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Abstract
We resolve two long-standing open problems in distributed computation by showing that

both Byzantine agreement and Leader Election can be solved in sub-exponential time in the
asynchronous full information model. Surprisingly, our protocols for both problems run in only
polylogarithmic time. We thus achieve a better than exponential speedup over previous results
for asynchronous Byzantine agreement. In addition, to the best of our knowledge, ours is the
first protocol for asynchronous full-information leader election. Our protocols work in the full
information model with a non-adaptive adversary: the adversary is assumed to control up to
a constant fraction of the processors, have unlimited computational power as well as access
to all communications, but no access to processors’ private random bits. The adversary is
non-adaptive only in the sense that the corrupted processors must be chosen at the outset.
Our protocols run in time that is polylogarithmic in the number of processors, n, and tolerate
t < n

6+ε faulty processors for any positive constant ε. Our protocols are Monte Carlo, succeeding
with probability 1− o(1) for Byzantine agreement, and constant probability for leader election.
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1 Introduction

Two fundamental problems in distributed computing are Byzantine agreement and leader election.
In both, up to a constant fraction of n processors are bad (or faulty), while the others are good
(or non-faulty). Faulty processors can deviate from the protocol in arbitrary ways, and are thus
modeled as controlled by an adversary. In the Byzantine agreement problem, each processor is
initially given an input bit, and all good processors must come to an agreement on a bit which
coincides with at least one of their input bits. In the leader election problem, all good processors
must come to agreement on some good processor.

Our results hold for a very general model of computation, the asynchronous, full information
message passing model. In the full information model, the adversary is computationally unbounded
and has access to the content of all messages. In the asynchronous model, each communication
can take an arbitrary and an unknown amount of time, and there is no assumption of a joint
clock as in the synchronous model. Communication is by passing a message from one processor to
another. The advantages of the full information model are its simplicity and avoidance of complexity
assumptions. Also, protocols which rely on cryptographic primitives may require sources of perfect
randomness [13], whereas in the full information model, lower entropy sources of randomness have
been shown to suffice. [17].

Asynchrony introduces fundamental difficulties into distributed protocol design; intuitively,
protocols are unable to distinguish failed processors from delayed messages. Indeed, Fischer,
Lynch and Patterson [15] showed that even with just a single faulty processor, no deterministic
asynchronous Byzantine agreement is possible. Even with randomization, there has been no
significant progress in the asynchronous full information model in the last 22 years since Ben-
Or and Bracha [4, 8] gave a randomized protocol (with private coins) for Byzantine agreement
succeeding with probability 1 in expected exponential time. The resilience of Bracha’s protocol,
i.e., the number of faulty processors it can tolerate, is t < n/3.

Asynchronous Byzantine agreement in the full information model in expected time o(
√

n/ log n)
time is impossible [3] with an adversary which can corrupt processors adaptively, even if the model
is synchronous and the faults are fail-stop rather than malicious. (See also [2]) for improved lower
bounds). Hence we look at a model where the adverary is non-adaptive in that it must choose the
corrupt processors at the outset of the protocol.

In this paper, we give the first sub-exponential protocols for Byzantine agreement in the
asynchronous full information model, with an adaptive or non-adaptive adversary with constant
factor resiliance. In fact, our protocols take worst case time only poly-logarithmic (resp. quasi-
poly-logarithmic) in n and succeed with 1 − 1/ lnc n (resp. 1 − 1/nc) probability for any constant
c.

Specifically, we prove the following for Byzantine agreement:
Theorem 1.1. In the asynchronous full information model with a non-adaptive adversary, for any
constants ε, c > 0, there are Byzantine agreement protocols using Õ(n2) bits of communication, with

• running time 2Θ(log7 n), resilience n
6+ε , and success probability 1− 1/nc.

• running time polylogarithmic in n resilience n
6+ε , and success probability 1− 1/ lnc n.

Our result substantially narrows the gap (to within log n factors) between synchronous and
asynchronous distributed computing in the full information model with a non-adaptive adversary.
However, we should point out that the synchronous protocols are (or can be easily made) Las Vegas
in the sense that all processors eventually output the same bit.
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The leader election problem is clearly impossible to solve against an adaptive adversary, and the
success probability cannot exceed 1− t/n, as bad processors can just behave like good processors.
Tighter upper bounds are given in [14]. As our second main result, we give the first asynchronous
leader election protocol in the full information model with constant success probability against a
constant fraction of bad processors. This immediately implies the first asynchronous coin-flipping
protocol as well. Our leader election protocol, like the Byzantine agreement protocol, runs in
polylogarithmic time. We show:
Theorem 1.2. There is a leader election protocol in the asynchronous full information model
against a non-adaptive adversary that uses Õ(n2) bits of communication, and has running time
polylogarithmic in n, resilience equal to n

6+ε , and success probability that is a positive constant.
The core technique for all our protocols is asynchronous universe reduction. Universe reduction

consists in reducing the number of processors under consideration from n to k � n while ensuring
that the fraction of good processors among the selected k is nearly the same as in the initial n (a
formal definition is given in Section 2).

Other related work: Leader election and global coin-tossing was considered in a series of papers
[5, 1, 24, 22, 23] in a synchronous full information model with a non-adaptive adversary and an
atomic broadcast primitive: each message sent (even by corrupt processors) is received identically
by all processors. These papers culminated in Feige’s O(log∗ n) protocol for leader election [14],
which we adapt and use here.

Without the atomic broadcast primitive, a polylogarithmic round randomized protocols against
a non-adaptive adversary in the synchronous full information model were developed independently
by King, Saia, Sanwalani, and Vee [19, 20] and by Ben-Or, Goldwasser, Pavlov and Vaikuntanathan
[6, 16]. [19] presents protocol for both Byzantine agreement and leader election with resilience n

3+ε
which is “”scalable“” in that each processor sends and processes a number of bits polylogarithmic
in n. The protocol obtains “almost everywhere” agreement (agreement among a 1 − O(1/ log n)
fraction of good processors) with probability 1 − 1/nc with one additional round sending one
bit to every other processor needed to obtain agreement among all good processors, in a worst
case number of rounds which is polylogarithmic in n. [20] showed that the almost everywhere
agreement protocol could be implemented with a scalable protocol on a sparse network in a worst
case polylogarithmically many rounds. [6] and [16] give expected O(log n) round protocols with
resilience n

4+ε and n
3+ε , respectively.

Universe reduction protocols are found in several papers on leader election and coin tossing
in the synchronous broadcast model. In particular, Gradwohl, Vadhan, and Zuckerman [18] use a
2-stage process involving Feige’s leader election protocol, followed by the application of a sampler
which is similar to our subcommittee election and expansion procedure, to perform a selection with
an adversarial majority.

Several papers for asynchronous Byzantine agreement have appeared since the 1980’s which
do not assume a full information model, but instead assume either private channels between each
pair of processors [7, 10] or a computationally bounded adversary and cryptographic primitives
[25], culminating in protocols with expected O(1) round time with optimal resilience n

3 and O(n2)
messages [9, 21]. But the tails of the running times can be high (see below).

The only known lower bound which applies to our work (and the protocols assuming private
channels and cryptographic primitives) is obtained by slightly modifying the proof in [12]. That
result shows that any randomized protocol which runs in r synchronous rounds in the fail-stop model
with t processor failures has probability at least 1/2(2dn/bt/rc)e−r of failing to terminate against an
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adversary which is oblivious to the content of messages. The same proof goes through for protocols
which fail to agree on the same value or fail to terminate. This is 1/n when r = O(log n/ log log n)
and 1/ log n when r = O(log log n/ log log log n).

2 Preliminaries and Overview

We assume a fully connected network of n processors, among whom both n and all processors’ IDs
are common knowledge. Throughout, n will denote the total number of processors. Each processor
has a private coin. Communication channels are authenticated, in the sense that whenever a
processor sends a message to another, the identity of the sender is known to the recipient.

Out of the n processors, up to t can be faulty. The model is an asynchronous full information
model with a nonadaptive (sometimes called static) adversary. That is, the adversary chooses a set
of bad processors at the start of the protocol. Bad processors can engage in any kind of deviations
from the protocol, including false messages, collusion among bad processors, or crash failures.

In addition to controlling the behavior of bad processors, the adversary can view each message
as soon as it is sent, and determine the message’s delay as well as the order in which messages are
received. Each message sent from a good processor to another good processor is received within
some maximum finite time ∆, but the exact time is determined by the adversary. It is unknown
during the execution, but the running time of a protocol is described in terms of this basic unit.
Thus, a running time of f(n) means that all good processors reach agreement by time ∆f(n).
Alternately, f(n) is the maximum length of any chain of messages [11].

We use the phrase with high probability (w.h.p.) to mean that an event happens with probability
at least 1 − 1/nc for every constant c and sufficiently large n. For readability, we treat lnn as an
integer throughout.

2.1 Overview
As mentioned above, our protocols are based on a novel asynchronous protocol for universe
reduction. The (θ, k)-universe reduction problem is defined as follows: Given n processors with
an (unknown) subset of good processors G, each good processor p should output a subset of k

processors Sp such that
|
T

p∈G Sp∩G|
k > |G|

n − θ. That is, the sets output by every good processor p
contain a common subset of good processors that makes up nearly the same fraction of each set as
the fraction of good processors in the the universe. Implicit in our work are, to our knowledge, the
first protocols for asynchronous universe reduction in the full information model. (See Appendix).
To establish this result (and the main Theorems 1.1 and 1.2), we adapt the synchronous universe
reduction protocol of King et al. [19] to the asynchronous communication model. The processors
are divided into committees (sets) of polylogarithmic size; each processor is assigned to multiple
committees. Each committee in parallel elects a small number of processors (called a subcommittee)
from within itself. The process is repeated on the multiset of elected processors until the number of
remaining processors has been sufficiently reduced. At that point, to solve Byzantine agreement, the
remaining few processors run Bracha’s [8] (exponential-time) probabilistic asynchronous Byzantine
Agreement protocol. To solve leader election, the universe reduction protocol is first applied to
reduce the number of processors to a single small committee. Then the committee is repeatedly
reduced until a constant number of processors remain using a variant of the subcommittee election
protocol. For both problems, every good processor may associate a different subset of processors
with each committee, but since the intersection of the subsets is large and contains mostly good
processors, the good processors in the intersection come to a decision which all good processors
then agree to.
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The asynchronous nature of communication requires addressing several nontrivial technical
issues to make this approach work: (1) Each committee with enough good processors must be able to
robustly and efficiently hold an election. (2) A sufficient number of committees must contain enough
good processors which are known to all processors. The first issue is addressed in Section 3, where
we adapt Feige’s “Lightest Bin” protocol for leader election in synchronous broadcast environments
to our asynchronous point-to-point connection model. This is the technically most challenging part
of our paper.

The second issue is resolved in Section 4, using the network structure similar to that in [19] and
reasoning about the different “views” of the processors. Specifically, in order to assign processors
to committees, we use a layered network of averaging samplers, bipartite graphs with randomlike
properties.

Committees with too many bad processors or not enough good processors which are known to
all processors may cause inconsistent views about which processors they elect. We show in Section
3.5 that the election protocol still works if enough processors in the committee are known to all
the processors. We show in Section 4.1 that a sufficiently large number of processors are good and
known to all processors on each layer and finally in the proof of Theorem ?? that there are at least
5/6 fraction of processors in the top committee which are good and known to all processors . We
discuss in Section 4 how to put various building blocks together to obtain a quasi-polynomial time
protocol for Byzantine agreement, and in Section 5 how to modify the protocol to achieve more
efficiency. Section 6 describes the leader election protocol.

2.2 Samplers
Our protocols rely extensively on the use of averaging (or oblivious) samplers, families of bipartite
graphs which define subsets of elements such that all but a small number contain at most a fraction
of “bad” elements close to the fraction of bad elements of the entire set. Bipartite graphs with
such random-like properties have been used extensively in the design of distributed protocols [11]
and have alternatively been called expanders, dispersers and samplers. An exact correspondence
between extractors and averaging samplers is given in [26].
definition 1. Let [r] denote the set of integers {1, . . . , r}, and [s]d the subsets of [s] of size d. Let
H : [r] → [s]d be a function assigning sets of size d to elements.

1. H is a (θ, ε, β) sampler if for every set S ⊂ [s] with |S| > βs,∣∣∣{x | |H(x)∩S|
d > |S|

s + θ
}∣∣∣ ≤ εr

2. H is a (θ, ε) sampler iff it is a (θ, ε, 0) sampler.

The following two lemmas, establishing the existence of samplers, can be shown using the
probabilistic method. For the use of these samplers in our protocols, we assume either a nonuniform
model in which each processor has a copy of the required samplers for a given input size, or
else that each processor initializes by constructing the required samplers in exponential time.
Alternatively, we could use versions of the efficient constructions of [18] and [27], at the expense of
a polylogarithmic overhead in the overall running time of the protocol.
Lemma 2.1. For every s, θ, ε > 0 and r ≥ s/ε, there exists a constant c such that for all
d ≥ c log(1/ε)/θ2), there is a (θ, ε) sampler H : [r] → [s]d.
Lemma 2.2. For every r, s, d, θ, ε, β > 0 such that (log2 e)(dθ2βr)/3 > s/ε, there exists a (θ, ε, β)
sampler H : [r] → [s]d.
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3 Subcommittee Election

We describe a protocol Elect-Subcommittee for asynchronously electing a subcommittee of
processors from a committee of k processors where ≥ k − t are good. In Feige’s protocol,
each processor randomly selects a “bin number” from {1, ..., b} and broadcasts it to the other
processors. The subcommittee then consists of all processors which choose the bin selected by the
smallest number of processors. The intuition is that w.h.p., each bin will have a similar number of
good processors, and the bad processors cannot gain a disproportionate fraction of a bin without
increasing the bin’s size to a point where it will not be selected any more.

In adapting this protocol to the asynchronous communication model without broadcast, we
note that when fewer than t messages are delayed, the protocol cannot wait for them (otherwise,
the adversary could deadlock the protocol by simply not sending any messages). Several difficulties
have to be overcome: (1) We need to simulate broadcast in order for the good processors to agree
on the lightest bin. (2) If t > k/b, the adversary can delay messages from the good processors which
choose a particular bin i and fill it with few enough bad processors to make it the lightest bin,
gaining full control over the subcommittee. (3) Even if the message delays were independent of their
content, only a constant fraction of the good processors will be heard from; good processors will
thus be underrepresented in the subcommittee. We show below how to address these difficulties.

3.1 Broadcast simulation
To deal with the first problem, we note that if all k processors broadcast their bin numbers, the
adversary can delay some good processors and prevent them from being heard by any processors.
Hence we allow processors to agree on a null message ∗ . We first note that Bracha’s exponential
time asynchronous Byzantine agreement protocol can easily be extended to the case where each
processor has three possible input values 0, 1 and ∗, by running Bracha’s protocol [8] twice. We
refer to the resulting protocol as Heavy-BA (heavyweight Byzantine agreement.) The following
properties follow directly from the corresponding properties of Bracha’s protocol:
Proposition 3.1. The Heavy-BA protocol has the following properties.

1. Heavy-BA tolerates t < k/3 corrupt processors.

2. W.h.p., every processor terminates after ln2 n · 2k rounds and is required to send and receive
at most ln2 n · 2k bits.

3. If more than 2k/3 of the processors are both uncorrupted and have the same value v′, then
upon termination, w.h.p., every good processor sets its value v = v′.

Heavy-BA can be composed to simulate multiple rounds of synchronous broadcast without
significant loss of resilience. The high-level idea is to use Heavy-BA on each bit of each message
independently. If all processors agree on the value v of a message by a good processor, the message
is accepted. If even one bit of the message becomes a ∗, the entire message is replaced by a string
of ∗, and called rejected. Let m be (an upper bound on) the length of the longest message sent as
part of the protocol. To perform a simulated broadcast, each processor p does the following:

1. p sends its message to all processors including itself, and then waits until it receives messages
from k − t processors.

2. p sets the values of all unreceived expected messages to ∗m and then participates in km parallel
versions of Heavy-BA to determine each bit of every message sent by every processor.
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3. If any bit of an agreed-upon message is set to a ∗, p records the message as ∗m.

4. p enters the next round only after committing to every message sent by every processor.

Lemma 3.1. Let ε be a positive constant and t < k
3(2+ε) the number of bad processors. Using the

above protocol to simulate a sequence of q(k) = poly(k) rounds of synchronous broadcast, w.h.p.:

1. For each round i ≤ q(k), all good processors agree on each message sent by each processor,
or they agree that the message is rejected, within O(i ln2 n · 2k) time.

2. Once any processor p enters round i+1, the agreed upon value of every message sent by every
processor in round i is known to p.

3. After each broadcast round, the messages sent by at least an α = ε/(1+ ε) fraction of the good
processors have been accepted.

Proof. The proof of items (1) and (2) by induction is straightforward. To prove part 3 we
note that each good processor received k − 2t messages from good processors and do an averaging
argument over the total number of good messages received by good processors. Details are given
in the appendix.

3.2 Making message delay (mostly) independent of bin choice.
To address problem (2), our election protocol is designed so that there is a large subset of good
processors determined in some sense before their choices are made, whose bin choices cannot be
delayed by the adversary. The lightest bin protocol is run for k rounds. Each good processor p
maintains a k × k table whose i, j entry is the agreed-upon value of processor j’s bin choice in
round i. Each message sent by a processor p in round i contains all of its previous bin choices
B

(p)
i′ from rounds i′ < i, and is broadcast using simulated broadcast. The table is (retroactively)

updated if necessary, so if a message from processor j is accepted in round i, then none of the
previous entries regarding processor j will be ∗. Let Si be the set of processors whose messages
were accepted at some round i′′ ≥ i, and let Ai be the set of good processors whose messages for
round i were accepted at the end of round i. Then Sk ⊆ Sk−1 ⊆ Sk−2. · · · ⊆ S1. By Lemma 3.1
(3), for all i, |Ai| ≥ ε

1+ε · (k − t). Thus, by the Pigeonhole Principle and the fact that |Si| ≥ |Ai|,
there is an r such that Sr = Sr−1; we fix the smallest such r. The bin choices in round r are then
used to determine the lightest bin in Feige’s protocol. We say that processor p is in bin B in round
i if B

(p)
i = B, and p’s message selecting B is (eventually) accepted.

Lemma 3.2. Let c, ε be any positive constants and suppose there are k processors of which t ≤ k
6+ε

are bad. There is a constant c′ such that if the number of bins is b = k/(c′ lnn), then with
probability 1− 1/nc, the number of good processors in the lightest bin in round r (from Ar−1) is at
least γ · c′ lnn, where γ = 1

2 ·
ε

1+ε ·
k−t
k .

Proof. Fix any bin B and round i. By Lemma 3.1 (2), when p ∈ Ai−1 chooses its bin in
round i, the messages for all processors in Ai−1 for round i − 1 were already accepted. Let the
random variable xj = 1 if p ∈ Ai−1 chooses B in round i and 0 otherwise. Then X =

∑
j xj

is the number of good processors in Ai−1 who choose B in round i, the xj are independent coin
tosses with Pr(xj = 1) = 1/b, and E[X] = |Ai|/b ≥ ε

1+ε(k − t)/b. Applying Chernoff bounds

gives Pr(X < E[X]/2) ≤ n−(c+2), for c′ ≥ 48(c+2)(1+ε)
5ε . By a union bound over all rounds

i = 1, . . . , k, k ≤ n and all b ≤ n bins, the probability that any bin B is chosen in round i by
fewer than 1

2
ε

1+ε
k−t

b processors in Ai−1 is at most n−c.
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In particular, at time step r when Sr = Sr−1, Ar−1 ⊆ Sr−1 = Sr, so the lightest bin in round r
contains at least 1

2
ε

1+ε
k−t

b processors.

3.3 Enlarging the fraction of good processors.
To address problem (3), the set of processors in the lightest bin are used to select a better
subcommittee w.h.p. Assume that the processors in the committee are numbered 1 to k. The
processors in the subcommittee each randomly pick a block of a constant x number of bits which
are then concatenated in order of processor number to form an input to a sampler. These bits are
sent in the same message as the bin choice.

Let R be the collection of all binary strings of length between xγk/b and xk/b and r = |R| <
(xk/b)2xk/b, where γ is defined in Lemma 3.2. By Lemma 2.1, there is a (1/ lnn, r−a) sampler
H : [r] → [k]d for any fixed a < 1, with d = O(log3 n). The output of H is the subcommittee
elected by the committee, of size O(log3 n).
Lemma 3.3. Assume that k = lnc n for a constant c > 3. W.h.p., the subcommittee produced by H
contains less than a t/k + 1/ lnn fraction of bad processors.
Proof. We call an input ρ ∈ R to the sampler bad if it maps to an output H(ρ) corresponding to
a subcommittee with more than a t/k + 1/ lnn fraction of bad processors. Fix a bad input ρ. By
Lemma 3.2, if ρ is generated by the lightest bin, then w.h.p. at least γk/b blocks chosen uniformly
at random by processors in Ar−1 match a subsequence of blocks of ρ. The probability of matching
a particular subsequence is less than 1/2xγk/b. By the definition of a sampler, there are at most
r1−a bad inputs. Thus, by choosing a = 1− c′γ/2, we have r1−a = 2xγk/2b. Taking the union over
all possible bins and round numbers for the lightest bin and all possible subsequence of blocks,
and the different bad inputs, the probability of the lightest bin generating a bad input is given by
2xγk/2b(kb)(1/2−xγk/b) < n−c′′ for every positive constant c′′, and a sufficiently large x.

3.4 Protocol and Proof.
We now obtain the following protocol Elect-Subcommittee, run at each processor p in committee
C = {p1, . . . , pk} of processors, with k > ln3 n.

Protocol 1 The Elect-Subcommittee protocol on good processor p

1: for i = 1 to k do
2: Randomly select a bin number B

(p)
i ∈ {1, 2, . . . , b}, where b = k/(c′ lnn) and a random bit

string X
(p)
i of length x.

3: Send ((B(p)
1 , X

(p)
1 ), . . . , (B(p)

i , X
(p)
i )) to every processor in C.

4: Wait to receive messages for round i from k − t processors. Set the value of all unreceived
expected messages to ∗m, where m is the length of the expected message. Then run in parallel
Heavy-BA to agree on each bit of the message of every processor.

5: Update all (B(p′)
i′ , X

(p′)
i′ ) for i′ ≤ i.

6: Let Si be the set of processors p′ for whom B
(p′)
i (and X

(p′)
i ) are known. Let r be smallest such

that Sr = Sr−1.
7: Let B be the lightest bin in round r, and ρ be the concatenation, ordered by p′, of the blocks
{X(p′)

r | B
(p′)
r = B} chosen by the set of processors in bin B in round r.

8: Return H(ρ) as the elected subcommittee.

Lemma 3.4. For ε > 0, if a committee of k processors has t < k
6+ε bad processors, then w.h.p.
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1. Elect-Subcommittee runs in time O(k log2 k2k).

2. Every good processor outputs the same elected subcommittee.

3. The elected subcommittee contains O(log3 n) processors, of which no more than a t/k+1/ lnn
fraction are bad.

3.5 Extension: When processors have differing views.
In later sections, we will want to run the subcommittee election procedure even when the committee
members have differing views of the membership of the committee. The members of the committee
are represented by the (ordered) set of identifiers I = {1, 2, ..., k}, while the set of all processors is
P = {1, 2, ..., n}. Each processor pi maintains a view vi : I → P of the committee. The input to
H is then a string whose blocks are ordered by identifiers in I and the output is a subset of size
Θ(ln3 n) of I. A core of a committee is a set R of good processors such that every p ∈ R believes it
is in the committee and all other processors in R agree on p’s identifier. If a processor pi receives a
message from a processor pj such that pj /∈ vi(I), it is disregarded. The following observation then
follows from Lemma 3.4:
Observation 1. With high probability, in any committee with a core set R, such that |R| >
k(5/6 + ε) for some fixed ε > 0, every p ∈ R will come to agreement on the identifiers of the
processors in the lightest bin B, and consequently on the actual identities of those processors in the
lightest bin which come from R.

4 A Quasi-Polynomial Asynchronous Byzantine Agreement Protocol

We describe the protocol in terms of an ordered layered network. Each processor has a copy of the
same network which is either specified for a given size of the network n at the start of the protocol
or generated in polynomial time.
Structure of the network: Let `∗ be the minimum integer ` such that n/ ln` n ≤ ln7 n; note that
`∗ = O(lnn/ ln lnn). Let r` = n/ ln`+4 n and s` = n/ ln` n. The layers of the network are numbered
0(a), 0(b), 1(a), 1(b), ..., `∗(a)`∗(b). Layers `(a) and `(b) contain the set of s` processor nodes P` and
r` committee nodes C` resp. Layer `∗(b) has a single node C∗.

For ` < `∗, the edges between `(a) and `(b) are determined by the (1/ lnn, 1/(2 ln n), 5/6)
sampler H` where r = r` and s = s` and d = O(log7 n). There is an edge from the ith node in P`

to the jth node in C` iff i ∈ H`(j). There is an ordered set of O(log3 n) edges from each node in C`

to nodes in P`+1 so that each edge is incident to exactly one such node in P`+1. There is an edge
to C∗ from every node in P`∗ .
The interpretation of the network: The layered network describes a protocol in which initially every
processor is assigned to a node in P0 and where each committee node represents a subcommittee
election subroutine involving processors associated with its predecessor (processor) nodes. The
elected subcommittee is then associated with the committee node’s successor (processor) nodes.
Due to message loss and the adversary’s choices, processors might not agree on which processor
is associated with a given processor node node. Instead, each processor p maintains views vp(P )
and vp(C) of each processor node P or committee node C. A view vp(P ) of a processor node is
either the name of a processor (which p believes to be assigned to P ) or ⊥. The view vp(C) of
a committee node is the ordered list of C’s predecessors. Each processor p will update its views
throughout the protocol.

Each message sent between processors is sent with the name of an associated node C. In all
stages but the last, these messages will be for the subcommittee election; in the last stage, they
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will be for the Heavy-BA protocol. Initially, all processors have identical views of processor nodes
in layer P0, and views ⊥ for all other processor nodes. In order to proceed with a committee node
C, a processor p requires that there be “enough” processors in its view of the committee node. In
a slight abuse of notation, we write |vp(C)| for the number of actual processors (i.e., non-⊥ entries)
in p’s view of C.

When |vp(C)| is at least a fraction 1−2/ lnn of the total number of edges into C and p ∈ vp(C),
p sends out its view of C, vp(C), to all other processors in its view of C. Once p receives views
of C from at least 2/3k processors in vp(C), p revises its view to agree with the majority and sets
vp(C) to ready (we denote this view by vr

p(C)), p runs subcommittee election if p is in vp(C) or
else waits to hear from other processors about the results. vp(C) is considered fixed afterward the
election is run. A formal description of the protocol is given in the Appendix.

4.1 Proof of Correctness
We will prove the following in this section:
Theorem 4.1. W.h.p., the protocol Quasi-Poly-BA terminates in quasi-polynomial time and
achieves Byzantine agreement.

First, we prove a lemma which show that there are committees which have large enough cores,
subsets of good processors which whose identities are known to each other and which all processors
eventually agree on. The second lemma shows that there are enough of these committees on each
layer.

Let k be the number of predecessor nodes of any committee node, i.e., the size of a committee.
Let α` = 5/6+ ε−22`/ log n. A processor node P ∈ P0 is good if there is a good processor assigned
to this node. A committee node C ∈ C` for ` ≥ 0 is good if at least a (1 − 3/ lnn) fraction of its
predecessor nodes are successors of good committee nodes and at least an (α` − 1/ lnn) fraction
of its predecessors are good. A processor node P ∈ P` for ` > 0 is good if all its predecessor
(committee and processor) nodes are good.

Proofs of the following lemmas appear in the Appendix.
Lemma 4.1. Let P and C be any good processor and good committee node in P` and C`, resp. Then
w.h.p. the following are true:
(1) By time O(k log2 k2k`), there is a good processor q such that for all processors p, vp(P ) = q.
(2) By time O(k log2 k2k`) there is a subset (or core) of good processors S =

⋂
p∈S vr

p(C) and
|S| ≥ (α` − 19/ lnn)k, which come from good processor nodes (i.e., for all q ∈ S, there is a good
processor node P ′ which is a predecessor of C such that vq(P ′) = q.)
(3) No other view of good processor nodes besides ⊥ is ever held by any processor.

Lemma 4.1 is shown by induction on `. If there is a sufficiently large core of good processors
who have each other in their view of a committee node C then by Observation 1, the election can
be run so that a sufficiently large fraction of good nodes are elected from this core. We use an
averaging argument to show that for the next layer the processor in the core may each be missing
a different 3/ log n fraction from their view of good predecessor nodes, but hearing from enough
processors in their views of C, a core sufficiently large is mutually agreed upon.

The next lemma is proved by induction using the properties of samplers of the network.
Lemma 4.2. With high probability, for all ` ≤ `∗, by time O(k log2 k2k`), the fraction of good
processor nodes in level P` is at least α`, and the fraction of good committee nodes in level C` is at
least 1− 2/ lnn.
Proof of Theorem: Because `∗ = o(lnn), Lemma 4.2 implies that w.h.p., the committee C∗

constituting C`∗ is good. Thus, by Lemma 4.1 has a core of size at least (α`∗ − 19/ lnn)k. Since
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the core comes from good processor nodes, these are good processors of which all processors in the
network have the same view. But (α`∗−2/ lnn) > 5/6 which more than suffices to run Heavy-BA.
As each processor waits to hear from at least a 5/6 fraction of processors in C∗, w.h.p., all good
processors will reach Byzantine agreement in time O(`∗k log2 k2k). Thus, w.h.p., Quasi-Poly-BA
terminates correctly in quasi-polynomial time.

5 The Polylogarithmic Time Protocol

We create a new algorithm Polylog-BA by modifying Quasi-Poly-BA so that there are two
levels of recursion. That is, each call to Heavy-BA on committees of size O(log7 n) is replaced by
a call to Quasi-Poly-BA. In the second level of recursion, each call to Heavy-BA on committees
of size O((log log)7n) is replaced by a call to M-Quasi-Poly-BA. M-Quasi-Poly-BA is simply
Quasi-Poly-BA, except that the number of layers `∗ is reduced so that on layer `∗ − 1, there
are O(log log n/ log log log n) committee nodes, and the committee nodes in layer `∗ − 1 use a less
accurate sampler (with smaller degree). Finally, on the next level of recursion, the call to Heavy-
BA where committees are of size O((log log log)7n) (and on layer `∗ of size O(log log n)) is actually
executed by calling Heavy-BA.

There are two observations which allows this amount of recursion (and no more). We can afford
to allow the calls to Quasi-Poly-BA to fail with higher probability. Since the probability of this
failure is independent, we use Chernoff bounds to show that a sufficient number of calls on each
layer do not fail and this suffices. The second observation is that while we can’t use such reasoning
for the top level committee’s election (as there’s only one), we can afford to reduce by a constant
the fraction of good processors produced by that committee’s election as this happens only once.
A more detailed version is in the appendix.

6 Leader election

The leader election problem requires that all good processors output a common good processor p.
We achieve leader election by first reducing the number of processors to the number of processors
(k0) in the top node C∗ using Polylog-BA. The processors in that committee then undergo a series
of rounds in which the number of candidate leaders is halved at each step (using the subcommittee
election protocol with different parameter settings) while reducing the fraction of good processors
by no more than 1/ ln2 ki, where ki is the current number of participants. Each such round requires
use of Polylog-BA, and successfully completes with probability at least 1−1/ki−1/ lnc ki. After
log k0 − c rounds for some constant c, a committee of constant size 2c with 5/6 + ε fraction of
good processors are left. At this point, each of these processors randomly picks a leader, and with
probability greater than 1/22c

, the leader is good. The committee runs Polylog-BA to agree
on the identity of the leader, and then every processor in the committee sends messages with the
identity of the leader to all other processors. More details are in the Appendix.

7 Conclusions and Open Problems

We have demonstrated that the assumption of an asynchronous model does not substantially affect
the ability to perform distributed computation, if one can assume a non-adaptive adversary and
can tolerate a small probability of failure.

Numerous problems remain: We think that our protocols may be made scalable if almost-
everywhere agreement is sought. Even for the synchronous model with private channels, it is not
known whether a scalable protocol is possible if everywhere agreement is required.

Can the resilience of the Byzantine agreement protocol be improved to the known lower bound
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of n/3, or the success probability to 1? Can the running time be brought down to O(log n) or
lower? Can the [12] lower bound be increased for the asynchronous model? It would be desirable
to bring the probability of successful leader election closer to the known upper bound. Finally, it is
still open if a subexponential time protocol for Byzantine agreement is possible in the asynchronous
full information model with an adaptive adversary.
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Appendix

Proof of Lemma 3.1 (3)
Consider one round, and the number of messages from good processors received by good processors.
At least k− 2t good processors must have had their messages received by all k− t good processors,
for a total of (k−2t)(k−t). On the other hand, each message was (trivially) received by at most k−t
good processors. Furthermore, if a message was rejected, then by Property (3) of Proposition 3.1,
it was received by strictly fewer than 2k/3 good processors. By the bound on t, 2k/3 ≤ k− (2+ ε)t.
Hence, if a total of A messages were accepted, the total number of messages received was at most
A(k−t)+(k−t−A)(k−(2+ε)t) = (k−t)(k−(2+ε)t)+A(1+ε)t. Since the total number of messages
received is also at least (k−2t)(k−t), we obtain that (k−t)(k−(2+ε)t)+A(1+ε)t ≥ (k−2t)(k−t),
or A ≥ ε/(1 + ε) · (k − t).

Proof of Lemma 4.1
The statement is clearly true for ` = 0.

Assume it is true for C`−1 and P`. We will show it is true for C` and P`+1. We first show
statement (2). As a processor p does not know the time, it starts an election protocol for a good
node C when it has determined the processors in 1 − 3/ log n fraction of C’s predecessors. By
assumption, for good predecessors, there is only one possible value that is not ⊥. We call this
the identity of the processor node. Hence p knows the identity of αl − 4/ log n > 5/6 fraction
of good predecessors of C. Now, each processor may know identities for a different fraction of
1− 3/ log n predecessors. In lines 7-9 of the protocol, each processor p waits to receive views from
2k/3 processors in vp(C) and takes the majority. Since < k/6 predecessors of C are not good,
the 2k/3 processors include at least k/2 good processors from good predecessors which send either
the identity of a node or ⊥. Thus a good predecessor will appear as ⊥ in a revised view only if
> k/6 good processors have not determined its identity. Since each processor has ⊥ values for only
3k/ log n predecessors, a simple averaging argument shows that there are at most 18k/ log n good
predecessors such that > k/6 good processors all have ⊥ values for them. Hence the core can only
exclude this many good predecessors of C and statement (2) follows from the fact that there are
α` − 1/ lnn good predecessors of C.

We prove Statement (1): It follows from Observation 1, Section 3.5, that the subcommittee
election will be run in time ck log2 k2k, c a constant and with the results specified in Lemma 3.4.
W.h.p., (|S| − 1/ log n)k processors from the core will be elected by the committee for C and
their selection will be sent to all processors. We assume by induction that by time ck log2 k2k`,
every processor has identified each good predecessor in P` so that by this time it has identified the
> 5/k/6 processors in the core of C which have sent it messages upon completion of the election.
Thus when a processor hears from 5k/6 processors, at least 2k/3 messages are from processors in
the core. Hence every processor’s view of the election results is the view of the core which by virtue
of having executed Byzantine agreement is in accord and occurs within time ck log2 k2k(`+1). Since
the identities of the good predecessor nodes are known, the election results determine the identities
of the subset of good predecessor nodes which are in C’s elected subcommittee (See Section 3.5).
Consequently, all processors learn the identities of C’s good successor nodes ∈ P`+1. Thus we have
shown that by time ck log2 k2k(`+1) identities of all good processor nodes in P` are known to every
processor.

We prove Statement(3). Assume the contrary. Let ` be the minimum index such that P`

contains a good processor node such that there have existed two distinct non-⊥ views of P . Clearly
` > 0. Then the view of P was determined by some processor p when it received enough messages
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from processors in vp(C) about an election in a good committee node C ∈ C`−1. Since most of
these processors are p’s views of good processor nodes in P`−1, their identities are fixed, by the
induction assumption. As each election is run only once, their messages do not change. Hence only
one identity for P is fixed by p.

This concludes the induction.

Proof of Lemma 4.2
The proof is by induction. The goal is to show that at each level, there is a sufficiently high fraction
of good committee nodes whose elections run to completion and output the right fraction of good
processors. We require that the random bits used for each subcommittee election be independent;
therefore, the successes of subcommittee elections in different nodes are independent. At each step
in the protocol, a processor waiting to hear from a set of k′ processors of which at most t′ are
bad need only hear from any subset of k′ − t′ processors for the protocol to work correctly. These
two observations allow the protocol to work correctly under arbitrary timing delays as we will now
show.

For the base case ` = 0, we notice that all nodes in P0 are consistent, and at least a 5/6 + ε
fraction are good, establishing the first property. For the inductive step, assume (by inductive
hypothesis) that the first property holds up to level `, and the second up to level `− 1, within time
O(k log2 k2k`).

By the definition of a (1/ lnn, 1/(2 ln n), 5/6) sampler, all but a 2/ lnn fraction of committee
nodes in C` will have a fraction of at least 1− 3/ lnn predecessors which come from the 1− 2/ lnn
fraction of good committees on the layer below, as well as an α` − 1/ lnn fraction of good
predecessors. Hence, the fraction of good committee nodes in C` is at least 1− 2/ lnn.

Thus, by Lemma 4.1, w.h.p., by time O(k log2 k2k`), each of these good committee nodes elects
a subcommittee. Since the core contains a fraction of processors of size least s = α` − 19/ lnn
then by Lemma 3.4, the subcommittee contains a fraction of the core of size s − 1/ log n and
α`+1 = α`−20/ lnn. Thus the fraction of good successor nodes in P`+1 is (1−2 ln n)·(α`−20/ lnn) ≥
α` − 22/ lnn = α`+1.

More Details on the Polylogarithmic Protocol
We sketch the reasons why Polylog-BA is correct. First, we note that if each call to Quasi-Poly-
BA in Polylog-BA has independent probability 1/ lnc n of failing for any constant c, Polylog-
BA will fail with probability O(1/ lnc′ n) for any constant c′. The reason is that since each layer
less than `∗ has Ω(log7 n) committee nodes, we can show that the probability of more than a
1/ lnn fraction of the committee nodes failing because of failed BA protocols at these nodes is
bounded above using Chernoff bounds and is less than 1/nc. Adding another fraction of 1/ lnn
failed committee nodes to each layer does not substantially affect the old proof of correctness. The
call to Heavy-BA on layer `∗ would have probability of 1/ lnc n of failure, and this would dominate
the probability of failure for the protocol.

We now show how Quasi-Poly-BA when called on n′ = O(log7 n) processors can run in
polylogarithmic time and have failure probability O(1/ logc n) for any constant c. As described
above, at the first level of recursion Quasi-Poly-BA calls M-Quasi-Poly-BA instead of Heavy-
BA. In Quasi-Poly-BA, when n′ = O(log7 n), every layer except `∗ has Ω((log log)7n) committee
nodes. Note that on these layers, it again suffices if every committee node fails with probability less
than 1/(ln ln)cn for any c; using Chernoff bounds, we can then again bound the probability that
no more than a 1/ lnn′ fraction of committee elections fail. On `∗, we need a smaller probability
(of 1/ lnc n) of failure for the single node.
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It remains to show that M-Quasi-Poly-BA, when called on n′′ = O((log log)7n) processors,
fails with probability less than 1/(ln ln)cn for any constant c. On layers ` < `∗ − 1 in M-Quasi-
Poly-BA, when called on n′′ processors, the number of committee nodes is Ω(ln ln lnn). As in
the analysis of Quasi-Poly-BA on n′′ nodes, the probability that an election fails is less than
1/(n′′)c′ = O(1/(log log)7c′n). Again using Chernoff bounds, we can show that the probability that
more than a 1/ lnn′′ fraction of election nodes fail on any layer less than `∗−1 is less than 1/(ln)cn.
On layer `∗ − 1, we have a problem as there are only Ω(log log n/ log log log n) committee nodes
there. Now, we require that < ε/5 fraction of committee nodes fail. Using Chernoff bounds, we
can again show that this happens with probability < 1/(ln)c′n.

We have one more difficulty with M-Quasi-Poly-BA. If we are using the unmodified subcom-
mittee election protocol, the sampler H would output a set of size O(ln3 n′′) = O((ln ln ln)3n). This
would give us too many processors left at layer `∗. So we use a modified sampler with θ = ε′/6
and degree O(ln ln lnn) where the fraction of good processors on layer `∗ − 1 is 5/6 + ε′. Now, the
fraction of bad processors is increased by ≤ ε′/6 and the fraction of good processors in layer P`∗ is
≥ (1− ε′/5)(5/6 + 5ε′/6) ≥ 5/6 + ε′/2. There are then enough good processors so that Heavy-BA
will succeed. Thus, Polylog-BA succeeds with probability 1/(ln)cn for any constant c. The total
running time of Polylog-BA is dominated by the polylogarithmic number of calls to Heavy-BA
on O(log log n) processors.

Note: On levels 2 and 3 of the recursion, we require an additional property: if 2/3 + ε fraction
agree on a bit at the start of the Byzantine agreement protocol, that bit must be output. We note
that the samplers will be representative of these processors, as well; i.e., for some constant ε′, every
P` contains 2/3 + ε′ fraction of processors which are good and know this bit (as well as containing
5/6 + ε′ fraction of processors which are good), with a probabilty of failure increased by only a
constant factor.

More Details on Leader Election
We modify our existing subcommittee election protocol as follows: Initially, k0 = O(log7) and
β0 = 5/6+ ε. For i = 0 · · · lg k0− c, we begin a round i with a committee of ki = k0/2i processors, a
βi = β0+

∑
j = 0i1/ ln2 ki fraction of which are bad or whose identity is not known to all processors.

We execute the subcommittee election protocol with a number of bins bi = ki/48 ln ki. Instead of
Heavy-BA, we use Polylog-BA. As before, we use the bin to select a subcommittee of size ki/2,
while maintaining the fraction of good processors in the result. This subcommittee becomes the
committee for round i + 1. A version of Lemma 3.2 still goes through for this number of bins and
we have:
Lemma 7.1. Assuming the calls to Polylog-BA are successful, then with probability > 1 − 1/ki

the fraction of good processors in the lightest bin is > α
2 (1− βi)

Say that a subcommittee or committee is i-bad if the fraction of processors which are bad or
such that all good processors do not agree on their identities is less than 1 − β +

∑i
j

1
lg2 kj

), and

i-good otherwise. By Lemma 2.2, we obtain a family of (1/ ln2 ki, ln4 ki/ki, βi) samplers HL
i , where

r = O(k), s = ki and d = ki/2 and β0 < βi < β0 + ε.
Using an argument similar to the proof of Lemma 3.3 and including the probability that the

protoc we obtain
Lemma 7.2. Assuming the calls to Polylog-BA are successful, the probability > 1 − 1/ki, when
Elect-Subcommittee is run with samplers HL

i the output is a i-good subcommittee of size ki/2.
We have shown in the previous section that all good processors agree on a fraction of β0 = 5/6 + ε
good processors in the top node’s committee with probability 1− 1/nc1 , for some constant c1.
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Note that if all good processors agree on the identities of a set of processors in the top node’s
committee, they will continue to agree on the views of the identities of those processors in the
subcommittee (which go on to become the committee in the next iteration). After c successful
rounds, the fraction of bad processors is less than β0 +

∑lg k0
j=c 1/j2 which is less than β0 + ε for some

constant c. The probability of success of all the rounds is P1 = 1−
∑c

0 1/kj > 1− 1/2c−1.
Given that all rounds are successful, the subcommittee returned in the last iteration contains

at least 5/6 + ε/2 good processors known to all the good processors. Then the probability that
each processor outputs the same leader is at least the probability that 2/3 of the processors choose
the same good leader. There are a constant 2c processors in the last committee. The probability
that 2/3 of these agree on a good leader is greater than P2 = 2−2c

(5/6) which is also a constant.
With constant probability P1 ∗P2 the rounds are all successful and the 2/3 of the processors agree
on a good leader. Hence Heavy-BA results in all good processors in the committee coming to
agreement.

The running time of this protocol is dominated by Heavy-BA and is O(2k0). If we use
Polylog-BA instead of Heavy-BA , we reduce the running time to polylogarithmic in n. The
probability of failure of each round i is dominated by the probability of failure of Polylog-BA
which is O(1/ lnc′ ki), for any constant c′. Summing over all the rounds again gives a constant
probability of failure.

The Quasi-Poly-BA protocol
Note (*) below: if a majority of views have v(P ) =⊥ or there is no majority view, then the majority
view is set to ⊥.
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Protocol 2 The Quasi-Poly-BA protocol on good processor p

1: while there is a committee node C such that vp(C) is not fixed do
2: for all such nodes C in parallel do
3: if vp(C) is not ready then {find processors in this committee}
4: Let P1, . . . , Pk be the nodes with edges to C.
5: if vp(Pi) is fixed for at least a (1− 2/ lnn) fraction of these Pi’s then
6: if p ∈ vp(C) then
7: p sends vp(C) to all processors.
8: p waits until it receives vp′(C) from at least a 2/3 fraction of the processors p′ ∈ vp(C)
9: For each position of vp(C), p revises its view to agree with the majority of vp′(C)

received*.
10: vp(C) is set to be ready.
11: else if C is in layer ` for some ` < `∗ then {subcommittee election node}
12: if p ∈ vp(C) then
13: p runs Elect-Subcommittee with the other processors in vp(C) to elect a subcom-

mittee.
14: When p has decided on election results, it sends the set of winning identifiers to all

processors.
15: p waits to receive election result messages from at least 5/6k processors in vp(C).
16: if the majority of received messages agree on the elected subcommittee then
17: p determines the elected subcommittee by taking the (agreeing) majority.
18: p uses vp(C) and the elected subcommittee to determine vp(P ) for neighbors P of C

at level ` + 1.
19: else
20: p sets vp(C) arbitrarily.
21: vp(C) is set to be fixed, as are vp(P ) for neighbors P of C at level ` + 1.
22: else {C = C∗, actual Byzantine agreement performed}
23: if p ∈ vp(C) then
24: p runs Heavy-BA with the processors in vp(C).
25: p sends the agreed upon bit value to all processors. vp(C) is set to be fixed, and p

terminates.
26: else
27: p waits to receive a bit from at least a α`∗ fraction of processors in vp(C).
28: p takes the majority of received bit values as agreed upon. vp(C) is set to be fixed,

and p terminates.
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