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  The world is a database, and a database is a graph 

Postulate 1 

Fact 1 

Regular path queries are at the core  
of querying graph databases 

Postulate 2 

Query containment is instrumental in query  
optimization and information integration 

Fact 2 

Query optimization and information  
integration is the future 



• Relational data 

– Tuples are the nodes 

– Foreign keys are the edges 

 

• Object-oriented data 

 

• Linked Web pages 

 

• XML 

 

• AI: Semantic Networks 

Viewing Data as Graphs 
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Q: _* . Foto Afrati . Classes . Automata 
 
• Will fetch the node of the automata 

course of Foto Afrati. 
• However, suppose the user gives: 

 
Q: _* . Foto Afrati . Automata 
 
• For this the answer is empty! 
• Well, we could distort the query by 

applying an edit operation – an insertion 
of ‘Classes’ in this case. 
 

• However, Foto Afrati could also have 
some automata papers.  

• But, “we” (DBA) know that Foto Afrati is 
a database person, so she probably 
doesn’t have many automata papers. 

• On the other hand, there at NTU, it’s 
Foto who always teaches Automata. 

Regular Path Queries and Distortions 

Databases 

Papers 

Dept of CS 
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Databases Automata 
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Foto Afrati 
Timos Sellis 

  Automata 

• To reflect these facts about the world, the 
DBA could write: 

 _* . (  
  (Foto Afrati . Automata, 1,  
  Foto Afrati . Classes. Automata) 

 + 
  (Foto Afrati . Automata, 5,  
  Foto Afrati . Papers. Automata)  
 ) . _* 



Graph Database DB 

• Set of objects/nodes D, edges labeled with 

symbols from a database alphabet   

• Query Q : regular language over  

   For example Q = ST + T + RR  

• ans(Q,DB) = {(x,y) in D x D : there is a path 

from x to y in DB labeled by a word in Q }  
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Computing the Answer 
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Construct an automaton AQ with p0 initial 

state 

Compute the set Reacha as follows.   

1. Initialize Reacha to {(a, p0)}.  

2. Repeat 3 until Reacha no longer 

changes. 

3. Choose a pair (b,p) Reacha. 

 If there is a transition (p,R,p’) 

in AQ, and there is an edge 

(b,R,b’) in DB, then add the 

pair (b',s') to Reacha. 

Finally, ans(Q, a, DB)={(a, b) : (b,s) 

Reacha, and s is a final state in AQ} 



Distortion Transducer T 

• Query Q  = RTT 

 

• ansT(Q,DB) = {(a,d,2), (c,b,2)} 

• dT(u,w) = inf{k : u goes to w through T  by k  distortions} 

 

• ansT(Q,DB) = {(a,b,k) : k = inf{dT(u,w) : uQ, awbDB}}  
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Lazy Dijkstra Algorithm on 
Cartesian Product 
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• Although the full cartesian product has 4*3*4=48 states, 
we needed only 3 states starting from ‘a’. 



A Sketch… 
Construct an automaton AQ with p0 initial state 

Compute the set Reacha as follows.   

1. Initialize Reacha to {(p0, s0, a, 0, false)}. 

 /* The boolean flag is for the membership in the set of nodes for which we know the 

exact cost from source */  

2. Repeat 3 until Reacha no longer changes. 

3. Choose a (p, s, b, k,false) Reacha, where k is min 

 If   [there is a transition (p, R, p’) in AQ] and   

 [a transition (s, R/S, s’, n) in T] and 

 [there is an edge (b, S, b’) in DB] 

 Then  

 add (p’, s’, b’, k+n, false) to Reacha if there is no (p’, s’, b’, _, _) in 

Reacha  

 relax the weight of any successor of (p, s, b, k, false) in Reacha. 

 update (p, s, b, k, false) to (p, s, b, k, true). 

 

Finally, ansT(Q, a, DB)={(a, b, k) : (p, s, b, k,true) Reacha, and p is a final state in AQ, 

and s is a final state in T} 



• In other words, the priority queue of Dijkstra’s algorithm is 
brought on demand (lazily) in memory. 

  

• Complexity: If we keep the set Reacha in main memory 
we avoid accessing objects in secondary memory more than 
once.  

 

 

• Data complexity (i.e. number of I/O’s) is all we care in 
databases! …And it is linear! 



• Classical case: Q1  Q2 iff ans(Q1,DB)  ans(Q2,DB) on any 
DB.  
• We can provide the answers of Q1 as answers for Q2 and 

be certain that they will be valid for Q2 on any DB.  
 

• Suppose now that Q1  Q2. However, by using the distortion 
transducer some kind of containment might still hold.  
 

Redefining Query Containment 



• Q1 = {R, S},  Q2 = {U, V}      T = {(U/R,1), (V/S,3)} 
 

• Suppose (a,b,0)  ansT(Q, DB) --- what could be the DB? 

An Example 

b a R 
DB2 

(a,b,1)  ansT(Q2, DB1) 

b a S 
DB3 (a,b,3)  ansT(Q2, DB2) 

b a R, T 
DB1 

(a,b,0)  ansT(Q2, DB3) 

• Q1  Q2.  
However, for any DB, if (a,b,0) ansT(Q2,DB)  

then (a,b,m) ansT(Q2,DB), where m<=0+3.  



• Q1 = {RRR},  Q2 = {RST}    T is the edit transducer 
 

• Suppose (a,b,1)  ansT(Q, DB) --- what could be the DB? 

Another Example 

• Q1  Q2.  
However, for any DB, if (a,b,1) ansT(Q2,DB)  

then (a,b,m) ansT(Q2,DB), where m<=1+2.  

T/R,1 

S/R,1 

R/R,0 

… 

(a,b,3)  ansT(Q2, DB4) b a U 
DB4 

R R 

(a,b,0)  ansT(Q2, DB1) b a R 
DB1 

R,S T 

(a,b,1)  ansT(Q2, DB2) b a U 
DB2 

R,S R,T 

(a,b,2)  ansT(Q2, DB3) b a U 
DB3 

R R,T 



• Q1 (T,k) Q2  

 
iff  

(a,b,n)  ansT(Q1,DB) (a,b,m)  ansT(Q2,DB) and  
m <= n + k on any DB. 

 
Q1  Q2 

Q1 (T,1) Q2 

… 
Q1 (T,k) Q2 

Q1 (T,k+1) Q2 

… 
Q1  T(Q2) 

 
• What’s the k? 

Query Containment (Continued) 



• We devise a method for constructing:  
Q(T,k) : the language of all Q-words distorted by T with cost at 

most k. 
Clearly Q(T,k-1)  Q(T,k) 
 

 
• In this way we control how bigger we need to make Q2.  

 
• Suppose, that k is the smallest number, such that Q1  Q2

(T,k) .  
 
 
 

• If dT satisfies the triangle inequality property, we show that: 

  Q1 (T,k) Q2 iff Q1  Q2
(T,k) .  

 
 

A tool for deciding k-containment 



• There are transducers, whose word distance doesn’t satisfy the 
triangle property. E.g. {(R,1,S), (S,2,T), (R,5,T)} . 

About the Triangle Property of T 

S/T,2 

R/S,1 

R/T,5 

• Nevertheless, there are large classes which, posses the triangle 
propety. 

• The pure edit distance transducers. E.g. {(R,1,S), (S,1,T), (R,1,T), 
(S,1,R), (R,1,), (,1,R)…}. 
 

• Transducers whose input and output of distortions do not have 
intersection. Such tranducers are idempotent wrt composition. 

(TTid)(TTid)= (T  T) (T  Tid) (Tid T) (Tid  Tid) = TTid 

 

• In general, an idempotent transducer has the triangle property. 
• uTv  vTw  uTTw  uTw 
• Hence, dT(u,w) = dTT(u,w) <= dT(u,v)+dT(v,w). 

dT(R,S)=1, dT(S,T)=2, but dT(R,T)=5>3 



• The class of “range(T)dom(T)=”  transducers is indeed 
practical: 
 
• Recall that it is the DBA who writes the reg. expr. for the 

distortion transducer.  
 

• It is common sense that DBA has surely an idea about the 
DB.  
 

• Hence, we can consider that all the words in  range(T) 
match to DB paths.  
 

• On the other hand, the words of the dom(T) can be 
considered not having a direct match on the database; 
otherwise why the system administrator would like them to 
be translated. 

Triangle Property (Continued) 



• However, if we restrict ourselves in reasoning about those 
tuples in Q1 with weight 0, then we don’t need the triangle 
property for T. 
 

• We obtain a relaxed definition for the k-containment: 
Q1 

0
(T,k) Q2 iff  

(a,b,0)  ansT(Q1,DB)  (a,b,m)  ansT(Q2,DB) and  
 m <= k on any DB. 

 
• Clearly, (a,b,0)  ansT(Q1,DB) mainly correspond to the tuples 

of the pure answer of Q1 on DB. 
 

• We are able to prove that Q1 
0
(T,k) Q2 iff Q1  Q2

(T,k) .  
 (Even when the triangle property doesn’t hold). 

Q1 0
(T,k) Q2 



Computing Q(T,k) - I 
• First we obtain a weighted transduction of Q by T. 

 

• Let AQ = (PQ, , Q, pQ,0, FQ) be an -free NFA for Q 

• Let T = (PT, , T, pT,0, FT) in standard form 

 

• We construct the weighted transduction automaton of Q by T as  

• A = (P, , , p0, F), where P = PQ  PT, p0 = pQ,0  pT,0, F = FQ  FT   

 

•  =  { ( (p,q), S, k, (p',q') ) :  (p,R,p')  Q,  (q,R,S,k,q')  T}   
 { ( (p,q), S, k,  (p,q') ) :  (q,,S,k,q')  T } 

 

• Now, we should find all the paths in A, such that their weight is less 
than k. We denote it k(A). 

 

 



Computing Q(T,k) - II 
• Let Ah be the sub-automaton consisting of all the paths with weight 

h.  

• k(A) = A0  A1  …  Ak 

 

• We suppose that all the weights in A are 0 or 1.  

• If not, e.g. (p,R,m,q) we replace by (p,R,1,r1), …, (rm-1,R,1,q) 

 

• We number the states of A: 1,2,…,n 

 

• Aij is A, but with initial state i and final j.  

• 0(A) keeping only the 0-weighted transitions in A. 

• 1ij(A) elementary two state (i and j) automata with the 1-weighted 
transitions from i to j.   

 

 



Computing Q(T,k) - III 
• k(A) = A0  A1  …  Ak 

 

• A0 = 0(A), and for 1 <= h <= k  

• Ah = iS,jFA
h
ij 

 

 m{1,…,n}A
h/2

im . Ah/2
mj     for h even 

• Ah
ij =  

 m{1,…,n}A
(h-1)/2

im . A(h+1)/2
mj     for h odd 

 

• A1
ij = {m,l}{1,…,n} 0(A)im . 1ml(A) . 0(A)lj 

 

• A1
ij consists of A-paths starting from state i and traversing any number of 0-

weighted arcs up to some state m, then a 1-weighted arc going some state i, 
and after that, any number of 0-weighted arcs ending up in state j. 

• Ah/2
im all the h/2-weighted paths of A going from state i to some state m.  

• Ah/2
mj all the h/2-weighted paths of A going from that “some” state m to state j. 

• Since m ranges over all the possible states, Ah
ij consists of all the possible h-

weighted paths from state i to state j.  

 



Computing Q(T,k) - IV 
• E.g. Suppose that A is: 

 

• 0(A) :  

1 2 

S,0 

R,1 

,0 ,0 

1 2 

S,0 ,0 

• 112(A): 

,0 

• A1
12 = 0(A)12 . 122(A) . 0(A)22  0(A)11 . 112(A) . 0(A)22= {R} 

• A1
11 = , A1

22 = {SR},  A1
21 =  

• A1 = A1
12 ={R} 

 

• A2
12 = A1

12 . A
1
22  A1

11 . A
1
12 = { R.SR}   

 

 

1 2 

R,1 



Computing Q(T,k) - V 
• From Ah

ij = m{1,…,n}A
h/2

im . Ah/2
mj (for simplicity assume h is power of 2) 

• A2
ij is a union of n automata of size 2p (p is polynomial in n) 

• A4
ij is a union of n automata of size 4np 

• A8
ij is a union of n automata of size 8n2p 

• … 

• Ah
ij is a union of n automata of size 4nlogh-1p 

 

• Hence, the size of Ah
ij is 4nloghp. 

 

• Had we used the equivalent Ah
ij = m{1,…,n}A

h-1
im . A1

mj we would get pnh! 

 

 

• Conclusion: Computing Q(T,k) is polynomial in n and sub-exponential in k. 



A broader perspective – semirings 
• In the transducer, the weights were natural numbers and the specific 

operations were addition (+) along a path, and minimum (min) applied to 
path weights.  

 

• This can be generalized to other weight sets, and to other operations.  

• The weights, elements of a set K, can be multiplied along a path using an 
operation , and then summarized using an operation .  

 

• Semirings: (K, , , 0, 1)  

• (K, , 0) commutative monoid with 0 as the identity element . 

• (K, , 1) monoid with 1 as the identity element for . 

•  distributes over : 

• (a  b)   c = (a  c)  (b  c),   c  (a  b) = (c  a)  (c  b) 

• 0 is anihilator for : a  0 = 0. 



The on focus semiring 
• Tropical Semiring: (K, , , 0, 1), where K=N, =min, =+, 0=, 1=0 

 

• (a  b)   c = min(a, b) + c = min(a+c, b+c) = (a  c)  (b  c), hence 

 distributes over . 

 

• Why does Dijkstra’s algorithms work?  

• It is based on the assumption that no shortest path needs to traverse a 
cycle! 

 

• This is true for the Tropical Semiring, because it is a bounded semiring. 
Boundedness is defined as:  

    1  a = 1 for each a, (i.e. min(0, a) = 0). 

• Hence, if we have a cycle with weight a, we don’t gain anything traversing 
it: 1  a  aa + aaa + … = 1 

 

• In general, we can apply the Approximate Answering algorithm with any 
transducer whose weights are from a bounded semiring.  



Other semirings 
• Probabilistic: ([0,1], max, , 0, 1) 

• Fuzzy: ([0,1], max, min, 0, 1) 

 

• Both of them are bounded. 

 

• However, if we define the probabilistic semiring as: (R, +, , 0, 
1), then we haven’t a bounded semiring. 
• Note: If C* is the weight of the shortest path, we produce as the answer from 

the Dijkstra algorithm the min(C*, 1).  

 

• In such cases, we can use the Floyd-Warshall algorithm, 
which doesn’t require boundedness.  



Future work 
 

• The Floyd-Warshall algorithm is impractical for sparse 
graphs, and modifying it for secondary memory is not 
known. 

 

• Extending the algorithm for computing Q(T,k) in other 
semirings. 
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