Boundedness of Regular Path Queries in Data Integration Systems

Gösta Grahne, Alex Thomo

Regular Path Queries

Useful for expressing desired paths to follow in graph DB's.

Unnecessary Recursion

 $Q' = v^*$

But why not just:

Q'' = v

Surely: $\mathbf{Q}' \neq \mathbf{Q}''$...as languages on Ω . However, they are equivalent should we "substitute" v by V, and have languages on Δ .

Hence, we should rather talk about Ω/Δ equivalence.

Unnecessary Recursion – Another Example

 $Q=R^*R^k$

 $V = R^+$

 $Q'=(v^k)^+$ Recall, it's all words on Ω whose substitution is contained in Q

but...

 $Q''=v^k$ which is clearly better.

Possible Databases and Valid View-Graphs

 poss (𝒱) : Set of all databases from which a given view-graph 𝒱 might have been generated.

Valid *V*: when
 Poss (*V*) not empty

 Under exact view assumption, not all view graphs are valid.

– E.g., consider $V=R^*$ and

 $poss(\mathcal{V}) = \emptyset$. because \mathcal{V} "misses" a v-edge from *a* to *c*.

Characterization Theorem

Theorem. Let Q_1 and Q_2 be queries on Ω . Under exact view assumption,

$$Q_{1} \equiv Q_{2}$$
iff
for each valid view graph \mathcal{V}
ans $(Q_{1}, \mathcal{V}) = ans(Q_{2}, \mathcal{V}).$

Corollary. Minimize as much as possible a query on Ω (i.e. a view-based rewriting) without loosing query-power as long as Ω / Δ -equivalence is preserved.

...and Ω / Δ -equivalence is algebraically weaker than Ω -equivalence.

Sound Views

- Previous theorem doesn't hold for sound views.
- E.g., consider $V=R^*$, which is Ω/Δ -equivalent with V^* , and

For \mathcal{V} , we have that $ans(v^*, \mathcal{V}) \neq ans(v, \mathcal{V})$.

 Clearly, the answer of V will be equal to the answer of V* on each database on Δ,

...but because the view is assumed to be sound we cannot enforce V to have an additional v-edge from a to c.

Two Notions of Boundedness

• Q_k set of all Ω -words in Q, of length not more than k.

Definition

- 1. **Q** is k-bounded iff $Q_k \equiv_{\Omega/\Delta} Q$.
- 2. Q is finitely bounded iff $\exists k \in N$, such that Q is k-bounded.

Theorems

• *k-boundedness is PSPACE-complete w.r.t. the size of the query.*

• Finite boundedness can be decided in EXPTIME w.r.t. the size of the query.

Limitedeness Problem in Distance Automata

- Let *A* be an ε-free **weighted** automaton (known as *distance automata*.)
 - $d_A(p,w,q) =$ inf{weight(π) : π is a path spelling w, from p to q in A}
 - d(A) = $\sup\{d_A(s,w,f) : s \text{ start state, } f \text{ final state}\}$
 - -A is limited in distance *iff* $d(A) < \infty$
- Limitedness Problem [Hashiguchi 82]: Is a given distance automaton A limited in distance?

Reduction (I)

View definition

View-based Rewriting

Weighted transducer $e^{l_{V}}$ $e^{l_{V}}$ $e^{l_{V}}$

Reduction (I)

Drop output and obtain a weighted automaton.

Do epsilon removal.

Characterization

• Our characterization:

Q is bounded iff A_Q^{V} is limited in distance.

References

- Gösta Grahne, Alex Thomo. Boundedness of Regular Path Queries in Data Integration Systems. IDEAS 2007: 85-92
- Gösta Grahne, Alex Thomo. Algebraic rewritings for optimizing regular path queries. Theoretical Computure Science 296(3): 453-471 (2003)
- Gösta Grahne, Alex Thomo: New Rewritings and Optimizations for Regular Path Queries. ICDT 2003: 242-258
- Gösta Grahne, Alex Thomo: Query containment and rewriting using views for regular path queries under constraints. PODS 2003: 111-122
- Gösta Grahne, Alex Thomo: Algebraic Rewritings for Optimizing Regular Path Queries. ICDT 2001: 301-315
- Gösta Grahne, Alex Thomo: Approximate Reasoning in Semistructured Data. KRDB 2001
- Gösta Grahne, Alex Thomo: An Optimization Technique for Answering Regular Path Queries. WebDB (Selected Papers) 2000: 215-225