
Preferentially Annotated

Regular Path Queries

Gosta Grahne

Concordia U.

Canada

Alex Thomo

U. of Victoria

Canada

Bill Wadge

U. of Victoria

Canada

Regular Path Queries (RPQ’s)

• Essentially regular expressions over database labels.

• E.g.: Q = highway*

• Meaning: Find highway routes.

RPQ’s vs. Datalog

Semantically RPQ’s are a fragment of Datalog.

However,

• They are easier for people to use

– they have used reg.ex. from the early days of computers

• Important reasoning services on RPQ’s are decidable

– E.g. Containment/Equivalence is decidable for RPQ’s, while

for Datalog it’s not.

Not any database path, but…

• Surely, I prefer highways, but can tolerate one road:

 Q = highway* . road . highway*

• Well, I prefer highways, but can tolerate up to k roads

or city streets:

 Q = highway* || (road + street +)k

Preferences: Boolean Way
 Q = highway* || (road + street +)k

• Pair of objects will be produced as an answer if there
exists a path between them satisfying the user query.

• There is just a “yes” or “no” qualification for the query
answers.

• But, answers aren’t equally good!

– A pair of objects connected by a

 highway path with only 1 intervening road

 is a “better” answer than a pair of objects connected by a

 highway path with 5 intervening roads.

A simple syntactic addition

• User can annotate the symbols in the regular
expressions with “markers” (typically natural numbers),
which “strengthen” or “weaken” his (pattern)
preferences.

 Q = (highway:0)* || (road:1 + street:2 +)k

• Meaning:

– User ideally prefers highways,

– then roads, which he prefers less,

– and finally he can tolerate streets, but with an even lesser
preference.

Semantics (Quantitative)

 Q = (highway:0)* || (road:1 + street:2 +)k

• The system should produce:

– first the pairs of objects connected by highways,

– then the pairs of objects connected by highways intervened by 1 road,

– and so on.

• The “so on” raises some important semantical questions.

• Is a pair of objects connected by a

 highway path intervened by two roads

 equally good as another pair of objects connected by a

 highway path intervened by one street only?

• Indeed, in this example, it might make sense to consider them
equally good, and “concatenate” weights by summing them up.

Qualitative Semantics

 Q = (viarail:0)* || (greyhound:1 + aircanada:2 +)k.

• Is now a pair of objects connected by

 a path with two greyhound segments

 equally preferable as a pair of objects connected

 with one aircanada segment?

• If the user is afraid of flying, she might want to “concatenate”

edge-weights by choosing the maximum of the weights.

• Then an itinerary with no matter how many greyhound segments

is preferable to an itinerary containing only one flight segment.

Hybrid Semantics
 Q = (viarail:0)* || (greyhound:1 + aircanada:2 +)k.

• Following a purely qualitative approach,

 greyhound itineraries

 are always preferable to

 itineraries containing aircanada segments,

 while these itineraries are equally preferable, no matter how many lags the
flight has.

• Sometimes we need to distinguish among itineraries on the same “level of
discomfort.”

– Namely, we should be able to (quantitatively) say for example that

 a direct aircanada route

 is preferable to

 an aircanada route with a stop-over,

 which again is preferable to

 an aircanada route with three lags.

Semirings
• In total, from all the above, we have four kind of preference

semantics:

– Boolean,

– quantitative,

– qualitative,

– hybrid.

• In all these semantics, we:

– aggregate (“concatenate”) preference weights along edges of the paths,
and then

– aggregate path preferences when there are multiple paths connecting a pair
of objects.

• We regard the preference annotations as elements of a semiring,
with two operations:

– “plus”

– “times”

• The “times” aggregates the preferences along edges of a path,
while the “plus” aggregates preferences among paths.

Semirings

R = (R, , , 0, 1) such that

(R, , 0) is a commutative monoid with 0 as the identity element for

.

(R, , 1) is a monoid with 1 as the identity element for .

 distributes over : for all x, y, z R,

(x y) z = (x z) (y z)

z (x y) = (z x) (z y).

Natural order on R: x y iff x y = x

Annotated Queries

R = (R, , , 0, 1) semiring.

An R-annotated query Q over is a function

 Q : * → R.

We write (w, x) Q instead of Q(w) = x.

• When annotated queries are given by “annotated regular

expressions,” we have annotated regular path queries

(ARPQ’s).

Annotated Automata

• Computationally, ARPQ’s are represented by “annotated
automata” (P, , R, τ, p0, F)

• The language defined by an annotated automaton A is:

 [A] = {(w, x) * × R :

 w = r1r2 . . . rn,

 x = {x1…xn :

 (p0, r1, x1, p1) τ,

 …

 (pn-1, rn, xn, p1) τ,

 pn ∈ F}}.

p0 p1 p2

r:2 s:3

r:2

s:2

(rs,4) [A]

Query Answers

Given a database DB, and

an annotated Q over semiring R = (R, , , 0, 1)

Ans(Q, DB, R) = {(a, b, x) :

 x = {y : (w, y) Q and

 w labels some path from a to b in DB}.

We have (a, b, 0) as an answer to Q, if there is no path in

DB spelling some word in Q.

Preference Semirings

Boolean preferences: B = ({T, F}, , , F, T)

Quantitative preferences: N = (N{∞}, min, +, ∞, 0)

Qualitative preferences: F = (N {∞}, min, max, ∞, 0)

Preference Semirings
Hybrid preferences: H = (R, , , 0, 1)

• Interface again is N.

• However, R is bigger to allow for a finer ranking

 R = {0, 1, 1(2), . . . , 2, 2(2), . . .} {∞}

 1, 2, . . . are shorthand for 1(1), 2(1), . . .

• n(i) : n -- level of discomfort,

 i -- how many times we are “forced to endure”

 that level of discomfort.

Hybrid Preferences
• The user, annotates query symbols with natural

numbers representing his preferences.

• Similarly with qualitative semantics, only database

edges matched by transitions annotated with the

“worst” level of discomfort will really count.

• Similarly with quantitative semantics, paths with same

“worst-level of discomfort” are comparable.

– Namely, the best path will be the one with the fewest “worst-

level of discomfort” edges.

Answering of RPQ’s (Classical)

a,p0 c,p1

d,p1

R

R S

b,p1
S

R

b,p0
R

S

Then, do
reachability in the
green graph.

Answering of ARPQ’s

a,p0 c,p1

d,p1

R,1

R,3
S,1

b,p1
S,1

R,2

b,p0
R,2

S,1

Then, compute
generalized
shortest paths in
the green graph.

LAV Data Integration

• No database in the classical sense.

• We have “data-sources,” characterized by a definition over a
“global schema”: = {R,…}

• Each data-source also has a name, and the set of these names
constitutes the “local schema”: = {s1,…,sn}

• Mapping: def(si) = Si

• LAV system also has a set of tuples over the local schema.

• Queries are formulated on the global schema.

• Data exists in the local schema, so, a translation from to has
to be performed in order to be able to compute query answers.

Source Collections and Possible DB’s

• Let = {s1, . . . sn} be the local schema.

• Then, a source collection S is a graph database on .

• poss(S) : Set of all databases from which the given source
collection S might have been generated.

• E.g., consider S=R* and

s

a s b c s

S

a R b c R

a R b d R c R

…

Possible DB’s

Under sound

source

assumption

Certain Answer

CAns(Q, S) = DBposs(S)Ans(Q,DB)

How to express this using the Boolean Semiring?

CAns(Q, S, B) = DBposs(S)Ans(Q,DB,B)

where

Ans(Q,DB1,B) Ans(Q,DB2,B) =

{(a, b, xy) :

 (a, b, x) Ans(Q,DB1,B) and

 (a, b, y) Ans(Q,DB2,B)}

Dual Operator and Certain Answer

• We aggregated the answers on possible DB’s by using

, which is the dual of , which is the of B semiring.

• Generalizing, we define

CAns(Q, S, R) = ⊙DBposs(S) Ans(Q,DB,R)

Differently said…

• A tuple (a, b, x) CAns(Q, S, R), with x 0,

 iff

 for each DB poss(S) there exists y x s.t.

 (a, b, y) Ans(Q, DB, R).

• Definition reflects:

 certainty that objects a and b are always connected

 with paths, which are preferentially weighted not

 more than x.

Practically

Query: Q = (highway : 0)* || (road : 1 +)*

a s b S

Source Collection:

Source Definition: S = highway* ||(road +)5

Possible Databases:

 All those, which have at least a path (between a and b)

labeled by highways intervened by at most 5 roads.

Quantitative Semiring

• ⊙ is max, and we have (a, b, 5) as a certain answer.

• Weight of 5 states our certainty that in any possible

database, there is a path from a to b, whose preferential

weight w.r.t. the given query is not more than 5.

• Also, there exists a possible database in which the best

path between a and b is exactly 5.

Qualitative Semiring

• ⊙ is again max, but we have (a, b, 1) as a certain

answer.

• Weight of 1 states our certainty that in any possible

database, there is a path from a to b, and the level of

discomfort (w.r.t. the query) for traversing that path is

not more than 1.

Hybrid Semiring

• We have (a, b, 1(5)) as a certain answer.

• Because although the level of discomfort of the best

path connecting a with b in any possible database is 1,

in the worst case (of such best paths), we need to

endure up to 5 times such discomfort (w.r.t. the query).

• Of course 1(5) is infinitely better than 2.

Certain Answers via Query Spheres
• Given Q, the y-sphere of Q is

 Qy = {(w, x) * × R : (w, x) Q and x y}

• Call them “spheres” because: Qx ⊆ Qy ⊆ Q for x y

• Discrete Semirings:

 x “the next element” y

 i.e. x<y and there isn’t z, s.t x<z<y

• Theorem.

 (a, b, y) CAns(Q, S, R) iff

 (a, b, T) CAns(Qy, S, B) and

 (a, b, T) CAns(Qx, S, B)

Certain Answers via Query Spheres
• We know how to compute the certain answer in the Boolean

(classical) case: Calvanese, Di Giacomo, Lenzerini, Vardi,

ICDE’00.

• And, we present next how to compute query spheres.

• But, is there an upper limit in the index of the spheres?

• Answer:

– For the qualitative semiring there is always such bound.

– For the quantitative and hybrid semirings, we reduce the problem to the

Limitedness Problem in distance automata introduced and solved by

Hashiguchi.

• If there is such limit, then all the certain answers can be ranked.

• Otherwise, the certain answers can be computed, but eventually ranked.

• In practice, the user can provide a bound for the quality of certain answers he

is interested in.

Computing Query Spheres

Computing Qk

• Qualitative: Keep only transitions weighted k.

• Quantitative: Intersect with mask automaton (e.g.):

Computing Query Spheres: Hybrid

• Computing Qy where y = n(k)

• Intersect with a mask automaton, which extracts from
the query automaton all the paths with

 (a) any number of transitions weighted strictly < n, and

 (b) not more than k transitions weighted exactly n.

E.g.

Containment and Equivalence

(Full Paper)
• We also study in detail the query containment for

various semirings.

• We show that the containment is decidable for

deterministic queries.

• Allauzen, Mohri, TCS 328, 2004.

 Show that large classes of weighted NFA’s can

successfully be determinized.

Conclusions
• Introduced preferential regular path queries

– whose symbols are annotated with preference weights for “scaling” up or

down the intrinsic importance of matching a symbol against a database

edge label.

• Different specializations for the same syntactic annotations.

• Various semantics in a unifying semiring framework.

• Studied three important aspects:

(1) query answering

(2) (certain) query answering in LAV data-integration systems

(3) query containment and equivalence.

• In all these, obtained important positive results, which encourage

the use of our preference framework for enhanced querying of

semistructured databases.

References
• Gösta Grahne, Alex Thomo, William W. Wadge: Preferentially Annotated

Regular Path Queries. ICDT 2007: 314-328

• Gösta Grahne, Alex Thomo. Boundedness of Regular Path Queries in Data

Integration Systems. IDEAS 2007: 85-92

• Gösta Grahne, Alex Thomo: Regular path queries under approximate

semantics. Ann. Math. Artif. Intell. 46(1-2): 165-190 (2006)

• Dan C. Stefanescu, Alex Thomo. Enhanced Regular Path Queries on

Semistructured Databases. EDBT Workshops 2006: 700-711

• Dan C. Stefanescu, Alex Thomo, Lida Thomo. Distributed evaluation of

generalized path queries. SAC 2005: 610-616

• Gösta Grahne, Alex Thomo. Query Answering and Containment for Regular

Path Queries under Distortions. FoIKS 2004: 98-115

• Gösta Grahne, Alex Thomo. Approximate Reasoning in Semistructured Data.

KRDB 2001

