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E.g. I want to go from Victoria to 
Munich taking Lufthansa.  

 
Query: (Lufthansa)* 
Answer: Empty 

 
User might repeat querying with: 
 
  (Lufthansa+AirCanada)* 
 
…but, this returns too many (unranked) 

answers. 
 
• Simply, the system doesn’t know the 

user preferences. 

Regular Path Queries 
Useful for expressing desired paths to follow in graph DB’s. 
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Add preference weights: 
  (Lufthansa:1+AirCanada:2)* 

Enhanced Regular Path Queries 
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However, which one is better? 
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 Intuitively, the second path 

makes me be longer on 
AirCanada, which I prefer 
less than Lufthansa.  



Databases and Queries 

ans(Q,DB ) =    

{(x, y)   :  x      y    

   x,y  DB,  wQ } 

w 

{(a,d), (a,b)…} for the above query. 

• DB is a graph 
labeled with 

symbols from   

• Query is a regular language  

• E.g. Q = R · (R+S )* 



Evaluation of queries 
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Then, do 
reachability in the 
green graph. 



Weight Enhanced DB’s and Queries 

{(a,d,2), (a,b,3)…} for the above query. 

• DB is a graph 
labeled with 

symbols from R+  

• Query is weighted now 

• E.g. Q = (R:1)·(R:2+S:1)* 

w 
ans(Q,DB ) =    

{(x,y,n)   :  x      y    

  x,y  DB,  wQ , 

  n=min{d(w)  scale()}} 



Evaluation of weighted queries 
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Then, compute 
shortest paths in 
the green graph. 



Variants 

• Weighted queries, un-weighted DB’s. 

• Un-weighted queries, weighted DB’s. 

 

• Single source. 

• Multi source.  



Challenges 
• Product graph too big. 

– “On the fly” strategy needed. 

 

• Data might be distributed among a set of peers. 

– A distributed strategy needed. 

– For single source variant see our paper in SAC’ 05. 

 

• What about multisource variant? 

– Flloyd-Warshall algorithm can’t be used because it 
needs knowledge of the whole product graph, and 
we cannot afford to compute it.  



Idea 
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Distributed Algorithm 
• Each DB object is being serviced by a process. 

 

• Query automaton is send first to all the 
processes.  

– Query automaton is small, (no data transfer here) 

 

• Processes compute the “next” product nodes and 
send tasks to corresponding neighbor 
processors.  



Distributed Algorithm 
• Each process starts by creating an initial task for 

itself.  

– Tasks are “keyed” by automaton states, with the initial 
tasks being keyed by the initial state  

 p0, {}, unexpanded 

 

• Each p, {}, unexpanded at some process Pa is 
eventually chosen for “expansion.”  

– Expansion is the creation and sending of new tasks to 
neighbor processes whenever: 

 there is an automaton transition originating at state p that 

matches a database edge originating at object a.  



Distributed Algorithm Expansion 
• Let p, {}, unexpanded be chosen for expansion at some 

process Pa. 

• Let (p, R, q, k ) be a transition matching a database edge 
(a, R, b, t ).  

 

• Then Pa will send the task q,… to Pb.  

 

• Pb upon receival of task q,…, will establish a virtual 
communication channel with Pa for the originating p -
task.  

– This channel is weighted by kt  

– Completion of the p -task in Pa depends on the completion 
of the q -task in Pb. 



Distributed Algorithm Overlapping 

• Overlapping of computations happens when: 

 a process receives the same task multiple times 
from different neighboring processes.  

 

• In such a case:  

 the receiving process  

• does not accept the “new” task, but instead  

• creates only a virtual communication channel 
with the sending process for the originating 
task. 



Distributed Algorithm Trace 1 
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All processes create a task p0, {}, u for themselves. 



Distributed Algorithm Trace 2 

Pa Pb Pc Pd 

p0, {(c, 1), (d, 3)}, e p0, {}, u p0, {}, u 

p1, {(c, 0)}, u 

p0, {}, u 
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• Pa expands the tasks p0, {}, u and sends the task p1, {}, u to both Pc and Pd. 

• Pc and Pd observe that p1 is a final state and insert (c, 0) and (d, 0) in their       

p1-task pair-set.  

• Pc and Pd send c, 1 and d, 3 respectively to Pa through the appropriate virtual 

channels. 

V.Channel 



Distributed Algorithm Trace 3 

Pa Pb Pc Pd 

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, u 

p1, {(c, 0)}, u 

p0, {}, u 

p1, {(d, 0)}, u 

• Pb expands the p0-task and sends a p1-task to Pc. 

• Pc has already such a task, so,  

 it doesn’t create a new task, but only establishes a virtual channel with Pb 

for the originating p0 -task. 

• Also, Pc sends c, 2 to Pb. 



Distributed Algorithm Trace 4 

Pa Pb Pc Pd 

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, e 
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• Pc expands the p0-task and gets stuck. 



Distributed Algorithm Trace 5 

Pa Pb Pc Pd 

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, e 
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p0, {}, u 
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• Pc expands the p1 -task and sends a p1 -task to Pd.  

• Pd  has already received a p1 -task before, so,  

  it doesn’t create a new task, but only establishes a virtual channel with Pc 

 for the originating p1 -task.  



Distributed Algorithm Trace 5 

Pa Pb Pc Pd 

p0, {(c, 1), (d, 2)}, e p0, {(c,2), (d,3)}, e p0, {}, e 

p1, {(c,0), (d,1)}, e 

p0, {}, u 

p1, {(d, 0)}, u 

• Pd sends d, 1 to Pc.   

• Pc in turn sends:  

 d, 2 to Pa 

 d, 3 to Pb.  

• Pa will update (relax) the weight for d from 3 to 2. 



Complexity Discussion 
• Upper bound for number of messages: (E*|τ|)2 

• However, E is the number of inter-processor edges.  

 

• If sets of DB nodes are serviced by processors,  

  as opposed to a node per processor,  

 then  

  the number of messages will be quadratic in the 

 number of processors, not DB edges.  



Complexity Discussion 
• Delaying back-propagation of query answers, might save 

a lot of messages.  

 
If x delays the back-propagation 

of green answers to y, then the 

(better) red answers will 

eventually arrive, and be sent to y.    
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Conclusions 
• Introduced enhanced path queries, and concept of 

scaling query paths. 

 

• Presented a multi-source distributed query evaluation 
algorithm. 

– Progressive evaluation: i.e. the user sees partial answers 
very quickly, while waiting for new answers to arrive, and 
lowering of weights.  

– Even load distribution among processors.    



Future Work 
• Evaluate the effect of back-propagation 

delay.  

• Investigate the overlapping of multiple 
queries.  
– Needs query containment.  

• Decidable for un-weighted queries, and weighted 
DB. 

• Undecidable for weighted queries, and un-weighted 
DB.  

– (Reduction from equivalence problem for finance 
automata Hashiguchi et. al. 2004) 

• Open: What about when both queries and DB’s are 
weighted?   
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