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We introduce a general notion of maturity in social networks that is based
on the number of triangles between groups/communities. In order to protect
individual privacy upon possible release of such information, we propose privacy
mechanisms using zero-knowledge privacy (ZKP), a recently proposed privacy
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ZKP methods and finally evaluate the practicality of the proposed methods.
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1. INTRODUCTION

Complex graphs of real world networks have been
studied from different aspects. One of the important
properties of networks is connectivity, overall or partial.
Various measures, such as counting the number of
triangles or other simple subgraphs, have been used
to characterize connectivity. Connectivity measures
can reveal valuable information about networks. For
instance, the number of triangles in a graph can indicate
how much a graph looks like a social network or how
mature a network is (cf. [1]). When a social network
is in its early ages pairwise friendship connections are
prevalent. As the network grows and activity level
increases, individuals increasingly consider establishing
friendships with friends of friends, thus forming more
triangular connections.

In this paper we consider triangles between groups.
More specifically, we are interested in the number of
(u, v, w) triangles, where u, v, and w are people in
groups g, g′, and g′′, respectively, and where these
groups are not necessarily pair-wise disjoint. This
triangle-based measure is quite general. For example,
if g = g′ = g′′, the measure gives the number of
triangles formed by the members of a single group.
Another useful specialization is when g ∩ g′ = ∅. Then,
our measure gives the bridgeness of g′′’s elements with
respect to g and g′ (see [2]).

Graph measures, similar to other types of aggregate
information, are usually released to third parties for
different purposes. The release of such information can
violate the privacy of individuals in networks. Among
the wide range of definitions and schemes presented to
protect data privacy, ε-Differential Privacy [4, 5, 6] (DP

for short) has attracted significant attention in recent
years. By adding appropriate noise to the output of a
function, DP makes it practically impossible to infer
the presence of an individual or a relationship in a
database using the released information. While DP
stays resilient to many attacks on tabular data, it might
not provide sufficient protection in the case of graph
data, particularly social networks (cf. [7, 8]). Because
of the extensive correlation between the nodes in social
networks, not only the participation of a node (or
relationship), but also the evidence of such participation
has to be protected. This requires a higher level of
protection than what DP offers (cf. [8]).

We explain the matter using an example. Suppose
there are three groups of nodes g, g′, and g′′ in a
social graph G. We want to publish the number of
triangles between these three groups. Let us assume
for this example that there is only one person Eve
in g′′. Suppose that Bob in g is connected to
Alice in g′, and both are connected to Eve in g′′ (a
triangle). As a consequence of these relationships, some
of Bob’s friends make connections to Alice and Eve, thus
creating new triangles. What we want to protect is the
existence of Bob’s connection to Alice (call it the BA-
connection). Namely, the privacy of the BA-connection
is protected by devising a privacy mechanism that
distorts the true answer in a randomized way so that
it becomes practically impossible for an attacker to
infer whether we have used the original database or the
slightly modified version of it where the BA-connection
has been removed.

From a counting perspective the existence or not of
the BA-connection can change the number of triangles
by at most 1. DP works in this case by ensuring that for
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any true answer, c or c−1, the privatized answer would
be pretty much the same. However, this is not strong
enough; the existence of Bob’s connections influenced
the true number of triangles between the three groups
not just by 1, but by a bigger number as it caused more
triangles to be created by Bob’s friends.

In order to provide sufficient data privacy for
social graphs, Gehrke, Lui, and Pass proposed “zero-
knowledge privacy” (ZKP) in [7]. The definition of
ZKP is based on classes of aggregate functions. ZKP
guarantees that any additional information that an
attacker can obtain about an individual by having
access to the sanitized output is indistinguishable
from what can be inferred from some sampling-based
aggregate.

In ZKP, the sample size k has to be selected wisely.
To protect even the evidence of a person’s participation
the sampling has to be such that, with high probability,
very few of the person’s neighboring individuals get
selected by random sampling.

For instance, suppose in the Bob’s example above
the network size is 10,000 and the sample size is
3
√

10, 0002 = 464. With such a sampling rate of
almost 0.05 the evidence provided by say 10 more
triangles caused by Bob’s connections will essentially
be protected; with a high probability, none of these 10
triangles will be in the sample.

In this paper, we formally define a group-based
triangle (GBT) measure in social networks and present
a ZKP mechanism to provide connection privacy upon
release of such information. Specifically, our first
contribution is deriving a general formula to compute
the GBT measure, such that it works for any assemblage
of node groups. In the second part, we propose
methods to compute the sample complexity of the
triangle count function. In order to achieve this,
we present techniques to express the function as an
average of specially designed, synthetic attributes on
the nodes of graphs. This is one of the main challenges
to be able to use the Hoeffding inequality and the
fundamental ZKP proposition (See Proposition 4.1) for
GBT measure. Then, we derive precise prescriptions on
how to construct ZKP mechanisms for the function.

The rest of the paper is organized as follows. We
discuss related work in Section 2. In Section 3, we define
our notion of group-based triangles (GBT). Section 4
contains a discussion of the background concepts related
to zero-knowledge privacy. In Section 4, we present
ZKP mechanisms for releasing GBT measures. We also
present our methods to compute the sample complexity
of GBT. Section 6 presents a numeric evaluation of the
ZKP mechanism, and Section 7 concludes the paper.

2. RELATED WORK

The common goal of privacy preserving methods is to
learn from data while protecting sensitive information
of the individuals (cf. [9, 10, 11, 12]). k-anonymity

for social graphs (cf. [13, 14, 16]) provides privacy
by ensuring that combinations of identifying attributes
appear at least k times in the dataset. The problem
with k-anonymity and other related approaches, e.g.
l-diversity [17], is that they assume the adversary
has limited auxiliary knowledge. Narayanan and
Shmatikov [18] presented a de-anonymization algorithm
and claimed that k-anonymity can be defeated by their
method using auxiliary information accessible by the
adversary.

Among a multitude of different techniques, differen-
tial privacy (DP) [4, 5, 19, 20] has become one of the
leading methods to provide individual privacy. Various
differentially private algorithms have since been devel-
oped for different domains, including social networks
[21, 22]. However, DP can suffer in social networks
where specific auxiliary information, such as graph
structure and friendship data, is easily available to the
adversary. Important works showing the shortcomings
of DP are [8, 23, 3].

Gehrke, Lui, and Pass in [7] present the notion of
zero-knowledge privacy that is appealing for achieving
privacy in social networks. Zero-knowledge privacy
(ZKP) guarantees that what can be learned from
a dataset including an individual is not more than
what can be learned from sampling-based aggregates
computed on the dataset without that individual.

Works [2, 24] use ZKP to release connectedness
and bridgeness statistics in social networks. They
are different from the current work, where we aim
at privately releasing group-based triangle counts for
social networks. Specifically, [24] is about ZKP-Graph
Summarization (ZKP-GS). It considers some statistics
in graphs which involve edges between one or two
groups. If intuitively we assume #edges(g, g′) >
#triangles(g, g′, g′′), in a similar circumstance this
results in a smaller noise scale. Furthermore, ZKP-GS
has different techniques than current paper to compute
the sample complexity of corresponding functions.

3. GRAPHS, GROUPS, AND TRIANGLES

We denote a graph as G = (V,E), where V is the set of
nodes and E ⊆ V ×V is the set of edges connecting the
nodes. We consider S ⊂ 2V to be a set of node groups
of size r or more that a social network wants to release
statistics about. Let g, g′, and g′′ be three groups in S.

Definition 3.1. The group-based triangle (GBT)
measure of g, g′, and g′′ is defined as

GBT (g, g′, g′′) =

|{(u,v,w): u∈g,v∈g′,w∈g′′, {(u,v),(u,w),(v,w)}⊆E}|
max |{(u,v,w): u∈g,v∈g′,w∈g′′}|

Intuitively, GBT (g, g′, g′′) is the fraction of the
number of actual triangles between the nodes of
different groups over the number of all possible such
triangles. Throughout the paper, we will refer to
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FIGURE 1. Group-based triangle count

GBT (g, g′, g′′) as GBT whenever g, g′, and g′′ are clear
from the context.

The definition of GBT is quite general. It contains
as special cases simpler triangle-based measures used in
literature. For example, by setting g = g′ = g′′ = V ,
we obtain the total number of triangles in the network
(cf. [1, 25, 26, 27]).

To facilitate the exposition and derivation of some
equations, we will also use occasionally g1, g2, g3 to
refer to groups. This is the case for the rest of this
section.

Example 1. Fig. 1 shows a graph G with three
groups g1, g2, and g3, having three, two, and two
nodes, respectively. There are three edges connecting
the nodes of g1 and g2, and four edges connecting
g3 to g1 and g2. These edges form two triangles in
total between groups g1, g2, and g3. The number of
all possible triangles between three groups is 10 (See
Proposition 3.1). Therefore, we have GBT = 0.2.

We derive in the following a formula to compute the
maximum number of triangles that can exist between
any three groups. The set of all valid triangles is
denoted by L, where each triangle is represented by
a node triplet (u, v, w). |L| is the denominator in the
definition of GBT.

Let g1, g2, and g3 be three groups with possible
intersections. We consider the following notation, as
illustrated in Fig. 2, for all possible disjoint subsets
created by the intersections between the groups.

si = {v|v ∈ gi, v /∈ gj , and v /∈ gk}
sij = {v|v ∈ gi, v ∈ gj , and v /∈ gk}
sijk = {v|v ∈ gi, v ∈ gj , and v ∈ gk}

where i, j, k ∈ {1, 2, 3} and i 6= j, j 6= k, and i 6= k.
Note that the subset indices are commutative, e.g.,
sij = sji. With slight abuse of notation, we will use
sij to denote the size of the sij set as well.

Proposition 3.1. The maximum number of trian-
gles between three node groups is computed by the equa-
tion in Table 1.

g
2

g
1

s
1

g
3

s
2

s
23

s
3

s
12

s
13

s
123

FIGURE 2. Disjoint subsets

Term (1a) counts the number of triangles having
at least two vertices in only one group (each to a
separate group). That is, they are not in the areas
of intersection with other groups. The third vertex
has to be in any of the subsets of the third group,
including the intersections with the other two groups.
The coefficients and the subtraction take care of the
repetitions occurring in the summation.

Term (1b) considers the triangles having at least two
vertices in distinctive intersections of any two groups.
Since these two vertices can be assumed to be in any of
the three groups, the third vertex can be in any of the
other subsets.

Term (1c) gives the number of possible triangles in
which one vertex is in only one group, the other vertex
is in the intersection of any two groups, and the third
one is in all three groups.

Two vertices of a triangle can both be placed in
the intersection of any two groups. Such triangles are
counted by term (1d). The third vertex has to be in any
of the subsets of the third group. Similarly, (1e) counts
the number of triangles with two vertices in s123, the
intersection of all three groups.

As vertices in s123 belong to all groups, triangles can
reside entirely, with all three vertices, inside this subset,
counted by (1f).

Example 2. In Fig. 1 the total number of possible
triangles is computed as follows. We have s1 = 2, s2 =
1, s3 = 2, s12 = 1, and s13 = s23 = s123 = 0. Therefore,
the only term that is not zero is (3.1) computed as the
following.

|L| = (s1 · s2 · (s3 + s13 + s23 + s123)) +

(s1 · s3 · (s2 + s12 + s23 + s123)) +

(s2 · s3 · (s1 + s12 + s13 + s123))− 2 · s1 · s2 · s3

= (2 · 1 · 2) + (2 · 2 · (1 + 1)) +

(1 · 2 · (2 + 1))− 2 · 2 · 1 · 2 = 10

4. BACKGROUND ON
ε-ZERO-KNOWLEDGE PRIVACY

Zero-Knowledge Privacy (ZKP), introduced by [7], is
an enhanced privacy scheme that guarantees stronger
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|L| =

(∑
i,j,k∈{1,2,3}

i<j,i 6=j,j 6=k,i6=k

(si · sj)(sk + sik + sjk + sijk)

)
− 2s1 · s2 · s3 (1a)

+ 1
2

(∑
i,j,k∈{1,2,3}
i6=j,j 6=k,i6=k

(sij · sjk)(si + sj + sk + sik + sijk)

)
− 2s12 · s13 · s23 (1b)

+
(∑

i∈{1,2,3} si
)
·
(∑

j,k∈{1,2,3}
j<k

sjk

)
· s123 (1c)

+
∑

i,j,k∈{1,2,3}
i<j,i 6=j,j 6=k,i6=k

(
sij
2

)
(sk + sik + sjk + sijk) (1d)

+
(
s123
2

)
(s1 + s2 + s3 + s12 + s13 + s23) (1e)

+
(
s123
3

)
(1f)

TABLE 1. Maximum number of possible triangles between three groups

privacy protection, compared to other currently well-
known methods such as differential privacy (DP),
especially in social networks. Due to the extensive
influence in such networks, the presence of a single
element (node or connection) can lead to the creation of
several new elements in the network. Therefore, in such
a setting a privacy mechanism needs to protect not only
the participation of an element in the network, but also
the evidence of such a participation, i.e. the presence of
new elements created under the influence of the element
in focus.

ZKP requires that whatever an intelligent agent
(adversary) can discover from the sanitized output of
the mechanism is not more than what can be discovered
by an equally gifted agent that only has access to some
sample-based aggregate information. The latter agent
is sometimes referred as simulator.

Let G be a graph. We denote by G−∗ a graph
obtained from G by removing a piece of information (for
example an edge). G and G−∗ are called neighboring
graphs.

Let M be the privacy mechanism that securely
releases the answer to a query on graph G, and let
A be the intelligent agent that operates on output
M(G), that is, privatized answer, trying to breach
the privacy of some individual. Let S be a simulator
as capable as A, that would have access to some
aggregate information obtained by an algorithm T ∈
agg. Note that, the assumed algorithm T only would
compute approximate answers to aggregate functions by
sampling graph G−∗, i.e. the graph that misses the
piece of information which should be protected.

Definition 4.1. (Zero-Knowledge Privacy [7]) The
mechanism M is ε-zero-knowledge private with
respect to agg if there exists a T ∈ agg such that for
every adversary A, there exists a simulator S such that
for every G, every z ∈ {0, 1}∗, and every W ⊆ {0, 1}∗,

the following hold:

Pr[A(M(G), z) ∈W ] ≤ eε · Pr[S(T (G−∗), z) ∈W ]

Pr[S(T (G−∗), z) ∈W ] ≤ eε · Pr[A(M(G), z) ∈W ]

where probabilities are taken over the randomness of M
and A, and T and S.

This definition assumes that both the adversary
and simulator have access to some general and easily
accessible auxiliary information z, such as graph
structures or the groups the individuals belong in.

Note that, based on the application settings the
selection of k –the sample size– in agg algorithms is
very important. It should be chosen so that with high
probability very few of the elements (nodes or edges)
related with the element whose information has to be
private will be chosen. We will often index agg by k
as aggk to stress the importance of k. To satisfy the
ZKP definition, a mechanism should use k = o(n), say

k =
√
n or k =

3
√
n2, where n, the number of nodes

in the database, is sufficiently large (see [7]). DP is a
special case of ZKP where k = n.

Achieving ZKP. Let f : G → Rm be a function
that produces a vector of length m from a graph
database. For example, given graph G, and the set
of node groups S, f produces GBT for m triplets of
groups. We consider the L1-Sensitivity to be defined as
follows.

Definition 4.2. (L1-Sensitivity) For f : G → Rm,
the L1-sensitivity of f is

∆(f) = max
G′,G′′

||f(G′)− f(G′′)||1

for all neighboring graphs G′ and G′′.

Another essential definition is that of “sample
complexity”.

Definition 4.3. (Sample Complexity [7]) A function
f : Dom → Rm is said to have (δ, β)-sample
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complexity with respect to agg if there exists an
algorithm T ∈ agg such that for every D ∈ Dom we
have

Pr[||T (D)− f(D)||1 ≤ δ] ≥ 1− β.

T is said to be a (δ, β)-sampler for f with respect to
agg.

This definition bounds the probability of error
between the randomized computation (approximation)
of function f and the expected output of f . Functions
with low sample complexity (smaller δ and β) can be
computed more accurately using random samples from
the input data.

When the released information, as typical, is real
numbers, the ZKP mechanism San achieves the privacy
by adding noise to each of the numbers independently.

Let Lap(λ) be the zero-mean Laplace distribution
with scale λ, and variance 2λ2. The scale of Laplace
noise in ZKP is properly calibrated to the sample
complexity of the function that is to be privately
computed. The following proposition expresses the
relationship between the sample complexity of a
function and the level of zero knowledge privacy
achieved by adding Laplace noise to the outputs of the
function.

Proposition 4.1. ([7]) Suppose f : G → [a, b]m

has (δ, β)-sample complexity with respect to agg. Then,
mechanism

San(G) = f(G) + (X1, . . . , Xm),

where G ∈ G, and Xj v Lap(λ) for j = 1, · · · ,m
independently, is

ln
(

(1− β)e
∆(f)+δ

λ + βe
(b−a)m

λ

)
–ZKP with respect to agg.

5. ZKP MECHANISM FOR GBT MEASURE

In this section we design an ε-ZKP mechanism to
privately release GBT measures. Let f be the function
that given graph G and set S produces a c-dimensional
vector of GBT measures (numbers), where c ≤

(|S|
3

)
.

Let f = [f1, . . . , ft] be the vector that is to be
privately released. We apply a separate Sani (ZKP)
mechanism, for i ∈ [1, t], to each of the elements of
f . Let us assume that each Sani provides εi-ZKP
for fi with respect to aggki , where ki = k(n)/t and
n = |V |. Then, based on the following proposition, f

will be
(∑t

i=1 εi

)
-ZKP with respect to aggk(n), where

k(n) =
∑t
i=1 ki.

Proposition 5.1. (Sequential Composition [7]) Sup-
pose Sani, for i ∈ [1, n], is an εi-ZKP mechanism
with respect to aggki . Then, the mechanism resulting

from composing3 Sani’s is (
∑n
i=1 εi)-ZKP with respect

to agg(
∑
ki).

Consider G and G−e, where G−e is a neighboring
graph of G obtained from G by removing edge e. The
goal of our mechanism is to protect the privacy of the
connections between the nodes of different groups upon
release of GBT counts. Therefore, we assume that the
removed edge e is an edge between two nodes of two
different groups in S. To compute the sensitivity of
GBT measures, we consider two extreme cases; first
the case when the three node groups are pairwise
disjoint, and second when they are identical. In the
first case, removing an edge between two node groups
g′ and g′′ can change by at most |g| the numerator
of GBT (g, g′, g′′) in G−e. Hence, the sensitivity
of the GBT function in this case is ∆1(GBT ) =

max |g|
|g|·|g′|·|g′′| = 1

r2 where r is the minimum group

size in S. Note that the denominator is the maximum
number of valid triangles when all three groups are
disjoint.

In the second case when the groups are identical,
g = g′ = g′′, the sensitivity is ∆2(GBT ) =

max |g|−2

(|g|3 )
= 6

r(r−1) . Therefore, the overall sensitivity

of GBT function is ∆(GBT ) = 6
r(r−1) .

Now, suppose GBT (g, g′, g′′) is an element of f ,
where g, g′, and g′′ are groups in S. Let San =
GBT (g, g′, g′′) + Lap(λ) be a ZKP mechanism which
adds random noise selected from Lap(λ) distribution to
the output of GBT (g, g′, g′′) in order to achieve ZKP.
Our goal here is to come up with the right λ to achieve
a predefined level of ZKP.

Based on the definition of ZKP, one should first know
the sample complexity of the GBT function. For this,
without any change in semantics, we will express GBT
so that it computes an average rather than a fraction
of two counts. Then, using the Hoeffding inequality (cf.
[28]) we compute the sample complexity of GBT .

Expressing GBT . In addition to regular node
attributes (if any), we introduce

(|S|
2

)
new boolean

attributes, one for each group pair in S. We denote
each new attribute by upper-case I indexed by a group-
pair id. Each attribute Igigj (Iij for short) is a boolean
vector of dimension |gi| · |gj |, where each dimension
corresponds to a possible edge between gi and gj . A
node u in graph G(V,E) will have Iij(u)[vw] = 1, where
v ∈ gi and w ∈ gj , if {(u, v), (u,w), (v, w)} ⊆ E, and
Iij(u)[vw] = 0, otherwise. Note that, we have u 6= v,
v 6= w, and w 6= u. For each triplet of groups gi, gj ,
and gk we can verify that:

3A set of computations that are separately applied on one
database and each provides ZKP in isolation, also provides ZKP
for the set. In the case when the output of the computations is not
independent from each other, the composition is called sequential
(as opposed to parallel composition).
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Proposition 5.2.

GBT (gi, gj , gk) =

∑
v∈gi,w∈gj ,u∈gk

(u,v,w)∈L
Iij(u)[vw]

|L|

=

∑
v∈gj ,w∈gk,u∈gi

(u,v,w)∈L
Ijk(u)[vw]

|L|

=

∑
v∈gk,w∈gi,u∈gj

(u,v,w)∈L
Iki(u)[vw]

|L|

Therefore, the GBT (gi, gj , gk) measure can be viewed
as the average of Iij [.], or Ijk[.], or Iki[.] over the nodes
of gk, gi, gj , respectively.

ZKP Mechanism. Let G = (V,E) be a graph
enriched with boolean attributes as explained above.
We would like to determine the value of λ > 0 for the
Lap(λ) distribution which will be used to add random
noise to GBT (g, g′, g′′) included in f . For this, first we
compute the sample complexity of GBT to be able to
use Proposition 4.1 and establish an appropriate value
for λ.

Let T be a randomized algorithm in aggk, the class of
randomized algorithms that operates on an input graph
G. To randomly sample a graph G, algorithm T would
uniformly select k = k(n)/t random nodes from V , read
their attributes, and retrieve all edges4 incident to these
k sample nodes.5

With this sampling, the nodes in the groups of S and
the edges between them would be randomly sampled
as well. Let us assume that we have a sample of
each group and edges between groups, and a sample
of group g is denoted as gk. Then, algorithm T would
approximate GBT using sampled graph data. For the
sample complexity of GBT (g, g′, g′′), since we expressed
it as averages, we can use the Hoeffding inequality as
follows;

Pr[|T (g, g′, g′′)−GBT (g, g′, g′′)| ≤ δ] ≥ 1− 2e−2|Lk|δ2

where |Lk| is the number of all possible valid triangles
between sample groups gk, g′k, and g′′k .

From this and Definition 4.3, we have that the GBT

function has
(
δ, 2e−2|Lk|δ2

)
-sample complexity with

respect to aggk.
Now we make the following substitutions in the

formula of Proposition 4.1: β = 2e−2|Lk|δ2

,
∆(GBT (g, g′, g′′)) = 6

r(r−1) , b − a = 1, and m = 1.

From this, mechanism San becomes

ln

(
e

6
r(r−1)

+δ

λ + 2e
1
λ−2|Lk|δ2

)
-ZKP

with respect to aggk.

4Clearly, only non-dangling incident edges, whose both end
nodes have been sampled, will be retrieved.

5For other possible methods of graph sampling see for
example [7].

Similarly to DP, we set λ, the Laplace noise scale,
to be proportional to “the error” as can be measured in
the ZKP method by the sum of the sensitivity ∆(GBT )
and sampling error δ, and inversely proportional to the
ZKP privacy level. Regarding δ, we can consider for
instance δ = 1

3
√
|Lk|

, and hence,

λ =
∆(GBT ) + δ

ε
=

1

ε

(
6

r(r − 1)
+

1
3
√
|Lk|

)

From all the above, the privacy level obtained will
be6

ln

(
e

6
r(r−1)

+δ

λ + 2e
1
λ−2|Lk|δ2

)
= ln

(
eε + 2e

ε

6/r(r−1)+1/ 3
√
|Lk|
−2 3
√
|Lk|
)

≤ ln
(
eε + 2e−

3
√
|Lk|
)

≤ ε+ 2e−
3
√
|Lk|.

Thus, we have that by adding noise randomly selected

from Lap

(
1
ε

(
6

r(r−1) + 1
3
√
|Lk|

))
distribution to GBT ,

San will be
(
ε+ 2e−

3
√
|Lk|
)

-ZKP with respect to aggk.

Example 3. Let graph G be a social graph with ten
million participants/nodes (|V | = n = 10, 000, 000),
and g, g′, and g′′ be three node groups in S. Suppose
that the minimum group size in S is r = 100, and
we would like to report GBT (g, g′, g′′). To privately
release GBT measures, a randomized algorithm T
would uniformly select k nodes and approximate the
value of GBT (g, g′, g′′) using sample data.

The actual value of function GBT (g, g′, g′′) is
computed onG. Suppose that the number of all possible
valid triangles between group samples gk, g′k, and g′′k is
|Lk| = 300, 000. Let (δ, β) be the sample complexity of
GBT (g, g′, g′′) where

δ =
1

3
√
|Lk|

=
1

3
√

300, 000
= 0.0149.

β = 2e−2|Lk|δ2

= 2e−2∗(300,000)∗(0.0149)2

= 2.82 ∗ 10−58.

The sensitivity of GBT is

∆(GBT ) =
6

r(r − 1)
=

6

100 ∗ 99
= 0.0006.

Now, if we would like to use a mechanism which is 0.1-
ZKP, we can add random noise selected from a Laplace
distribution with scale

λ =
∆(GBT ) + δ

ε
=

0.0006 + 0.0149

0.1
= 0.155

6Note that the inequality is true because ε is a small number.
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to the actual value of GBT (g, g′, g′′). With this noise
scale, the ZKP privacy level of the mechanism is
precisely

ε ≤
(
ε+ 2e−

3
√
|Lk|
)

=
(
0.1 + 2 ∗ e−66.94

)
≈ 0.1

with respect to aggk.

To compare this result with Differential Privacy (DP)
method in [4, 20], in order to get 0.1-DP privacy, we
would have λ = ∆(GBT )/0.1 = 0.0006. As it is clear
from the computation, the noise scale in DP method
is quite smaller. While the ZKP noise is sufficient to
protect all the evidence of participation.

6. EVALUATION

In our methods, the amount of noise added to
the output is independent of the database, and it
only depends on the function we compute and their
sensitivities. Therefore, the following analysis is valid
for any database.

6.1. Parameters Affecting Noise Scale

Sampling error δ is an important factor specifying λ

based on the formula of noise scale λ = ∆(f)+δ
ε . The

error in turn has reverse connection with the size of
group samples and therefore, with the sample size and
size of the database graph. Recall that throughout the
paper we considered the error to be δ = 1

3
√
|Lk|

.

Fig. 3 illustrates the relationship between the noise
scale λ and the parameter |Lk|. In this figure we
assumed that the minimum group size is r = 100,
and the ZKP-level ε is 0.1. The figure shows that as
parameter |Lk| decreases from five hundred thousand
to one thousand the noise scale increases non-linearly
to the amounts that are not practical in our setting.
Therefore, our proposed ZKP mechanism is perfect
for big databases with large sample sizes. However,
even |Lk| = 500, 000 implies some sample group sizes
around k = 80, which is reasonable in social graphs
with only millions of participants, provided that the
groups include some linchpin nodes that build a dense
subgraph. (recall that |Lk| is the number of triangles
between group samples). Hence, we conclude that the
proposed ZKP mechanism works well with small dense
data graphs as well as large graphs.

6.2. The Noise

The analysis in this section aims to provide a better
understanding of the amount of noise added to
outputs. The cumulative distribution function of
Laplace distribution in an interval [−z, z] is computed
as follows,

Pr(−z ≤ x ≤ z) =

∫ z

−z

1
2λe
−|x|
λ dx = 1− e

−z
λ .
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FIGURE 3. Relationship between noise scale and sample
size.
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FIGURE 4. Probability vs noise.

Let pr = Pr(|x| ≤ z). Value z for a specified
cumulative probability pr can be calculated using the
above equation as

z = −λ · ln(1− pr) = −∆(f) + δ

ε
· ln(1− pr).

Figure 4 illustrates the maximum absolute noise z as a
function of cumulative probability pr for three different
values of δ when ε = 0.1 and ∆(f) = 0.0001. Each
point (pr, z) on the curve for a given δ means that

pr percent of the time the random noise has
an absolute value of at most z.

For example, for δ = 0.02 we have that 50% of the time
the absolute value of noise is at most 0.14, and 75% of
the time it is at most 0.28.

7. CONCLUSIONS

We addressed zero-knowledge private methods for
releasing group-based triangle (GBT) measures for
social networks. The application of our technique
is crucial in order to have a secure public release
of such graph measures. We introduced methods to
compute the ZKP parameters, specifically the sample
complexity. We showed that the proposed technique
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is practically useful for large as well as small dense
data graphs. This is different from the mechanism
presented in [24], which is useful only for very large
social graphs. As future work we aim to generalize
the notion of group-based triangles to other inter-group
patterns expressed by queries on edge-labeled graphs
([29, 30, 31]). Also, we plan to extend our results to
graphs with probabilities in their edges [32].
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