
Distributed Multi-source Regular Path
Queries

Maryam Shoaran, Alex Thomo

E.g. I want to go from Victoria to
Munich taking Lufthansa.

Query: (Lufthansa)*
Answer: Empty

User might repeat querying with:

 (Lufthansa+AirCanada)*

…but, this returns too many (unranked)

answers.

• Simply, the system doesn’t know the

user preferences.

Regular Path Queries
Useful for expressing desired paths to follow in graph DB’s.

Victoria

Vancouver

Frankfurt

Seattle

Toronto

Air Canada

Alaska

Air Canada

Lufthansa

United

Air Canada

Air Canada

Lufthansa

Lufthansa

Munich

Add preference weights:
 (Lufthansa:1+AirCanada:2)*

Enhanced Regular Path Queries
Victoria

Vancouver

Frankfurt

Seattle

Toronto

Air Canada

Alaska

Air Canada

Lufthansa

United

Air Canada

Air Canada

Lufthansa

Lufthansa

Munich

Victoria
 AirCanada
Vancouver
 Lufthansa
Frankfurt
 Lufthansa
Munich

Victoria
 AirCanada
Vancouver
 AirCanada
Frankfurt
 Lufthansa
Munich

Better
than

However, which one is better?

Victoria
 AirCanada
Vancouver
 Lufthansa
Frankfurt
 Lufthansa
Munich

Victoria
 AirCanada
Toronto
 Lufthansa
Frankfurt
 Lufthansa
Munich

or
 Intuitively, the second path

makes me be longer on
AirCanada, which I prefer
less than Lufthansa.

Databases and Queries

ans(Q,DB) =

{(x, y) : x y

 x,y DB, wQ }

w

{(a,d), (a,b)…} for the above query.

• DB is a graph
labeled with

symbols from

• Query is a regular language

• E.g. Q = R · (R+S)*

Evaluation of queries

a,p0 c,p1

d,p1

R

R S

b,p1
S

R

b,p0

R

S

S

Then, do
reachability in the
green graph.

Weight Enhanced DB’s and Queries

{(a,d,2), (a,b,3)…} for the above query.

• DB is a graph
labeled with

symbols from R+

• Query is weighted now

• E.g. Q = (R:1)·(R:2+S:1)*

w
ans(Q,DB) =

{(x,y,n) : x y

 x,y DB, wQ ,

 n=min{d(w) scale()}}

Evaluation of weighted queries

a,p0 c,p1

d,p1

R,1

R,3
S,1

b,p1
S,1

R,2

b,p0

R,2

S,1

S,1

Then, compute
shortest paths in
the green graph.

Variants

• Weighted queries, un-weighted DB’s.

• Un-weighted queries, weighted DB’s.

• Single source.

• Multi source.

Challenges
• Product graph too big.

– “On the fly” strategy needed.

• Data might be distributed among a set of peers.

– A distributed strategy needed.

– For single source variant see our paper in SAC’ 05.

• What about multisource variant?

– Flloyd-Warshall algorithm can’t be used because it
needs knowledge of the whole product graph, and
we cannot afford to compute it.

Idea
Victoria

Vancouver

Frankfurt

Seattle

Toronto

Air Canada

Alaska

Air Canada

Lufthansa

Air Canada

Lufthansa

Munich

Calgary

Air Canada

Air Canada

Overlap after
Calgary the
traversing of
paths starting
from Seattle,
Victoria, and
Vancouver.

Distributed Algorithm
• Each DB object is being serviced by a process.

• Query automaton is send first to all the
processes.

– Query automaton is small, (no data transfer here)

• Processes compute the “next” product nodes and
send tasks to corresponding neighbor
processors.

Distributed Algorithm
• Each process starts by creating an initial task for

itself.

– Tasks are “keyed” by automaton states, with the initial
tasks being keyed by the initial state

 p0, {}, unexpanded

• Each p, {}, unexpanded at some process Pa is
eventually chosen for “expansion.”

– Expansion is the creation and sending of new tasks to
neighbor processes whenever:

 there is an automaton transition originating at state p that

matches a database edge originating at object a.

Distributed Algorithm Expansion
• Let p, {}, unexpanded be chosen for expansion at some

process Pa.

• Let (p, R, q, k) be a transition matching a database edge
(a, R, b, t).

• Then Pa will send the task q,… to Pb.

• Pb upon receival of task q,…, will establish a virtual
communication channel with Pa for the originating p -
task.

– This channel is weighted by kt

– Completion of the p -task in Pa depends on the completion
of the q -task in Pb.

Distributed Algorithm Overlapping

• Overlapping of computations happens when:

 a process receives the same task multiple times
from different neighboring processes.

• In such a case:

 the receiving process

• does not accept the “new” task, but instead

• creates only a virtual communication channel
with the sending process for the originating
task.

Distributed Algorithm Trace 1

Pa Pb Pc Pd

p0, {}, u p0, {}, u p0, {}, u p0, {}, u

All processes create a task p0, {}, u for themselves.

Distributed Algorithm Trace 2

Pa Pb Pc Pd

p0, {(c, 1), (d, 3)}, e p0, {}, u p0, {}, u

p1, {(c, 0)}, u

p0, {}, u

p1, {(d, 0)}, u

• Pa expands the tasks p0, {}, u and sends the task p1, {}, u to both Pc and Pd.

• Pc and Pd observe that p1 is a final state and insert (c, 0) and (d, 0) in their

p1-task pair-set.

• Pc and Pd send c, 1 and d, 3 respectively to Pa through the appropriate virtual

channels.

V.Channel

Distributed Algorithm Trace 3

Pa Pb Pc Pd

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, u

p1, {(c, 0)}, u

p0, {}, u

p1, {(d, 0)}, u

• Pb expands the p0-task and sends a p1-task to Pc.

• Pc has already such a task, so,

 it doesn’t create a new task, but only establishes a virtual channel with Pb

for the originating p0 -task.

• Also, Pc sends c, 2 to Pb.

Distributed Algorithm Trace 4

Pa Pb Pc Pd

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, e

p1, {(c, 0)}, u

p0, {}, u

p1, {(d, 0)}, u

• Pc expands the p0-task and gets stuck.

Distributed Algorithm Trace 5

Pa Pb Pc Pd

p0, {(c, 1), (d, 3)}, e p0, {(c,2)}, e p0, {}, e

p1, {(c, 0)}, e

p0, {}, u

p1, {(d, 0)}, u

• Pc expands the p1 -task and sends a p1 -task to Pd.

• Pd has already received a p1 -task before, so,

 it doesn’t create a new task, but only establishes a virtual channel with Pc

 for the originating p1 -task.

Distributed Algorithm Trace 5

Pa Pb Pc Pd

p0, {(c, 1), (d, 2)}, e p0, {(c,2), (d,3)}, e p0, {}, e

p1, {(c,0), (d,1)}, e

p0, {}, u

p1, {(d, 0)}, u

• Pd sends d, 1 to Pc.

• Pc in turn sends:

 d, 2 to Pa

 d, 3 to Pb.

• Pa will update (relax) the weight for d from 3 to 2.

Complexity Discussion
• Upper bound for number of messages: (E*|τ|)2

• However, E is the number of inter-processor edges.

• If sets of DB nodes are serviced by processors,

 as opposed to a node per processor,

 then

 the number of messages will be quadratic in the

 number of processors, not DB edges.

Complexity Discussion
• Delaying back-propagation of query answers, might save

a lot of messages.

If x delays the back-propagation

of green answers to y, then the

(better) red answers will

eventually arrive, and be sent to y.

R,1

S,1

S,1

S,2

S,2

x

y

Conclusions
• Introduced enhanced path queries, and concept of

scaling query paths.

• Presented a multi-source distributed query evaluation
algorithm.

– Progressive evaluation: i.e. the user sees partial answers
very quickly, while waiting for new answers to arrive, and
lowering of weights.

– Even load distribution among processors.

Future Work
• Evaluate the effect of back-propagation

delay.

• Investigate the overlapping of multiple
queries.
– Needs query containment.

• Decidable for un-weighted queries, and weighted
DB.

• Undecidable for weighted queries, and un-weighted
DB.

– (Reduction from equivalence problem for finance
automata Hashiguchi et. al. 2004)

• Open: What about when both queries and DB’s are
weighted?

References
• Maryam Shoaran, Alex Thomo. Distributed Multi-source Regular Path

Queries. ISPA Workshops 2007: 365-374

• Dan C. Stefanescu, Alex Thomo. Enhanced Regular Path Queries on
Semistructured Databases. EDBT Workshops 2006: 700-711

• Dan C. Stefanescu, Alex Thomo, Lida Thomo: Distributed evaluation
of generalized path queries. SAC 2005: 610-616

• Gösta Grahne, Alex Thomo. Regular path queries under approximate
semantics. Ann. Math. Artif. Intell. 46(1-2): 165-190 (2006)

• Gösta Grahne, Alex Thomo: Query Answering and Containment for
Regular Path Queries under Distortions. FoIKS 2004: 98-115

• Gösta Grahne, Alex Thomo. Approximate Reasoning in Semistructured
Data. KRDB 2001

