
New Rewritings and

Optimizations for

Regular-path queries

Gosta Grahne and Alex Thomo

Concordia University

Databases and the Web

• Databases and the Web are

interconnected at many levels.

• Web sites are empowered by

databases.

• A collection of Web pages are a

tempting target for a database.

Graph Modeling

• As a result it is natural to model such a

database as a labeled directed graph.

• The nodes of such graph are the Web

pages, and the edges are the Web links

• Another example of data modeled by

graphs is XML.

• The nested structure of XML elements and

idref links along with xlink’s are very

naturally represented by graphs.

Graph Modeling –Example

Querying Graph Data

• Desideratum: To have a mechanism

which navigates arbitrarily long paths.

• Solution: Recursively querying, through

regular path queries,

• Example: ref* . (author+title+journal)

specifies all the paths connecting pairs

(x,y) of related objects,

• where x can be an article and y can be

author, title or journal.

Recursive Querying:

The Problem

• The navigation is very expensive.

• It can involve many

• physical accesses,

• network connections

• transfers of Web pages.

Optimizing Using Views

• Relevant views can greatly optimize the

query evaluation.

• View = Query + Answer

• Cached view: The answer exists in

temporary memory.

• Materialized view: The answer is

stored in persistent memory.

• \begin{slide}{}

• {\bf Query Optimization Using Views}

• \begin{itemize}

• \item {\bf Scenario:} {\bf Cached

Views,} and {\bf Available Database.}

• \item Reuse the views as far as

possible.

• \item We focus on {\bf extracting}

information from the views

• using {\bf algebraic rewritings}.

• \item {\bf Partial rewritings} are

desirable,

• because rarely can we rely on

the views only.

• \item There is always information

• available in the views,

• even if this information is only

{\bf partial}.

• \end{itemize}

• \end{slide}

• \begin{slide}{}

• {\bf Example}

• \begin{itemize}

• \item Suppose, we have cached the

{\bf view}:

• $$V = software$$

• \item And, we want to answer the

query:\\

• {\em ``What categories are

addressed by the software packages.''}

• \item Obviously, this is an exhaustive

query which can be expressed by

• $$Q = software^*.category$$

• \item The cached view in main memory

will greatly {\bf optimize}

• the evaluation of this query.

• \begin{itemize}

• \item The query can be {\bf

rewritten} as

• $$Q' = V^*.software$$

• \end{itemize}

• \end{itemize}

• \end{slide}

Views (Cont.)

• Example: We have cached the view:

 V = software

• And, we want to answer the query:

• What categories are addressed by the

software packages?

• It’s an exhaustive query expressed by

 Q = software*.category

• The cached view can greatly optimize the

evaluation of this query if rewritten as

 Q' = V*.software

Views (Cont.)

Red nodes would have

been accessed.

Green nodes are actually

accessed. View Graph

Rewritings – An Example

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• What could be a rewriting?

• Q(1) = v1v2v1 + v3

• Q(2) = v1T + v1v2v1 + v3

• Q(3) = v3

• Q(4) = v1T + v1Sv1 + v3 + T5

• Q(5) = v1T + v3

• Q(6) = v1T + v1Sv1 + v3

Rewritings (Q(1))

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(1) = v1v2v1 + v3 (Grahne & Thomo 2000)

• This is a “rough” rewriting based on view

relevance only

• whenever there is a query word w such that

 w  Vi…Vj, replace it with vi…vj in the rewriting.

• It is not “contained,” i.e.

• if we substitute lower-case v’s with the corresp.

V’s, the language we get is not always cont. in Q.

Rewritings (Q(2))

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(2) = v1T + v1v2v1 + v3 (Grahne & Thomo 2001)

• This is also a “rough” rewriting based on

view relevance only. Exhaustively we do:

• whenever there is a query sub-word w such that

 w  Vi…Vj, replace it with vi…vj in the rewriting.

• It is not “contained,” i.e.

• if we substitute lower-case v’s with the corresp.

V’s the language we get is not always cont. in Q.

Rewritings (Q(3))
• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(3) = v3 (Calvanese, De Giacomo, Lenzerini, Vardi 99)

• This is a “contained” rewriting

• whenever there is a query word w such that

 w  Vi…Vj, and Vi…Vj  Q

 replace it with vi…vj in the rewriting.

• Unfortunately, it is not always exact (see e.g.)

• We can optimize with it, but we have also to

answer on the DB the difference (RS)T + (RS)S(RS)

Rewritings (Q(4))

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(4) = v1T + v1Sv1 + v3 + T5

 (Calvanese, De Giacomo, Lenzerini, Vardi 99)

• This is also a “contained” rewriting

• Enrich as needed (for exactness) the view set with

elementary one-symbol views and then compute

Q(3).

• Unfortunately, we could get unnecessary words,

e.g. T5.

Rewritings (Q(5))

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(5) = v1T + v3 (Grahne & Thomo 2001)

• This is also a “contained” rewriting

• Compute the max-contained subset of Q(2)

• Recall Q(2) = v1T + v1v2v1 + v3 . The max-contained

subset is Q(5) = v1T + v3.

• Unfortunately, we could get non-exact rewritings

as the example witnesses.

• So, we need to compute also the diff. (RS)S(RS).

• It is bigger than Q(3) and optimal compared to Q(4)

Rewritings (Q(6))

• Q = (RS)T + (RS)S(RS) + T5

 V1 = RS V2 = S+R V3 = T5

• Q(6) = v1T + v1Sv1 + v3
 (Current paper: Grahne & Thomo 2003)

• Exact and Optimal rewriting. Exhaustively

we do:

• whenever there is a query (sub)-word w such that

 w  Vi…Vj, and Vi…Vj  Q

 replace it with vi…vj in the rewriting.

Comments

• Q(1) and Q(2) are “relevance” rewritings.

• To evaluate the query we need to cache path

histories for pairs (x,y) in view extensions.

• E.g. if a path v1v2v1 exists between x and y in the

view graph we need to know if its annotation is

“_R_” or “_S_”.

• Q(3) if exact can be used to answer the

query on the view graph only.

 Otherwise, the difference with the query

has to be evaluated on the DB.

Comments (Cont.)

• Q(4) and Q(5) try to minimize the query

portion that has to be answered on DB,

had we used Q(3).

• Q(4) can introduce “non-optimal” words

(recall T5).

• Q(5) goes “too far” by not allowing any

sub-word belonging to some view

language (recall v1Sv1), and so can be

non-exact.

Comments (Cont.)

• As we can see the “best in class” is Q(6).

• There is no “non-optimal” word, with

respect to database symbols.

• v1Sv1 is not really non-optimal, because

if we remove it, there is no way to make

up the information we loose, by any

better combination of views with fewer

database symbols.

Formally Comparing

Rewritings
• We introduce a partial order for 

languages, where

•  is the view representative symbol alphabet

•  is the database alphabet

• Let V={V1,…,Vn} be a set of views. Then,

 Q1 V Q2 if it is possible to replace some

occurrences of view words in the words

of Q1 and obtain Q2 as a result.

Formally Comparing (Cont.)

• Let V,Q be the restriction of V in the set

of the “contained” rewritings.

• The “bigger” a rewriting the “better” it is

• Obviously, we are interested in

 V,Q-maximal and exact rewritings.

Formally Comparing - Names

• Q(1)–possibility rewriting, PR.
• It is V-maximal which implies that it is also V,Q-maximal.

• Q(2)–possibility partial rewriting, PPR.
• It is V-maximal which implies that it is also V,Q-maximal.

• Q(3)–maximally contained rewriting, MCR.
• It is the biggest  language, “contained” in Q

• Clearly it is V,Q-maximal, since there is no sub-word on  (so we

cannot replace any)

Names (Cont.)

• Q(4)–max. cont. partial rewriting, MCPR,
• It is the biggest x language, “contained” in Q. (x)

• It is not V,Q-maximal as shown by the example: (T5 can be

replaced by v3)

• Q(5)–exhaustive partial rewriting, EPR.
• It is V,Q-maximal (as subset of PPR).

• Q(6)–maximal partial rewriting MPR,
• It is the union of all V,Q-maximal languages, hence it is V,Q-

maximal

• We prove: It is also exact.

Formally Comparing (Final)

V,Q-maximal Exactness

PR Yes No

PPR Yes No

MCR Yes No

MCPR No Yes

EPR Yes No

MPR Yes Yes

Constructing MPR

• Suppose we have only one view V ( ={v})

• How we can replace arbitrarily view

words appearing as sub-words in some L?

V automaton

Transducer T

that replaces

arbitrarily

occurrences of

view words

We take T(L)

Constructing MPR (Cont.)

• However, in general for a query Q, T(Q) is

not “contained” in Q.

• E.g. Q=RSR and V=S+T, T(Q) = RvR “” Q.

• Instead we compute (T(Qc))c . ((.)c complement)

• As we show it is the biggest “contained”

arbitrary replacement one could achieve.

• However, what we like is an exhaustive

“contained” replacement.

Constructing MPR (Cont.)

• To achieve our goal we should filter out

the words having at least a sub-word

eligible for replacement.

• Formally speaking we need to solve the

language equation:

• Find the biggest languages X,Y  

XVY  (T(Qc))c

• Finally, MPRV(Q) = (T(Qc))c  (XVY)c

Comparing + Complexity

V,Q-maximal Exactness Complexity

PR Yes No PTIME

PPR Yes No EXPTIME

MCR Yes No 2EXPTIME

MCPR No Yes 2EXPTIME

EPR Yes No 2EXPTIME

MPR Yes Yes 3EXPTIME

All bounds are tight.

Other Contributions

• Presenting an improved algorithm for

evaluating regular path queries using

any exact partial rewriting.

• Maximally optimizing conjunctive path

queries using all the available cached

information.

References
• Gösta Grahne, Alex Thomo. New Rewritings and Optimizations for

Regular Path Queries. ICDT 2003: 242-258

• Gösta Grahne, Alex Thomo. Algebraic Rewritings for Optimizing Regular

Path Queries. ICDT 2001: 301-315

• Gösta Grahne, Alex Thomo. An Optimization Technique for Answering

Regular Path Queries. WebDB (Selected Papers) 2000: 215-225

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y.

Vardi. Rewriting of Regular Expressions and Regular Path Queries. PODS

1999: 194-204

