Boundedness of Regular Path Queries in Data Integration Systems

Gösta Grahne, Alex Thomo
Regular Path Queries

Useful for expressing desired paths to follow in graph DB’s.

E.g.
I want to go from Victoria to Munich taking Air Canada or Lufthansa or United.

Query:
(Air Canada+Lufthansa+United)*

Answer:
{ (Victoria,Vancouver), (Victoria,Frankfurt), (Victoria,Munich), ...
}
Data Sources

Suppose I have a not available the previous DB. What I have is “data sources” (views)

\[V: \text{(Air Canada+Lufthansa)} \]

Extension:
{(Victoria,Vancouver), (Victoria,Frankfurt), (Victoria,Munich), (Victoria,Hanover), ...}

LAV (local-as-view) data integration

Global Schema:
\[\Delta = \text{Air Canada, Lufthansa, United, BA, AA, Alaska,...} \]

Local Schema:
\[\Omega = \{v, ...\} \]

User posses queries on the global schema
Query Answering

Q: (Air Canada+Lufthansa+United)*

V: (Air Canada+Lufthansa)*

Two approaches for answering queries:

• Compute the **certain answer** (very expensive w.r.t to the data)

• Compute **view-based rewriting** and answer it on the view-graph (polynomial w.r.t. to data)

 Will go with this here.

View-Based Rewriting

[Calvanese, DeGiacomo, Lenzerini, Vardi PODS 1999]

Q' = v*:
All words on Ω whose substitution is contained in Q.
Unnecessary Recursion

\[Q' = v^* \]

But why not just:

\[Q'' = v \]

Surely: \(Q' \neq Q'' \)

...as languages on \(\Omega \).

However, they are equivalent should we “substitute” \(v \) by \(V \), and have languages on \(\Delta \).

Hence, we should rather talk about \(\Omega/\Delta \) equivalence.
Unnecessary Recursion – Another Example

\[Q = R \ast R^k \]

\[V = R^+ \]

\[Q' = (v^k)^+ \quad \text{Recall, it's all words on } \Omega \text{ whose substitution is contained in } Q \]

but...

\[Q'' = v^k \quad \text{which is clearly better.} \]
Possible Databases and Valid View-Graphs

- $\text{poss}(\mathcal{V})$: Set of all databases from which a given view-graph \mathcal{V} might have been generated.

- Valid \mathcal{V}: when $\text{Poss}(\mathcal{V})$ not empty.

- Under exact view assumption, not all view graphs are valid.
 - E.g., consider $\mathcal{V} = R^*$ and \mathcal{V}

\[
\begin{array}{cccc}
 a & v & b & v & c \\
\end{array}
\]

$\text{poss}(\mathcal{V}) = \emptyset$. because \mathcal{V} “misses” a v-edge from a to c.
Characterization Theorem

Theorem. Let Q_1 and Q_2 be queries on Ω. Under exact view assumption,

\[Q_1 \equiv_{\Omega/\Delta} Q_2 \quad \text{iff} \quad \text{for each valid view graph } V \]

\[\text{ans}(Q_1, V) = \text{ans}(Q_2, V). \]

Corollary. Minimize as much as possible a query on Ω (i.e. a view-based rewriting) without losing query-power as long as Ω/Δ-equivalence is preserved.

...and Ω/Δ-equivalence is algebraically weaker than Ω-equivalence.
Sound Views

• Previous theorem doesn’t hold for sound views.
• E.g., consider $V = R^*$, which is Ω/Δ-equivalent with V^*, and

\[V \]

\[\begin{array}{ccc}
 a & \rightarrow & v \\
 \downarrow & & \downarrow \\
 b & \rightarrow & v \\
 \downarrow & & \downarrow \\
 c & \rightarrow & \\
\end{array} \]

For V, we have that $ans(v^*, V) \neq ans(v, V)$.

• Clearly, the answer of V will be equal to the answer of V^* on each database on Δ,

 …but because the view is assumed to be sound we cannot enforce V to have an additional v-edge from a to c.

Two Notions of Boundedness

• Q_k set of all Ω-words in Q, of length not more than k.

Definition

1. Q is k-bounded iff $Q_k \equiv_{\Omega/\Delta} Q$.
2. Q is finitely bounded iff $\exists k \in \mathbb{N}$, such that Q is k-bounded.
Theorems

• k-boundedness is PSPACE-complete w.r.t. the size of the query.

• Finite boundedness can be decided in EXPTIME w.r.t. the size of the query.
Limitedness Problem in Distance Automata

• Let A be an ε-free weighted automaton (known as distance automata.)

 – $d_A(p,w,q) = \inf\{\text{weight}(\pi) : \pi \text{ is a path spelling } w, \text{ from } p \text{ to } q \text{ in } A\}$

 – $d(A) = \sup\{d_A(s,w,f) : s \text{ start state, } f \text{ final state}\}$

 – A is limited in distance iff $d(A) < \infty$

• Limitedness Problem [Hashiguchi 82]:

 Is a given distance automaton A limited in distance?
Reduction (I)

View definition

View-based

Rewriting

Weighted transducer
Reduction (I)

Drop output and obtain a weighted automaton.

Do epsilon removal.
Characterization

• Our characterization:

\(Q \) is bounded iff \(A_Q^V \) is limited in distance.
References

• Gösta Grahne, Alex Thomo. Boundedness of Regular Path Queries in Data Integration Systems. IDEAS 2007: 85-92
• Gösta Grahne, Alex Thomo: New Rewritings and Optimizations for Regular Path Queries. ICDT 2003: 242-258
• Gösta Grahne, Alex Thomo: Query containment and rewriting using views for regular path queries under constraints. PODS 2003: 111-122
• Gösta Grahne, Alex Thomo: Algebraic Rewritings for Optimizing Regular Path Queries. ICDT 2001: 301-315
• Gösta Grahne, Alex Thomo: Approximate Reasoning in Semistructured Data. KRDB 2001
• Gösta Grahne, Alex Thomo: An Optimization Technique for Answering Regular Path Queries. WebDB (Selected Papers) 2000: 215-225