substi-
tution can be characterized by a finite transducer. Start
with one node representing both the starting state and the
final state. Then build a “macro-transducer” by putting a
self-loop corresponding to each v; € €2 on the sole state. In
each such self-loop we first have the view symbol v; as input
and a regular expression representing the substitution of v;
as output. After that we transform the “macro-transducer”
into an ordinary one in standard form. The transformation
is done by applying recursively the following three steps.
First, we un-nest all the unions + applying exhaustively the
distributive law of concatenation - with respect to the union.
In this way a regular expression E is transformed into the
form E; + ...+ E,, where each E; is of the form F) ... F}
and F; for 1 < i < k is a single symbol or a regular ex-
pression enclosed in a star operation. Then replace the edge
v/(E1 + ...+ Ey) by the n edges v/FE1, ..., v/E,. Second,
for each edge of the form v/F ... F} from a node p to a node
q (Figure 3), we introduce k — 1 new nodes r1, ... rx—1 and
replace the edge v/F} ... F} by the edges v/F} from p to r1,
e/F> from ri to r2, ..., €/F) from ri_1 to g (Figure 4).
Third, we get rid of “macro-transitions” of the form v/E™.

®—"" @
Figure 5:

€/E

V/E 5 €/€

Figure 6:

Suppose we have an edge labelled v/E* from p to ¢ in the
“macro-transducer.” (See Figure 5). We introduce a new
node r and replace the edge v/E* by the edges v/e from
p tor, ¢/E from r to r, and €/e from r to g, as shown in
Figure 6.

By interchanging the input and output of the finite trans-
ducer, we see that the inverse of a substitution can also be
characterized by a finite transducer.

We now describe an algorithm that given a regular lan-
guage L and finite transducer T constructs a finite state
automaton that accepts the language T(L). Let Ar =
(St,I,0r,54,F1) be an € free NFA that accepts L, and
let T = (Sr,I1,0,0r,sr,Fr) be the finite transducer in
standard form. We construct an NFA Ay, = (Sr., 0,
6TL7STL7FTL)7 where STL = Sr x ST, ST, = (SL,STL),
Fr, = Fp x Fr, and dr, is defined by, for (p,q) € Sr,
and v € O U {¢},

o, ((p,q),v) = {(p',q): there exists R € I such that
d.(p,R) =p' and (¢',v) € r(q, R),
or (qu ’U) € 6TL (q7 6) a‘nd p= p,}

THEOREM 4. The automaton Ar, accepts exactly the lan-
guage T(L). O

Collecting the results together, we now have the following
methodology.

COROLLARY 1. Let V. = {Vi,...,V,,} be a set of view
definitions, such the def(v;) = Vi, for all v; € Q, and let Q
be a query over A. Then there is an effectively characteriz-
able regular language Q" over Q that is the p-rewriting of Q
using V. [

ExXAMPLE 1. Let the query be @ = {(RS)" : n > 0} and
the views be vi,v2,vs,and va, where def(vi) = {R,SS},
def (v2) = {S}, def(vs) = {SR}, and def(vs) = {RSRS}.
The DFA A accepting the query Q is given in Figure 7,
left, and the transducer characterizing the substitution def s
given in Figure 7, right. We transform the transducer into
standard form (Figure 8) and then interchange the input
with output to get the transducer characterizing the inverse
substitution (Figure 9). The constructed automaton Ar,
s shown in Figure 10, where ro = (po,qo), 1 = (p1,q0),

B e
/? O V2/S
) 2
SR WIGS , -
Figure T7:

Figure 8:

ro = (po,q2) and the inaccessible and garbage states have
been removed.

Our algorithm computes the p-rewriting Q" represented by
(va+uv1v3v2)", and the algorithm of Calvanese et al [9] com-
putes the l-rewriting Q' represented by vi. Suppose that the
the source collection Sy is induced by the following set of
labelled edges: {(i,vi,a:) : 1 < i < n—1} U {(ai,ve, i +
1) : 1 <4< n-1} U {(ai,vz,ai1) : 1 <7 < n—1}
U {(,vs,i +2) : 1 <i < n—2} We can now compute
ans(Q",8») = {(1,j) : 1 <i <n—-145 < j < n}, and
(@', Sn

ans) ={(,2k) : 1 <i<n—1,0 <k < n/2}. Then
we have that the cardinality of ans(Q",Sn) s n+ ... + 2
=Yri+1) = M 1= ”—22 and the cardinality of

ans(Q', Sy) is ?:11(L)NM+7L%"T2. Thus
the cardinality of ans(Q Sn)\ ans(Q', Sr) is approzimately
n?/2—n?/4 = n?/4, that is 16 times better that (2n)> which
the number of all the possible pairs. [

@ R/e

Figure 9:

Vo €

Figure 10:

Now let us calculate the cost of our algorithm for computing
the “possibility” regular rewriting.

THEOREM 5. The automaton Ag can be built in time poly-
nomial in the size of the reqular expression representing Q.
The automaton characterizing Q" can be built in time poly-
nomial in the size of Ag and the size of the reqular expres-
sions representing V. [

We note that the above analysis is wrt expression and not
data complexity. Since the decision procedure of [10] is
coNP-complete wrt data complexity, reducing the set of can-
didate pairs is very desirable.

4. REFERENCES
[1] S. Abiteboul. Querying Semistructured Data. Proc. of
ICDT 1997 pp. 1-18.

[2] S. Abiteboul, P. Buneman and D. Suciu. Data on the
Web : From Relations to Semistructured Data and
Xml. Morgan Kaufmann, 1999.

[3] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[4] S. Abiteboul, D. Quass, J. McHugh, J. Widom and
J. L. Wiener. The Lorel Query Language for
Semistructured Data. Int. J. on Digital Libraries 1997
1(1) pp. 68-88.

[6] P. Buneman. Semistructured Data. Proc. of PODS
1997, pp. 117-121.

[6] P. Buneman, S. B. Davidson, M. F. Fernandez and
D. Suciu. Adding Structure to Unstructured Data.
Proc. of ICDT 1997, pp. 336-350.

[7] J. A. Brzozowski. Derivatives of Regular Expressions.
J. ACM 11(}) 1964, pp. 481-494

[8] J. A. Brzozowski and E. L. Leiss. On Equations for
Regular Languages, Finite Automata, and Sequential
Networks. T'CS 10 1980, pp. 19-35

[9] D. Calvanese, G. Giacomo, M. Lenzerini and
M. Y. Vardi. Rewriting of Regular Expressions and
Regular Path Queries. Proc. of PODS 1999, pp.
194-204.

[10] D. Calvanese, G. Giacomo, M. Lenzerini and
M. Y. Vardi. Answering Regular Path Queries Using
Views. Proc. of ICDE 2000, pp. 389-398

[11] S. Cohen, W. Nutt, A. Serebrenik. Rewriting
Aggregate Queries Using Views. Proc. of PODS 1999,
pp- 155-166

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[25]

[26]

[27]

J. H. Conway. Regular Algebra and Finite Machines.
Chapman and Hall 1971.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
D. Suciu. A Query Language for XML. WWW8 /
Computer Networks 31(11-16) 1999, pp. 1155-116.

O. Duschka and M. R. Genesereth. Answering
Recursive Queries Using Views. Proc. of PODS 1997,
pp. 109-116.

M. F. Fernandez and D. Suciu. Optimizing Regular
path Expressions Using Graph Schemas Proc. of
ICDE 1998, pp. 14-23.

D. Florescu, A. Y. Levy, D. Suciu Query Containment
for Conjunctive Queries with Regular Expressions
Proc. of PODS 1998, pp. 139-148.

G. Grahne and A. O. Mendelzon. Tableau Techniques
for Querying Information Sources through Global
Schemas. Proc. of ICDT 1999 pp. 332-347.

J. E. Hopcroft and J. D. Ullman Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley 1979.

A.Y. Levy. Answering queries using views: a survey.
Submitted for publication 1999.

A.Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava.
Answering Queries Using Views. Proc. of PODS 1995,
pp- 95-104.

A. O. Mendelzon and P. T. Wood, Finding Regular
Simple Paths in Graph Databases. STAM J. Comp.
24:6, (December 1995).

A. O. Mendelzon, G. A. Mihaila and T. Milo.
Querying the World Wide Web. Int. J. on Digital
Libraries 1(1), 1997 pp. 54-67.

T. Milo and D. Suciu. Index Structures for Path
Expressions. Proc. of ICDT, 1999, pp. 277-295.

Y. Papakonstantinou, V. Vassalos. Query Rewriting
for Semistructured Data. Proc. of SIGMOD 1999, pp.
455-466.

J. D. Ullman. Information Integration Using Logical
Views. Proc. of ICDT 1997, pp. 19-40.

M. Y. Vardi. The universal-relation model for logical
independence. IEEE Software 5(2), 1988, pp. 80-85.

S. Yu. Reqular Languages. In: Handbook of Formal
Languages. G. Rozenberg and A. Salomaa (Eds.).
Springer Verlag 1997, pp. 41-110

