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Databases and the Web 

• Databases and the Web are 

interconnected at many levels.   

 

• Web sites are empowered by 

databases. 

 

• A collection of Web pages are a 

tempting target for a database. 



Graph Modeling 

• As a result it is natural to model such a 

database as a labeled directed graph. 

 

• The nodes of such graph are the Web 

pages, and the edges are the Web links  

 

• Another example of data modeled by 

graphs is XML.  

• The nested structure of XML elements and 

idref links along with xlink’s are very 

naturally represented by graphs. 



Graph Modeling –Example 



Querying Graph Data 

• Desideratum: To have a mechanism 

which navigates arbitrarily long paths.  

 

• Solution: Recursively querying, through 

regular path queries, 

 

• Example: ref* . (author+title+journal) 

specifies all the paths connecting pairs 

(x,y) of related objects,  

• where x can be an article and y can be 

author, title or journal.  



Recursive Querying:  

The Problem 

• The navigation is very expensive.  

 

• It can involve many  

• physical accesses, 

• network connections  

• transfers of Web pages.  



Optimizing Using Views 

• Relevant views can greatly optimize the 

query evaluation. 

 

• View = Query + Answer 

 

• Cached view: The answer exists in 

temporary memory. 

 

• Materialized view: The answer is 

stored in persistent memory. 

 

 

• \begin{slide}{} 

• {\bf Query Optimization Using Views} 

• \begin{itemize} 

•  \item {\bf Scenario:} {\bf Cached 

Views,} and {\bf Available Database.} 

•  \item Reuse the views as far as 

possible. 

•  \item We focus on {\bf extracting} 

information from the views  

•   using {\bf algebraic rewritings}. 

•  \item {\bf Partial rewritings} are 

desirable,  

•             because rarely can we rely on 

the views only. 

•  \item There is always information 

•   available in the views,  

•             even if this information is only 

{\bf partial}. 

• \end{itemize} 

• \end{slide} 

 

 

• \begin{slide}{}   

• {\bf Example} 

• \begin{itemize} 

• \item Suppose, we have cached the 

{\bf view}: 

•  $$V = software$$ 

• \item And, we want to answer the 

query:\\ 

•       {\em ``What categories are 

addressed by the software packages.''} 

• \item Obviously, this is an exhaustive 

query which can be expressed by  

•       $$Q = software^*.category$$  

• \item The cached view in main memory 

will greatly {\bf optimize}  

•       the evaluation of this query.  

•       \begin{itemize} 

•       \item The query can be {\bf 

rewritten} as 

•             $$Q' = V^*.software$$ 

•       \end{itemize} 

• \end{itemize} 

• \end{slide} 



Views (Cont.) 

• Example: We have cached the view:  

 V = software 

• And, we want to answer the query:  

• What categories are addressed by the 

software packages? 

• It’s an exhaustive query expressed by  

 Q = software*.category 

• The cached view can greatly optimize the 

evaluation of this query if rewritten as 

 Q' = V*.software 



Views (Cont.) 

Red nodes would have 

been accessed. 

Green nodes are actually 

accessed. View Graph 



Rewritings – An Example 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• What could be a rewriting? 
 

• Q(1) = v1v2v1 + v3 

• Q(2) = v1T + v1v2v1 + v3 

• Q(3) = v3  

• Q(4) = v1T + v1Sv1 + v3 + T5
 

• Q(5) = v1T + v3 

• Q(6) = v1T + v1Sv1 + v3 



Rewritings (Q(1) ) 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(1) = v1v2v1 + v3       (Grahne & Thomo 2000) 

 

• This is a “rough” rewriting based on view 

relevance only 

• whenever there is a query word w such that  

 w  Vi…Vj, replace it with vi…vj in the rewriting.  
 

• It is not “contained,” i.e.  

• if we substitute lower-case v’s with the corresp. 

V’s, the language we get is not always cont. in Q. 



Rewritings (Q(2) ) 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(2) = v1T + v1v2v1 + v3    (Grahne & Thomo 2001) 
 

• This is also a “rough” rewriting based on 

view relevance only. Exhaustively we do: 

• whenever there is a query sub-word w such that  

 w  Vi…Vj, replace it with vi…vj in the rewriting.  

 

• It is not “contained,” i.e.  

• if we substitute lower-case v’s with the corresp. 

V’s the language we get is not always cont. in Q. 



Rewritings (Q(3) ) 
• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(3) = v3  (Calvanese, De Giacomo, Lenzerini, Vardi 99) 
 

• This is a “contained” rewriting 

• whenever there is a query word w such that  

 w  Vi…Vj, and Vi…Vj  Q  

 replace it with vi…vj in the rewriting.  

 

• Unfortunately, it is not always exact (see e.g.) 

 

• We can optimize with it, but we have also to 

answer on the DB the difference (RS)T + (RS)S(RS)  

 



Rewritings (Q(4) ) 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(4) = v1T + v1Sv1 + v3 + T5 

 (Calvanese, De Giacomo, Lenzerini, Vardi 99) 
 

• This is also a “contained” rewriting 

• Enrich as needed (for exactness) the view set with 

elementary one-symbol views and then compute 

Q(3).  

 

• Unfortunately, we could get unnecessary words, 

e.g. T5. 



Rewritings (Q(5) ) 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(5) = v1T + v3        (Grahne & Thomo 2001) 
 

• This is also a “contained” rewriting 

• Compute the max-contained subset of Q(2) 

• Recall Q(2) = v1T + v1v2v1 + v3 . The max-contained 

subset is Q(5) = v1T + v3. 

• Unfortunately, we could get non-exact rewritings 

as the example witnesses. 

• So, we need to compute also the diff. (RS)S(RS). 

• It is bigger than Q(3) and optimal compared to Q(4) 



Rewritings (Q(6) ) 

• Q = (RS)T + (RS)S(RS) + T5  

 V1 = RS     V2 = S+R     V3 = T5 

• Q(6) = v1T + v1Sv1 + v3 
    (Current paper: Grahne & Thomo 2003) 

 

• Exact and Optimal rewriting. Exhaustively 

we do: 

• whenever there is a query (sub)-word w such that  

 w  Vi…Vj, and Vi…Vj  Q  

 replace it with vi…vj in the rewriting.  



Comments 

• Q(1) and Q(2) are “relevance” rewritings.  

• To evaluate the query we need to cache path 

histories for pairs (x,y) in view extensions.  

• E.g. if a path v1v2v1 exists between x and y in the 

view graph we need to know if its annotation is 

“_R_” or “_S_”. 

 

• Q(3) if exact can be used to answer the 

query on the view graph only.  

 Otherwise, the difference with the query 

has to be evaluated on the DB. 



Comments (Cont.) 

• Q(4) and Q(5) try to minimize the query 

portion that has to be answered on DB, 

had we used Q(3).  

 

• Q(4) can introduce “non-optimal” words 

(recall T5). 

 

• Q(5) goes “too far” by not allowing any 

sub-word belonging to some view 

language (recall v1Sv1), and so can be 

non-exact. 



Comments (Cont.) 

• As we can see the “best in class” is Q(6).  

 

• There is no “non-optimal” word, with 

respect to database symbols.  

 

• v1Sv1 is not really non-optimal, because 

if we remove it, there is no way to make 

up the information we loose, by any 

better combination of views with fewer 

database symbols. 



Formally Comparing 

Rewritings 
• We introduce a partial order for  

languages, where 

•  is the view representative symbol alphabet 

•  is the database alphabet 

 

• Let V={V1,…,Vn} be a set of views. Then,  

 Q1 V Q2 if it is possible to replace some 

occurrences of view words in the words 

of Q1 and obtain Q2 as a result. 



Formally Comparing (Cont.) 

• Let V,Q be the restriction of V in the set 

of the “contained” rewritings.  

 

• The “bigger” a rewriting the “better” it is  

 

• Obviously, we are interested in  

 V,Q-maximal and exact rewritings. 

 



Formally Comparing - Names 

• Q(1)–possibility rewriting, PR.  
• It is V-maximal which implies that it is also V,Q-maximal. 

 

• Q(2)–possibility partial rewriting, PPR.  
• It is V-maximal which implies that it is also V,Q-maximal. 

 

• Q(3)–maximally contained rewriting, MCR.  
• It is the biggest  language, “contained” in Q 

• Clearly it is V,Q-maximal, since there is no sub-word on  (so we 

cannot replace any) 



Names (Cont.) 

• Q(4)–max. cont. partial rewriting, MCPR, 
• It is the biggest x language, “contained” in Q. (x) 

• It is not V,Q-maximal as shown by the example: (T5 can be 

replaced by v3) 

 

• Q(5)–exhaustive partial rewriting, EPR.  
• It is V,Q-maximal (as subset of PPR). 

 

• Q(6)–maximal partial rewriting MPR,    
• It is the union of all V,Q-maximal languages, hence it is V,Q-

maximal  

• We prove: It is also exact. 



Formally Comparing (Final) 

V,Q-maximal Exactness 

PR Yes No 

PPR Yes No 

MCR Yes No 

MCPR No Yes 

EPR Yes No 

MPR Yes Yes 



Constructing MPR 

• Suppose we have only one view V ( ={v}) 

• How we can replace arbitrarily view 

words appearing as sub-words in some L? 

V automaton 

Transducer T 

that replaces 

arbitrarily 

occurrences of 

view words 

We take T(L) 



Constructing MPR (Cont.) 

• However, in general for a query Q, T(Q) is 

not “contained” in Q.  

• E.g. Q=RSR and V=S+T, T(Q) = RvR “” Q. 

 

• Instead we compute (T(Qc))c . ((.)c complement) 

• As we show it is the biggest “contained” 

arbitrary replacement one could achieve.  

 

• However, what we like is an exhaustive 

“contained” replacement.  



Constructing MPR (Cont.) 

• To achieve our goal we should filter out 

the words having at least a sub-word 

eligible for replacement.  

 

• Formally speaking we need to solve the 

language equation:  

• Find the biggest languages X,Y   

XVY  (T(Qc))c  

 

• Finally, MPRV(Q) = (T(Qc))c  (XVY)c  

 



Comparing + Complexity 

V,Q-maximal Exactness Complexity 

PR Yes No PTIME 

PPR Yes No EXPTIME 

MCR Yes No 2EXPTIME 

MCPR No Yes 2EXPTIME 

EPR Yes No 2EXPTIME 

MPR Yes Yes 3EXPTIME 

All bounds are tight. 



Other Contributions 

 

• Presenting an improved algorithm for 

evaluating regular path queries using 

any exact partial rewriting.  

 

• Maximally optimizing conjunctive path 

queries using all the available cached 

information.  
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