
1

Dynamic Graph Connectivity in
polylogarithmic worst case time

Bruce Kapron, Valerie King and Ben Mountjoy
University of Victoria,
Victoria,Vancouver Island, BC

Graph with n nodes
Sequence of online updates and
queries

F

C

D E
A

Update: Insert {A,D}

F

D E
A

Update: Delete edge {E,F}

A
F

D E

QUERY(X,Y): Is there a path between
X and Y?

X
Y

A
F

D E

How to avoid O(m) cost of
recomputing spanning forest
with each update or running
O(m) search for each query?

m=number of edges

A Simple problem , but lots of
interesting ideas….

Early 60’s-70’s: partially dynamic amortized:
�  insertions only:

Union-find; Tarjan’s α(m,n) analysis

�  1981: edge deletions only Even O(mn)
Fully Dynamic (Update times)
� 1983: O(√m) worst case Fredrickson
� 1992,7: O(√n) Sparsification Eppstein, Galil,

Italiano, Nissenzweig

 Update time / Query time
� 1995 O(log3n) / O(log n/log log n).
 (expected time) Henzinger, King

� 1998 O(log2n) / O(log n/log log n)
 Holm, de Lichtenberg, Thorup

� 2000 O(log n (log log n)3) / O(log n
 log log log n)
 Thorup

All with θ(n) worst case update time

POLYLOG Amortized time updates

SODA 2013:

O(log5n) worst case update time
O(log n/log log n) query time
1-sided error:

“Yes” always correct
“No” prob. 1/nc error

All known
techniques rely on
 maintaining a
spanning forest

Dynamic Trees (ET-trees, H-K 1995)

F

C

D E
A

Link

Dynamic Trees (ET-trees, H-K 1995)

F

C

D E
A

cut

Dynamic Trees (ET-trees, H-K 1995)

F

C

D E
A

25

14

11

weights on nodes

20

Dynamic Trees (ET-trees, H-K 1995)

F

C

D E
A

25

14

11

Query: Find tree containing node C
Query: Return sum of wts in tree
 O(log n) per update & query
 20

We maintain a spanning forest

When tree edge is deleted, how
to find replacement edge?

 D

F

Here, bitwiseXOR method:
V={1,2,…,n}
Form the name of {a,b}, a<b:
 a (as a lg n bit number) followed by
 b (as a lg n bit number)
 “<ab>”

For each node a, keep a vector of bits v(a),
v(a)=bitwise XOR of names <ab> of edges

 for all b adjacent to a. For any cut (S, V\S), if there is exactly
one edge {x,y} in its cutset then
 XORa in S v(a) = <xy>

Example:

6

3
4

5

1 2 011100

011110
100101

010101

001010

v(a)

6

3
4

5

1 2 011100

011110
100101

010101

000010

011110 110000

111001

v(a) in T’

001010

001010 011111

000000

XOR of v(a) = 001010 = XOR of v(a) in V-S
 in S + 011111
 =010101

6

3
4

5

1 2

1

011100

011110
100101

010101

000010

011110 110000

111001

v(a) in T’

001010

001010 011111

S

V-S

 Dealing with larger cutsets
To insert:
•  Add <ab> to v(a,i) and v(b,i) with prob. 1/2i,

for i=0.,2,…,2lg n
•  Keep record of additions for each a and i.
To delete: Add again if it was added before

 Dealing with larger cutsets
To insert:
•  Add <ab> to v(a,i) and v(b,i) with prob. 1/2i,

for i=0.,2,…,2lg n
•  Keep record of additions for each a and i.
To delete: Add again if it was added before

Observe: C cutset of (S,V-S). For i ~lg |C|,
Pr[Adding an edge {a,b} in C to v(a,i)]~=1/|C|

and
Pr[Exactly one edge in C was added to some v(a,i)
=Pr[bitwiseXORa in S v(a,i) = name of edge in C]
 = a const.

 Dealing with larger cutsets
To insert:
•  Add <ab> to v(a,i) and v(b,i) with prob. 1/2i,

for i=0.,2,…,2lg n
•  Keep record of additions for each a and i.
To delete: Add again if it was added before

Observe:
 C cutset of (S,V-S). For i ~lg |C|,
Pr[bitwiseXORa in S v(a,i) = edge in C] = a const.
Repeat for log n versions. Then for some
version, the name of exactly one edge in C appears
with prob 1-1/nc

Over a sequence of updates:

Union bound gives small error over
polynomial length sequence, provided
the choice of updates are independent
of the random bits
Record enables incremental rebuilding
and periodic correction of data
structure to maintain prob. of error.

Solution to dynamic connectivity??
(not quite)

Problems:
A.  Can’t let adversary know the spanning tree

edges

B.  Adversary sees answers to queries
--Update sequence is independent of random
bits while all queries correctly answered, as
they are then determined by the graph itself.

C. Choice of cut searched depends on random
bits!

XOR method solves easier problem:

“CUTSET” DataStructure (DS)

Maintain a forest F of dynamic disjoint trees in
graph G:

Updates: insert-edge, delete-edge,
insert-tree- edge, delete-tree-edge.

Query (S) returns an edge in the cutset
(S, V\S)

Updates are independent of random bits.

Random bits from Cutset DSi used to pick
edges in Fi+1 joining trees from Fi

 “Tier i+1 edge”
 Query(T,k) returns a k+1 edge if it exists

Maintain spanning forest using
Cutset DSi, i=0…lg n =TOP

INVARIANTS:

 -Structure of Fi is independent of random
bits from tiers i and higher.

-Every tree on tier i is matched (linked) to
another tree on tier i by a tier i+1 edge
unless it’s maximal in G
 à spanning forest by TOP tier

Initially, all Fi are singleton nodes

0

TOP

Insert edge: insert into all Cutset DSi

If edge joins unconnected trees in Ftop
insert edge as tree edge into all Fi

0

TOP

Delete edge: delete from all Cutset DSi

Restore Invariants using Cutset DSi

Example: F0

Example: F1

F2

F3

B A

Deletion of a tier 1 edge:

CB A

Deletion: If unmatched tree T in
tier i, find new edge in Cut (T,V-T)
and insert into all Fi’ i’>i

E D

But new tree edge may cause
an unmatched tree on a
 higher tier

A

E B

A

Unmatched tree in F2

Delete (x,y)

Delete(x, y)

remove {x,y} from all CutSeti containing it.

for u in {x,y} do
 while u has an unmatched ancestor in the
 Boruvka tree do
 A ßthe lowest unmatched ancestor of u
 k ß (tier of A)
 Reconnect(A, k)

Reconnect(A, k)

e = {v,w} ßQuery(A,k) (assume that v is the
 endpoint of e in A)
 if e = null then mark A as maximal

else {remove higher edge from F to break cycle}

 if there is a path from v to w in Ftop then do
 e’ß maximum tier edge on the path
 between v and w.
 Remove e’ from all Fi that contain it
 Add e to Fk’ for all k’ > k

To implement:
“if there is a path from v to w in Ftop then do
 e’ß maximum tier edge on the path
 between v and w.”

Use S-T dynamic trees:
Maintain FTOP with edges labeled by their tier
number.
Find maximum weighted edge in path from
v to w, O(log n) per operation.

Other Implementation details:

Use ET-Trees to maintain XOR sums:

•  O(log2 n) size vectors,àO(log3 n) cost to

change a tree edge

•  2 tree edges per tier inserted per deletion

•  Each edge insertion affects forests in up
to lg n tiers

•  àO((log3 n)(2 log n)(log n))

--> O(log5 n) overall cost per deletion

Record of insertions requires Õ(m).
Omit by using hash function for
randomness, but then can only be run
for poly time.

See Graph Sketches paper, Ahn,
Guha, McGregor, SODA 2012, which
uses similar ideas to ours, but for a
somewhat different problem.

Space

 Open Problems

Reduce update cost: lots of possibilities, or
modify goal to reduced worst case expected
cost.

Is there a Las Vegas or deterministic alg
with polylog worst case time?

Is there a polylog worst case alg. for dynamic
MST?

Come visit us
in Victoria
Questions?

1995,98
ET trees
 used

Euler Tour Tree
(from Erik Demaine.’s class notes)

Euler Tour Tree

Euler Tour Tree: augmented
balanced search tree

 findroot, cut, link, sum of node weights in tree

Lower Bounds for Dynamic Connectivity

Ω(log n) time per operation (Patrascu, Demaine 2004)
 in the
Cell probe model=#memory accesses
 (where each word contains log n bits)

Also lower bounds on tradeoffs between query time and

update time, e.g.:
 query time * lg(update time/query time)= Ω(log n)

I would like to take a moment to
remember Mihai Patrascu a very
talented young colleague in this area
whom I will miss

July 17,1982-
June 5, 2012

 Lower Bound for Connectivity

Prob. 1/2: replace a randomly chosen ∏k by a random ∏

!

n!

n

!

"

!

"

!

"

!

"
1 2

Random distribution of BATCH updates and queries:

 Lower Bound for Connectivity

Prob. 1/2 do update (k) : replace a randomly chosen πk by a random π

!

n!

n

!

"

!

"

!

"

!

"
1 2

Random distribution of BATCH updates and queries:

 Lower Bound for Connectivity

Prob. 1/2: update (k): replace a randomly chosen πk by a random π
Prob. 1/2: query (k): ∀ rows i, random column k, test πk(…(π2(π1(i))))

!

n!

n

!

"

!

"

!

"

!

"
1 2

Random distribution of BATCH updates and queries:

2

3

 Lower Bound for Connectivity

Sequence of batch operations
Split into two time intervals

Updates here
sorted by type

U1 < U2 <…< Uk-1

Queries here
sorted by type:

Q1< Q2<…<Qk

i .. j-1 j .. k

Note: High expected number L of interleaves:
 U1 < Q1, < U2 < U3 < Q2<…< Uk-1

To answer Q2 need to know U2 ,U3
-->Need to know a different U for each interleaving

 Lower Bound for Connectivity

Sequence of batch operations
Split into two time intervals

Updates here
sorted by type

U1 < U2 <…< Uk-1

WRITES

Queries here
sorted by type:

Q1< Q2<…<Qk

READS

i .. j-1 j .. k

 Number of READS of these WRITES must be sufficient
to provide enough bits to encode L U’s.

Paper shows method for concise encoding of info from
READS from which U’s can be reconstructed.

 Lower Bound for Connectivity

Sum up expected costs over intervals given by binary
tree,

Parent interval = union of children intervals.

Adds log n
factor

Note: Each read is counted once, by the lowest common
Ancestor of the read and most recent preceding write time.

