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Regular Path Queries (RPQ’s) 

• Essentially regular expressions over database labels.  

• E.g.: Q = highway* 

• Meaning: Find highway routes. 



RPQ’s vs. Datalog 

Semantically RPQ’s are a fragment of Datalog.  

 

However,  

• They are easier for people to use 

– they have used reg.ex. from the early days of computers 

• Important reasoning services on RPQ’s are decidable 

– E.g. Containment/Equivalence is decidable for RPQ’s, while 

for Datalog it’s not.  



Not any database path, but… 

• Surely, I prefer highways, but can tolerate one road: 

   Q = highway* . road . highway*  

 

• Well, I prefer highways, but can tolerate up to k roads 

or city streets: 

   Q = highway* || (road + street + )k  

 



Preferences: Boolean Way 
   Q = highway* || (road + street + )k 

 

• Pair of objects will be produced as an answer if there 
exists a path between them satisfying the user query. 

• There is just a “yes” or “no” qualification for the query 
answers.  

 

• But, answers aren’t equally good!  

– A pair of objects connected by a  

 highway path with only 1 intervening road  

  is a “better” answer than a pair of objects connected by a  

 highway path with 5 intervening roads. 



A simple syntactic addition 

• User can annotate the symbols in the regular 
expressions with “markers” (typically natural numbers), 
which “strengthen” or “weaken” his (pattern) 
preferences.  

 

  Q = (highway:0)* || (road:1 + street:2 + )k 

 

• Meaning:  

– User ideally prefers highways,  

– then roads, which he prefers less,  

– and finally he can tolerate streets, but with an even lesser 
preference. 

 



Semantics (Quantitative) 

  Q = (highway:0)* || (road:1 + street:2 + )k 

• The system should produce:  

– first the pairs of objects connected by highways,  

– then the pairs of objects connected by highways intervened by 1 road,  

– and so on. 

 

• The “so on” raises some important semantical questions.  

• Is a pair of objects connected by a  

  highway path intervened by two roads  

   equally good as another pair of objects connected by a 

  highway path intervened by one street only?  

 

• Indeed, in this example, it might make sense to consider them 
equally good, and “concatenate” weights by summing them up. 



Qualitative Semantics 

  Q = (viarail:0)* || (greyhound:1 + aircanada:2 + )k. 

 

• Is now a pair of objects connected by  

  a path with two greyhound segments  

   equally preferable as a pair of objects connected  

  with one aircanada segment?  

 

• If the user is afraid of flying, she might want to “concatenate” 

edge-weights by choosing the maximum of the weights.  

• Then an itinerary with no matter how many greyhound segments 

is preferable to an itinerary containing only one flight segment. 



Hybrid Semantics 
  Q = (viarail:0)* || (greyhound:1 + aircanada:2 + )k. 

 

• Following a purely qualitative approach,  

  greyhound itineraries  

   are always preferable to  

  itineraries containing aircanada segments,  

 while these itineraries are equally preferable, no matter how many lags the 
flight has.  

 

• Sometimes we need to distinguish among itineraries on the same “level of 
discomfort.” 

– Namely, we should be able to (quantitatively) say for example that  

  a direct aircanada route  

   is preferable to  

  an aircanada route with a stop-over,  

   which again is preferable to  

  an aircanada route with three lags. 



Semirings 
• In total, from all the above, we have four kind of preference 

semantics:  

– Boolean,  

– quantitative, 

– qualitative,  

– hybrid.  

• In all these semantics, we:  

– aggregate (“concatenate”) preference weights along edges of the paths, 
and then 

– aggregate path preferences when there are multiple paths connecting a pair 
of objects.  

• We regard the preference annotations as elements of a semiring, 
with two operations:  

– “plus” 

– “times”  

• The “times” aggregates the preferences along edges of a path, 
while the “plus” aggregates preferences among paths. 



Semirings 

R = (R, , , 0, 1)   such that 

 

(R, , 0) is a commutative monoid with 0 as the identity element for 

. 

 

(R, , 1) is a monoid with 1 as the identity element for . 

 

 distributes over : for all x, y, z  R, 

(x  y)  z = (x  z)  (y  z) 

z  (x  y) = (z  x)  (z  y). 

 

Natural order  on R: x  y iff x  y = x  



Annotated Queries 

R = (R, , , 0, 1) semiring. 

An R-annotated query Q over  is a function 

    Q : * → R. 

We write (w, x)  Q instead of Q(w) = x. 

 

• When annotated queries are given by “annotated regular 

expressions,” we have annotated regular path queries 

(ARPQ’s).  

 



Annotated Automata 

• Computationally, ARPQ’s are represented by “annotated 
automata” (P, , R, τ, p0, F) 

• The language defined by an annotated automaton A is: 

 [A] = {(w, x)  * × R :  

    w = r1r2 . . . rn,  

    x =  {x1…xn :  

      (p0, r1, x1, p1)  τ,  

      … 

      (pn-1, rn, xn, p1)  τ, 

      pn ∈ F}}. 

p0 p1 p2 

r:2 s:3 

r:2 

s:2 

(rs,4)  [A]  



Query Answers 

Given a database DB, and  

an annotated Q over semiring R = (R, , , 0, 1)  

 

Ans(Q, DB, R) = {(a, b, x) :  

  x = {y : (w, y)  Q and  

   w labels some path from a to b in DB}. 

 

We have (a, b, 0) as an answer to Q, if there is no path in 

DB spelling some word in Q. 

 



Preference Semirings 

Boolean preferences: B = ({T, F}, , , F, T) 

 

Quantitative preferences: N = (N{∞}, min, +, ∞, 0) 

 

Qualitative preferences: F = (N {∞}, min, max, ∞, 0) 

 



Preference Semirings 
Hybrid preferences: H = (R, , , 0, 1)  

• Interface again is N. 

• However, R is bigger to allow for a finer ranking 

  

 R = {0, 1, 1(2), . . . , 2, 2(2), . . .}  {∞} 

  1, 2, . . . are shorthand for 1(1), 2(1), . . . 

 

• n(i) : n -- level of discomfort,  

  i -- how many times we are “forced to endure”  

   that level of discomfort. 



Hybrid Preferences 
• The user, annotates query symbols with natural 

numbers representing his preferences.  

 

• Similarly with qualitative semantics, only database 

edges matched by transitions annotated with the 

“worst” level of discomfort will really count. 

 

• Similarly with quantitative semantics, paths with same 

“worst-level of discomfort” are comparable.  

– Namely, the best path will be the one with the fewest “worst-

level of discomfort” edges. 



Answering of RPQ’s (Classical) 

a,p0 c,p1 

d,p1 
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Answering of ARPQ’s 
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LAV Data Integration 

• No database in the classical sense.  

• We have “data-sources,” characterized by a definition over a 
“global schema”:  = {R,…} 

 

• Each data-source also has a name, and the set of these names 
constitutes the “local schema”:  = {s1,…,sn} 

• Mapping: def(si) = Si 

 

• LAV system also has a set of tuples over the local schema.  

 

• Queries are formulated on the global schema.  

 

• Data exists in the local schema, so, a translation from  to  has 
to be performed in order to be able to compute query answers. 



Source Collections and Possible DB’s 

• Let  = {s1, . . . sn} be the local schema.  

• Then, a source collection S is a graph database on .  

 

• poss(S) : Set of all databases from which the given source 
collection S might have been generated. 

 

• E.g., consider S=R* and 

s 

a s b c s 

S 

a R b c R 

a R b d R c R 

… 

Possible DB’s 

Under sound 

source 

assumption 



Certain Answer 

CAns(Q, S) = DBposs(S)Ans(Q,DB) 

 

How to express this using the Boolean Semiring? 

CAns(Q, S, B) = DBposs(S)Ans(Q,DB,B) 

 

where 

Ans(Q,DB1,B)  Ans(Q,DB2,B) = 

{(a, b, xy) :  

  (a, b, x)  Ans(Q,DB1,B) and  

  (a, b, y)  Ans(Q,DB2,B)} 



Dual Operator and Certain Answer 

• We aggregated the answers on possible DB’s by using 

, which is the dual of , which is the  of  B semiring. 

 

• Generalizing, we define 

CAns(Q, S, R) = ⊙DBposs(S) Ans(Q,DB,R) 



Differently said… 

• A tuple (a, b, x)  CAns(Q, S, R), with x  0,  

  iff  

 for each DB  poss(S) there exists y  x s.t.   

 (a, b, y)  Ans(Q, DB, R).  

 

• Definition reflects:  

  certainty that objects a and b are always connected 

 with paths, which are preferentially weighted not 

 more than x. 



Practically 

Query:  Q = (highway : 0)* || (road : 1 + )* 

a s b S 

Source Collection: 

Source Definition:  S = highway* ||(road + )5 

Possible Databases:  

 All those, which have at least a path (between a and b) 

labeled by highways intervened by at most 5 roads. 



Quantitative Semiring 

• ⊙ is max, and we have (a, b, 5) as a certain answer.  

 

• Weight of 5 states our certainty that in any possible 

database, there is a path from a to b, whose preferential 

weight w.r.t. the given query is not more than 5.  

 

• Also, there exists a possible database in which the best 

path between a and b is exactly 5. 

 

 



Qualitative Semiring 

• ⊙ is again max, but we have (a, b, 1) as a certain 

answer.  

 

• Weight of 1 states our certainty that in any possible 

database, there is a path from a to b, and the level of 

discomfort (w.r.t. the query) for traversing that path is 

not more than 1. 



Hybrid Semiring 

• We have (a, b, 1(5)) as a certain answer.  

 

• Because although the level of discomfort of the best 

path connecting a with b in any possible database is 1, 

in the worst case (of such best paths), we need to 

endure up to 5 times such discomfort (w.r.t. the query).  

 

• Of course 1(5) is infinitely better than 2. 



Certain Answers via Query Spheres 
• Given Q, the y-sphere of Q is 

 Qy = {(w, x)  * × R : (w, x)  Q and x  y} 

 

• Call them “spheres” because: Qx ⊆ Qy ⊆ Q    for x  y 

• Discrete Semirings:  

 x    “the next element” y 

  i.e.  x<y and there isn’t z, s.t x<z<y 

 

• Theorem.  

 (a, b, y)  CAns(Q, S, R) iff  

  (a, b, T)  CAns(Qy, S, B) and  

  (a, b, T)  CAns(Qx, S, B) 



Certain Answers via Query Spheres 
• We know how to compute the certain answer in the Boolean 

(classical) case: Calvanese, Di Giacomo, Lenzerini, Vardi, 

ICDE’00. 

• And, we present next how to compute query spheres. 

• But, is there an upper limit in the index of the spheres? 

• Answer: 

– For the qualitative semiring there is always such bound. 

– For the quantitative and hybrid semirings, we reduce the problem to the 

Limitedness Problem in distance automata introduced and solved by 

Hashiguchi. 

• If there is such limit, then all the certain answers can be ranked.  

• Otherwise, the certain answers can be computed, but eventually ranked.  

• In practice, the user can provide a bound for the quality of certain answers he 

is interested in.  



Computing Query Spheres 

Computing Qk  

• Qualitative: Keep only transitions weighted  k.  

• Quantitative: Intersect with mask automaton (e.g.):  



Computing Query Spheres: Hybrid 

• Computing Qy where y = n(k) 

• Intersect with a mask automaton, which extracts from 
the query automaton all the paths with  

 (a) any number of transitions weighted strictly < n, and  

 (b) not more than k transitions weighted exactly n. 

E.g. 



Containment and Equivalence  

(Full Paper) 
• We also study in detail the query containment for 

various semirings.  

 

• We show that the containment is decidable for 

deterministic queries.  

 

• Allauzen, Mohri, TCS 328, 2004. 

 Show that large classes of weighted NFA’s can 

successfully be determinized. 



Conclusions 
• Introduced preferential regular path queries  

– whose symbols are annotated with preference weights for “scaling” up or 

down the intrinsic importance of matching a symbol against a database 

edge label. 

• Different specializations for the same syntactic annotations. 

• Various semantics in a unifying semiring framework.  

• Studied three important aspects:  

(1) query answering  

(2) (certain) query answering in LAV data-integration systems 

(3) query containment and equivalence.  

 

• In all these, obtained important positive results, which encourage 

the use of our preference framework for enhanced querying of 

semistructured databases. 
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