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Abstract
We resolve two long-standing open problems in distributed computation by describing polylogarithmic

protocols for Byzantine agreement and leader election in the asynchronous full information model with a non-
adaptive malicious adversary. All past protocols for asynchronous Byzantine Agreement had been exponential,
and no protocol for asynchronous leader election had been known. Our protocols tolerate up to (1

3 − ε) · n
faulty processors, for any positive constant ε. They are Monte Carlo, succeeding with probability 1− o(1) for
Byzantine agreement, and constant probability for leader election. A key technical contribution of our paper
is a new approach for emulating Feige’s lightest bin protocol, even with adversarial message scheduling.

1 Introduction
Two fundamental problems in distributed computing are Byzantine agreement and leader election. In both, up
to a constant fraction of n processors are bad (or faulty), while the others are good (or non-faulty). Faulty
processors can deviate from the protocol in arbitrary ways, and are thus modeled as controlled by an adversary.
In the Byzantine agreement problem, each processor is initially given an input bit, and all good processors must
come to an agreement on a bit which coincides with at least one of their input bits. In the leader election problem,
all good processors must come to agreement on some good processor.

We study these problems in a very general model of computing, the asynchronous, full information message
passing model. In the full information model, the adversary is computationally unbounded and has access to the
content of all messages. In the asynchronous model, each communication can take an arbitrary and unknown
amount of time, and there is no assumption of a joint clock as in the synchronous model. Communication is by
passing a message from one processor to another. The advantages of the full information model are its simplicity
and avoidance of complexity assumptions.

Asynchrony introduces fundamental difficulties into distributed protocol design; intuitively, protocols are
unable to distinguish failed processors from delayed messages. Indeed, Fischer, Lynch and Patterson [16] showed
that with just a single faulty processor, no deterministic asynchronous Byzantine agreement is possible. Even
with randomization, there has been no significant progress in the asynchronous full information model in the
last 22 years since Ben-Or and Bracha [5, 10] gave a randomized protocol for Byzantine agreement succeeding
with probability 1 in expected exponential time. The resilience of Bracha’s protocol, i.e., the number of faulty
processors it can tolerate, is t < n/3.

Asynchronous Byzantine agreement in the full information model in expected time o(n) is impossible with
an adversary which can corrupt processors adaptively [2, 3]. Since our goal is to design polylogarithmic time
protocols, we consider here a model where the adversary is non-adaptive, in that it must choose the corrupt
processors at the outset of the protocol.

We give the first sub-exponential protocol for Byzantine agreement in the asynchronous full information
model. In fact, our protocol takes worst-case time polylogarithmic (resp. quasi-polynomial) in n and succeeds
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with probability at least 1 − 1/ logc n (resp. 1 − 1/nc) for any constant c, while tolerating a constant fraction of
faulty processors. Specifically, we prove the following for Byzantine agreement:

Theorem 1.1. In the asynchronous full information model with a non-adaptive adversary, for any constants
ε, c > 0, there are Byzantine agreement protocols using Õ(n2) bits of communication, with

• running time 2Θ(log8 n), resilience 1
3 − ε, and success probability 1 − 1/nc.

• running time polylogarithmic in n, resilience 1
3 − ε, and success probability 1 − 1/ logc n.

Our result substantially narrows the gap (to within logn factors) between synchronous and asynchronous
distributed computing in the full information model with a non-adaptive adversary. However, we should point
out that the synchronous protocols are (or can be easily made) Las Vegas in the sense that all processors eventually
output the same bit.

The leader election problem is clearly impossible to solve against an adaptive adversary, and the success
probability against a non-adaptive adversary cannot exceed 1 − t/n, as bad processors can just behave like good
processors. Tighter upper bounds on the success probability are given by Feige [15]. As our second main result, we
give the first asynchronous leader election protocol in the full information model with constant success probability
against a constant fraction of bad processors. This immediately implies the first asynchronous coin-flipping
protocol as well. Our leader election protocol, like the Byzantine agreement protocol, runs in polylogarithmic
time. We show:

Theorem 1.2. There is a leader election protocol in the asynchronous full information model against a non-
adaptive adversary that uses Õ(n2) bits of communication, and has running time polylogarithmic in n, resilience
1
3 − ε, and success probability that is a positive constant.

Technical Contribution: First, we present a novel table-based approach that enables a set of processors to
collaboratively make a random choice, such that this random choice is essentially independent of the order in
which the adversary schedules messages (Section 3.2). Second, we describe how to adapt the layered network
from [19, 20] to an asynchronous setting (Section 4). In [19, 20], the layered network was used to reduce
communication costs in a synchronous setting. Here, we adapt it to reduce the runtime of an algorithm in
an asynchronous setting. This adaptation suggests that the layered network approach may be useful for reducing
other resource costs for other distributed algorithms running in an adversarial setting.

A core technique for all of our protocols is asynchronous universe reduction. Universe reduction consists
of reducing the number of processors under consideration from n to k " n while ensuring that the fraction of
good processors among the selected k is nearly the same as among the initial n (a formal definition is given in
Section 2). Feige [15] proposed a simple and elegant synchronous universe reduction technique in the broadcast
model; we show how to extend this technique to the asynchronous domain.

Other Related Work: Leader election and global coin-tossing have been extensively studied in a synchronous
full information model with a non-adaptive adversary and an atomic broadcast primitive, where each message sent
(even by corrupt processors) is received identically by all processors [7, 1, 25, 22, 24]. These papers culminated
in Feige’s O(log∗ n) protocol for leader election [15], which we adapt and use here.

Without the atomic broadcast primitive, polylogarithmic round randomized protocols against a non-adaptive
adversary in the synchronous full information model were developed independently by King, Saia, Sanwalani,
and Vee [19, 20] and by Ben-Or, Goldwasser, Pavlov and Vaikuntanathan [8, 17]. [19] presents protocols for
both Byzantine agreement and leader election with resilience 1

3+ε which are “scalable” in that each processor
sends and processes a number of bits polylogarithmic in n. The protocols obtain “almost everywhere” agreement
(agreement among a 1 − O(1/ log n) fraction of good processors) with probability 1− 1/nc. With one additional
round of sending one bit to every other processor, agreement can be obtained among all good processors, in a
worst-case number of rounds which is polylogarithmic in n. [20] showed that the almost everywhere agreement
protocol could be implemented scalably on a sparse network in polylogarithmically many rounds. [8] and [17]
give protocols with resilience 1

4+ε and 1
3+ε , respectively, using O(log n) rounds in expectation.

Universe reduction protocols are found in several papers on leader election and coin tossing in the synchronous
broadcast model. In particular, Gradwohl, Vadhan, and Zuckerman [18] use a 2-stage process involving Feige’s



leader election protocol, followed by the application of a sampler, to perform a selection with an adversarial
majority. This two-stage protocol is similar to the subcommittee election and expansion procedure we present in
Section 3.

Several papers for asynchronous Byzantine agreement have appeared since the 1980’s which do not assume
a full information model, but instead assume either private channels between each pair of processors [9, 12] or
a computationally bounded adversary and cryptographic primitives [26], culminating in protocols with expected
O(1) round time with optimal resilience n

3 and O(n2) messages [11, 21]. The problem of parallel broadcast
addressed in Section 3.1 of this paper was posed as the Interactive Consistency Problem for a model with private
channels by Pease, Shostak and Lamport [23] and solved in constant time by Ben-Or and El-Yaniv [6].

Recently, Attiya and Censor [4] improved a result of [14] to show that any randomized Byzantine agreement
protocol has probability at least Ω( 1

polylog(n) ) of not terminating (or failing to agree) within O(log log n)
(asynchronous) rounds, and probability at least Ω( 1

poly(n) ) for not terminating within O(log n) (asynchronous)
rounds. This lower bound holds in our model, against a non-adaptive adversary, and even against a much weaker
adversary which is oblivious to the content of messages.

2 Preliminaries and Overview
We assume a fully connected network of n processors, whose IDs are common knowledge. Each processor has a
private coin. Communication channels are authenticated, in the sense that whenever a processor sends a message
to another, the identity of the sender is known to the recipient.

We assume an asynchronous full information model with a nonadaptive (sometimes called static) malicious
adversary. That is, the adversary chooses the set of bad processors at the start of the protocol. Bad processors
can engage in any kind of deviations from the protocol, including false messages, collusion, or crash failures.

The adversary can view each message as soon as it is sent, and determines the message’s delay as well as
the order in which messages are received. The running time of a protocol is described in terms of the maximum
delay of any message ∆. Thus, a running time of f(n) means that all good processors reach agreement by time
∆f(n). Alternatively, f(n) is the maximum length of any chain of messages [13]. For notational convenience,
we will sometimes describe the running time of a protocol by the number of steps a protocol takes or has taken.
Thus, when we say a protocol has run for q(n) steps, we mean it has run for at most time ∆q(n).

Our protocols succeed with a small probability of error. Errors may be either deadlock or finishing with
disagreement among the processors.

We use the phrase with high probability (w.h.p.) to mean that an event happens with probability at least
1 − 1/nc for every constant c and sufficiently large n. For readability, we treat logn as an integer throughout.

2.1 Overview Our protocols are based on a novel asynchronous protocol for universe reduction. We define the
(θ, k)-universe reduction problem for the asynchronous model as follows: Given n processors with an (unknown)
subset of good processors G, each good processor p should output a subset of k processors Sp such that
|

T
p∈G Sp∩G|

k > |G|
n − θ. That is, the sets output by every good processor p contain a common subset of good

processors that makes up nearly the same fraction of each set as the fraction of good processors in the universe.
To establish this result (and Theorems 1.1 and 1.2), we adapt the synchronous universe reduction protocol of

King et al. [19] to the asynchronous communication model. The processors are divided into committee mulitsets
of polylogarithmic size; each processor is assigned to multiple committees. Each committee in parallel elects a
small number of processors (called a subcommittee) from within itself. The process is repeated on the multiset of
elected processors until the number of remaining processors has been sufficiently reduced. At that point, to solve
Byzantine agreement, the remaining few processors run Bracha’s [10] (exponential-time) randomized asynchronous
Byzantine agreement protocol. To solve leader election, the universe reduction protocol is first applied to reduce
the number of processors to a single small committee. Then, using a variant of the subcommittee election protocol,
the committee is further repeatedly reduced until a constant number of processors remain. With a smaller
(constant) probability, these processors select the same leader and verify this selection. For both problems, every
good processor may associate a different subset of processors with each committee, but since the intersection
of the subsets is large and contains mostly good processors, the good processors in the intersection come to a
decision that all good processors then agree to.

Two main issues need to be addressed: (1) Each committee with enough good processors must be able



to robustly and efficiently hold an election. (2) A sufficient number of committees must contain enough good
processors that are known to all processors. The first issue is addressed in Section 3, where we adapt Feige’s
“Lightest Bin Protocol” for leader election in synchronous broadcast environments to our asynchronous point-to-
point connection model.

The second issue is resolved in Section 4, using a network structure similar to that in [19] and reasoning about
the different “views” of the processors. Specifically, in order to assign processors to committees, we use a layered
network of averaging samplers, bipartite graphs with random-like properties.

We discuss in Section 4 how to put the various building blocks together to obtain a quasi-polynomial time
protocol for Byzantine agreement, and in Section 5 how to modify the protocol to achieve polylogarithmic running
time. Section 6 describes the leader election protocol.

2.2 Samplers Our protocols rely extensively on the use of averaging (or oblivious) samplers, families of
bipartite graphs which define subsets of elements such that all but a small number contain at most a fraction of
“bad” elements close to the fraction of bad elements of the entire set. Bipartite graphs with such random-like
properties have been used extensively in the design of distributed protocols [13] and have alternatively been called
expanders, dispersers and samplers. An exact correspondence between extractors and averaging samplers is given
in [27].

definition 2.1. Let [r] denote the set of integers {1, . . . , r}, and [s]d the multisets of size d consisting of elements
of [s]. Let H : [r] → [s]d be a function assigning multisets of size d to integers. We define the intersection of a
multiset A and a set B to be the number of elements of A which are in B.

H is a (θ, δ) sampler if for every set S ⊂ [s], at most a δ fraction of all inputs x have |H(x)∩S|
d > |S|

s + θ.

The following two lemmas establish the existence of samplers with various parameter combinations. For the
use of these samplers in our protocols, we assume either a nonuniform model in which each processor has a copy
of the required samplers for a given input size, or else that each processor initializes by constructing the required
samplers in exponential time. Alternatively, we could use versions of the efficient constructions given in [18] at
the expense of a polylogarithmic overhead in the overall running time of the protocol.

Lemma 2.1. ([18, Lemma 4.7]) For every s, θ, δ > 0 and r ≥ s/δ, there exists a constant c such that for all
d ≥ c log(1/δ)/θ2, there is a (θ, δ) sampler H : [r] → [s]d.

Lemma 2.2. For every r, s, d, θ, δ > 0 such that 2 log2(e) · dθ2δ − (1 + δ) > s/r, there exists a (θ, δ) sampler
H : [r] → [s]d.

Proof. We prove the existence of this sampler by the probabilistic method. For each input x of [r], form H(x)
by randomly selecting with replacement d elements of [s]. Fix any set S ⊆ [s]. Then, E [|H(x) ∩ S|] = d|S|/s. By
standard Chernoff-Hoeffding bounds (e.g., [?, Theorem 2(a)]), Prob[||H(x)∩S|−E [|H(x) ∩ S|] | ≥ θd] ≤ 2e−2dθ2

,
for any fixed x ∈ R and S.

Thus, for a fixed set R of size δr, and a fixed subset S of [s], the probability that |H(x) ∩ S| exceeds
( |S|

s + θ) · d for all inputs x ∈ R is less than 2rδe−2dθ2rδ. Taking a union bound over all choices of subsets S and
R, the probability that this occurs for any subset of δr inputs and any subset S of [s] is less than 2r+s+rδe−2dθ2rδ.
This is less than 1 when s/r < 2 log2(e)dδθ2 − (1 + δ). Hence, whenever the condition is satisfied, the desired
sampler exists.

3 Subcommittee Election
We describe a protocol Elect-Subcommittee for asynchronously electing a subcommittee of processors from
a committee of k processors in which at least k − t are good. In Feige’s protocol [15], each processor randomly
selects a “bin number” from {1, . . . , b} and broadcasts it to the other processors. The subcommittee then consists
of all processors which chose the bin selected by the smallest number of processors. The intuition is that w.h.p.,
each bin will have a similar number of good processors, and the bad processors cannot gain a disproportionate
fraction of a bin without increasing the bin’s size to a point where it will not be selected any more.

In adapting this protocol to our model, we note that when t or fewer messages are delayed, the protocol
cannot wait for them (otherwise, the adversary could deadlock the protocol by simply not sending any messages).
Several difficulties have to be overcome:



1. Broadcast simulation: Each processor needs to communicate its message (e.g., bin choice), but the adversary
can prevent some good processors from being heard by any of the others by delaying their messages. Also,
processors need to come to consensus about the choices of the bad processors.

2. Keeping the bins balanced: If t > k/b, the adversary can delay messages from the good processors which
choose a particular bin i and fill it with few enough bad processors to make it the lightest bin, gaining full
control over the subcommittee.

3. Restoring the fraction of good processors: Even if the message delays were independent of their content, only
a constant fraction of the good processors will be heard from; good processors will thus be underrepresented
in the subcommittee.

3.1 Broadcast simulation A broadcast is a communication of a processor to all the other processors. If all
processors accept the message that was sent by the broadcasting processor, then the broadcast is successful. We
consider the problem of parallel broadcast in which all (except possibly bad) processors attempt to broadcast their
respective messages at the same time. Assuming that at most t < (1

3 − ε) · k processors are bad, our protocol
guarantees that when k processors broadcast in parallel, all processors will come to agreement on each message
(which may differ from the original message sent), and the broadcasts of at least εk good processors will be
successful. We assume that all messages are binary strings of length m.

Our protocol Parallel-Broadcast bears a lot of similarity with the protocol Spread by Ben-Or and El-
Yaniv [6], and has similar guarantees. Since [6] do not explicitly state the bit complexity of their protocols, and
the correctness guarantees are stated somewhat differently, we present our protocol here for completeness.

The basis for broadcast simulation among the k processors is Bracha’s exponential time asynchronous protocol
for solving the Byzantine agreement problem [10]. Bracha’s protocol is Las Vegas. Here, we treat it as Monte
Carlo instead, and characterize the probability that it has succeeded after a given number of steps.

Proposition 3.1. (Bracha’s Byzantine agreement [10]) Assume that the fraction of good processors is
strictly greater than 2/3, and let q be any positive constant. Then, Bracha’s Byzantine agreement protocol has the
following properties:

1. Every processor terminates after q · 2k steps, and is required to send and receive at most O((log q + k) · q2k)
bits.

2. With probability at least 1− 1/eq, each processor outputs the same bit. This bit was the input bit of at least
one good processor.

3. If, in addition, more than 2k/3 good processors have the same input bit v′, then upon termination, after a
constant number of deterministic steps, every good processor outputs the value v′.

Bracha’s exponential time asynchronous Byzantine agreement protocol [10] can easily be extended to the case
where each processor has three possible input values 0, 1 and ∗, using techniques similar to those of Turpin and
Coan [?]. To do so, one runs Bracha’s protocol twice. On the first run, the processors decide whether the outcome
is 0 or not. If the outcome is not 0, the processors run the protocol a second time to decide between 1 and ∗.
Crucially, if the outcome of the first run is not 0, then every good processor with an input bit of 0 resets its input
bit to ∗ for the second run of Bracha’s protocol. For the remainder of the paper, we refer to this protocol as
Heavy-BA (heavy weight Byzantine agreement).

Proposition 3.2. (Extended Bracha’s Byzantine agreement [10]) Assume that the fraction of good pro-
cessors is strictly greater than 2/3, and let q be any positive constant. Let the possible inputs be 0, 1 and ∗. Then,
the extended Bracha’s Byzantine agreement protocol has the following properties:

1. Every processor terminates after 2(q + 1) · 2k steps, and is required to send and receive at most O((log q +
k) · q2k) bits.

2. With probability at least 1− 1/eq, each processor outputs the same bit. This bit was the input bit of at least
one good processor.



3. If more than 2k/3 good processors have the same input bit v′, then upon termination, after a constant
number of deterministic steps, every good processor outputs the value v′.

4. If the input values of more than 2k/3 good processors are all contained in {0, ∗} or are all contained in
{1, ∗}, then upon termination, after a constant number of deterministic steps, the outputs of good processors
are all contained in {0, ∗} or all contained in {1, ∗}, respectively.

The parallel broadcast protocol has two parts. The first part uses as a subroutine Bracha’s reliable broadcast
protocol (which we denote by Reliable-Broadcast). Reliable-Broadcast is a part of Bracha’s Byzantine
agreement protocol [10]. We describe its relevant properties here:

Proposition 3.3. (Bracha’s reliable broadcast [10]) Reliable-Broadcast begins with the broadcasting
processor p sending a message to every other processor. Assume that the fraction of good processors is greater
than 2/3. Then, Reliable-Broadcast has the following properties:

1. If a good processor p′ accepts a message from processor p, then every other good processor will accept the
same message within O(1) time steps.

2. If the broadcasting processor p is good, then within O(1) time steps, its message is accepted by every other
good processor.

Using Reliable-Broadcast, we describe our parallel broadcast protocol Parallel-Broadcast as
Protocol 1. In this protocol, c is any positive constant; the choice of c affects the success probability.

Protocol 1 The Parallel-Broadcast protocol at good processor p
1: Send own message to all other processors using Reliable-Broadcast.
2: Participate in Reliable-Broadcast for the messages of all other processors in parallel.
3: Maintain a partial list Lp of accepted messages.
4: if |Lp| ≥ k − t then
5: Send Lp to all other processors (without using Reliable-Broadcast).
6: (Continue participating in Reliable-Broadcast for other messages.)
7: For each received list Lp′ , mark it as verified if p has accepted all messages in Lp′ (before or after sending

Lp).
8: if p has verified at least k − t lists Lp′ then
9: Create a full list Fp, as follows:

10: Each message accepted by p is in Fp.
11: For all messages not yet accepted by p, Fp contains ∗m.
12: (Continue participating in Reliable-Broadcast for other messages. However, messages accepted later

will not affect Fp.)
13: if p has created Fp then
14: Participate in km parallel versions of Heavy-BA with the parameter q = log(kmnc), to determine each

bit of every message sent by every processor.

Proposition 3.4. The protocol Parallel-Broadcast does not deadlock.

Proof. At least k − t good processors participate in Reliable-Broadcast. By part (2) of Proposition 3.3,
every broadcast from a good processor is accepted. Therefore, each partial list Lp will contain at least k − t
messages within a constant number of steps.

Since p will receive at least k − t partial lists from good processors, it will succeed in verifying k − t partial
lists. This uses part (1) of Proposition 3.3, which guarantees that any message accepted by a good processor p′

will be accepted by p as well, within a constant number of steps.
Thus, all good processors eventually enter the Heavy-BA part of the protocol, and by the termination

property (1) of Proposition 3.2, every processor terminates.



The relevant properties of the protocol Parallel-Broadcast are summarized by the following lemma:

Lemma 3.1. Assume that t ≤ (1
3 − ε) · k processors are bad. If Parallel-Broadcast executes on k processors,

then for any positive c and n:

1. With probability at least 1−1/nc, all good processors agree on a value of the message sent by each processor.

2. Every processor enters Heavy-BA after no more than O(1) time steps and sending O(k2m) bits.

3. Every processor terminates after 2(q+1)2k+O(1) steps, and is required to send and receive O((log q+k)q2k)
bits.

4. The broadcasts of at least 3εk good processors are successful, i.e., the messages agreed on for these good
processors are the messages which were sent by these processors.

5. The broadcast of a good processor is either successful, or the agreed-upon message for the good processor is
∗m.

Proof. 1. By Proposition 3.4, there is no deadlock. Therefore, all good processors will complete the protocol,
running Heavy-BA on all bits of all messages. By part (2) of Proposition 3.2 with q = log(kmnc), we obtain
that with probability at least 1− 1/nc, all good processors will agree on a message for each processor after
running Heavy-BA.

2. By definition of Parallel-Broadcast, the number of time steps before the execution of Heavy-BA is a
constant. The number of bits sent is dominated by the distribution of the list of accepted messages to other
processors.

3. The total number of time steps is dominated by the running time of Heavy-BA which is given in part (1)
of Proposition 3.2.

4. We first show, using an averaging argument, that there are at least 3εk good processors whose messages are
on the partial lists Lp of at least t + 1 good processors p. The sum of the sizes of the partial lists held by
good processors is at least (k − t)2. Let A be the set of processors which are good and whose messages (as
sent) are on at least t+1 partial lists of good processors. The partial lists of good processors are partitioned
into messages from (1) processors in A, (2) good processors not in A, and (3) bad processors. The respective
numbers of messages in the lists are at most (1) |A| · (k − t), (2) (k − t − |A|) · t, and (3) t · (k − t). Hence,
we have that |A| · (k − t) + (k − t − |A|) · t + t · (k − t) ≥ (k − t)2, and rearranging yields that

|A| ≥ (k−3t)(k−t)
k−2t ≥ 3εk · 2/3+ε

1/3+2ε ≥ 3εk.

Next, we show that any message by a good processor p appearing on the partial lists of at least t + 1 good
processors will be on the full lists of all good processors. This follows because in order to proceed, a good
processor p′ is required to verify at least k − t partial lists (i.e., accept all messages in them). Of these, at
least one must contain p’s message; hence, p’s message will be on the full list of p′.

Thus, all good processors enter Heavy-BA agreeing on these 3εk messages. By part (3) of Proposition 3.2,
all good processors will agree with these processors’ messages after running Heavy-BA.

5. Let p be a good processor. By Proposition 3.3 and Line 11 of Parallel-Broadcast, for each good
processor p′, either p’s correct message is accepted by p′, or p′ sets p’s message to ∗m in its full list.

By the definition of Byzantine Agreement, the agreed-upon message has to match the message value held
by at least one good processor p′, which can only be the correct message or ∗m by the above discussion.

Parallel-Broadcast can be composed to simulate multiple rounds of synchronous broadcast of messages.
To perform r rounds of simulated broadcast by each processor, each processor p does the following:

1. p runs Parallel-Broadcast with the parameter in each execution of Heavy-BA set to q = log(kmncr).



2. p enters the next round only after committing to every message sent by every processor.

Lemma 3.2. Let ε and c be any positive constants. Let t ≤ (1
3 − ε) ·k be the number of bad processors. Parallel-

Broadcast with the parameter q = log(kmncr) can be used to simulate a sequence of r rounds of synchronous
broadcasts of messages of length m, so that with probability at least 1 − 1/nc:

1. For each round, all good processors agree on a message for each processor within 2(q +1)2k +O(1) time per
round, for a total of 2r(q + 1)2k time. The total number of bits sent is O(kmrq2k) · log(kmrq2k).

2. For any round number i, once any processor p enters round i + 1, the agreed-upon value of every message
sent by every processor in round i is known to p.

3. After each broadcast round, the messages sent by more than 3εk good processors have been accepted.

Proof. 1. Both the time and communication complexity are dominated by the invocation of Heavy-BA at
the end of each round. Because k processors’ messages need to be agreed upon, and each message contains
m bits, there will be a total of km parallel invocations of Heavy-BA per round, with a probability of
failure of at most 1/eq for a single broadcast. By a union bound over all kmr invocations of Heavy-BA,
the probability of failure of any invocation of Heavy-BA is no greater than kmr(1/eq) = O(1/nc). That
is, with probability at least 1 − 1/nc, all good processors agree on every bit of every message throughout.

Each bit of each message (of length m) sent by each of the k processors in each of the r rounds is agreed
upon using a separate version of Heavy-BA. Each such invocation takes 2(q + 1)2k steps; these steps also
need to be labeled by the identity of the sending processor, the round, and the number of the bit. Therefore,
each transmission is accompanied by a label of length O(log(q2k) + log(mkr)).

2. This follows directly from the definition of multi-step Parallel-Broadcast (Step 2) and part (1) of
Lemma 3.1.

3. This follows from part (4) of Lemma 3.1.

3.2 Keeping bins balanced To address problem (2), our election protocol is designed so that the set of
good processors whose choices are used to select the subcommittee is in a sense determined before they make
their choices. The simulation of Feige’s “Lightest Bin” protocol is run for k + 1 rounds. Each good processor p
maintains a (k + 1)× (k + 1) table whose (i, j) entry is the agreed-upon value of processor j’s bin choice in round
i. Each message sent by a processor p in round i contains all of its previous bin choices B(p)

i′ from rounds i′ < i,
and is broadcast using simulated broadcast. The message length is no greater than k times the length of the bin
choice (k lg k), and q = log(k · k lg k · nc · (k + 1)) = O(log n). The table is (retroactively) updated if necessary: if
a message from processor j is accepted in round i, then none of the previous entries regarding processor j will be
∗.

Let Si be the set of processors whose messages were accepted in some round i′ ≥ i, and let Ai ⊆ Si be the set of
good processors whose messages for round i were accepted by the end of round i. Then Sk+1 ⊆ Sk ⊆ Sk−1 · · · ⊆ S1.
If |S1| > 0, then by the Pigeonhole Principle, there is an r such that Sr = Sr−1; we fix the smallest such r. The
accepted bin choices in round r are then used to determine the lightest bin in Feige’s protocol. We say that
processor p is in bin B in round i if B(p)

i = B, and p’s message selecting B is (eventually) accepted.

Lemma 3.3. Let c, ε be any positive constants, and suppose that there are k processors of which t ≤ (1
3 − ε) · k

are bad. There is a constant c′ such that if the number of bins is b = k/(c′ log n), then

1. All good processors agree on the set of processors in Ar.

2. With probability at least 1 − 1/nc, the number of good processors in the lightest bin in round r (from Ar−1)
is at least γ · c′ log n, where γ = 3ε

2 .

3. The total time is (k + 1)(q + 1)2k = O(k2k log n).

4. The total number of bits sent is O(k42k log n log k).



Proof. 1. This follows directly from Lemma 3.2 (2).

2. Lemma 3.2 implies that with probability 1 − 1/nc+1, all rounds of broadcast have been successful, i.e., all
good processors’ tables are identical. From Lemma 3.2 (3), it follows that |Ai| ≥ 3εk for all i.
Fix any bin B and round i. By Lemma 3.2 (2), when p ∈ Ai−1 chooses its bin in round i, the messages for
all processors in Ai−1 for round i − 1 are already accepted. Let the random variable Xj = 1 if p ∈ Ai−1

chooses B in round i and 0 otherwise. Then X =
∑

j Xj is the number of good processors in Ai−1 who
choose B in round i. The Xj are independent coin tosses with Prob[Xj = 1] = 1/b and E [X ] = |Ai|/b.
Conditioned on the event that all rounds of broadcast have been successful, we apply Chernoff Bounds to
get Prob[X < E [X ] /2] ≤ e−E[X]/12 or Prob[X < E [X ] /2] ≤ 1/n(c+3), for c′ ≥ 12(c+3)

ε . By a union bound
over all rounds i = 1, . . . , k and all b ≤ n bins, the probability that any bin B is chosen in round i by fewer
than 3kε

2b processors in Ai−1 is at most 1/nc+1.
Hence with probability at least 1− 2/nc+1 > 1 − 1/nc (for sufficiently large n), all rounds of the broadcast
are successful, |Ai| ≥ 3kε

b for all i, and at least 3kε
2b processors are in every bin in every round.

In particular, at time step r when Sr = Sr−1, Ar−1 ⊆ Sr−1 = Sr, so the lightest bin in round r contains at
least 3kε

2b processors.

3. This follows directly from Lemma 3.2 (1), by substituting r = k + 1, m = k lg k, and q = log(k · k lg k · nc ·
(k + 1)) = O(log n).

4. Also follows from Lemma 3.2 (1) by substitution.

3.3 Enlarging the fraction of good processors To address problem (3), the processors in the lightest bin
are used to select a better subcommittee with probability at least 1 − 1/nc for any positive constant c. Assume
that the processors in the committee are numbered 1 to k. The processors in the subcommittee each randomly
pick a block of a constant number x of bits, which are then concatenated in order of processor number to form an
input to a sampler. These bits are sent in the same message as the bin choice.

Let R be the collection of all binary strings of length between xγk/b and xk/b (where γ is defined in
Lemma 3.3), and let r = |R|. Then 2xk/b < r < (xk/b) · 2xk/b. By Lemma 2.1, there is a (1/ log n, r−a)
sampler H : [r] → [k]d for any fixed a < 1, with d = O(log3 n). The output of H is the subcommittee elected by
the committee, of size O(log3 n). Notice that this subcommittee is a multiset, i.e., may contain multiple copies
of the same processor.

Lemma 3.4. Assume that k = logc n for a constant c > 3. W.h.p., the subcommittee produced by H contains less
than a (t/k + 1/ logn) fraction of bad processors, and all processors in the committee agree on this subcommittee.

Proof. We call an input ρ ∈ R to the sampler bad if it maps to an output H(ρ) corresponding to a subcommittee
with more than a (t/k + 1/ logn) fraction of bad processors.

Fix a bad input ρ. By Lemma 3.3, if ρ is generated by the lightest bin, then w.h.p., at least γk/b blocks chosen
uniformly at random by processors in Ar−1 match a subsequence of blocks of ρ. The probability of matching a
particular subsequence is less than 2−xγk/b. By the definition of a sampler, there are at most r1−a bad inputs.
There is a constant c′ such that we may set a = 1 − c′γ/2 and r1−a = 2xγk/2b. Taking the union bound over all
possible bins and round numbers for the lightest bin and all possible subsequences of blocks, and the different
bad inputs, the probability of the lightest bin generating a bad input is at most b(k + 1) · 2xγk/2b · 2−xγk/b < n−c′′

for every positive constant c′′, and a sufficiently large constant x which depends only on c′′.
Thus, w.h.p., the input to the sampler is good, and a subcommittee with no more than a (t/k + 1/ logn)

fraction of bad processors is output.

3.4 The Subcommittee Election Protocol We obtain the protocol Elect-Subcommittee, run at each
processor p in a committee C = {p1, . . . , pk} of processors, with k > log3 n.

The properties of the multiset elected as a subcommittee are summarized below. The proof follows directly
from Lemmas 3.2, 3.3 and 3.4.

Lemma 3.5. For ε > 0, if a committee of k processors has t < (1
3 −ε) ·k bad processors, then with high probability:



Protocol 2 The Elect-Subcommittee protocol on good processor p

1: for i = 1 to k + 1 do
2: Randomly select a bin number B(p)

i ∈ {1, 2, . . . , b} (where b = k/(c′ log n)), and a random bit string X(p)
i

of length x.
3: Use Parallel-Broadcast to send ((B(p)

1 , X(p)
1 ), . . . , (B(p)

i , X(p)
i )) to every processor in C.

4: Update all (B(p′)
i′ , X(p′)

i′ ) for i′ ≤ i.
5: Let Si be the multiset of processors p′ for whom B(p′)

i (and X(p′)
i ) are known. Let r be smallest such that

Sr = Sr−1.
6: Let B be the lightest bin in round r, and ρ be the concatenation, ordered by p′, of the blocks {X(p′)

r | B(p′)
r = B}

chosen by the multiset of processors in bin B in round r.
7: Return H(ρ) as the elected subcommittee.

1. Elect-Subcommittee runs in time O(k2k · log n).

2. Every good processor outputs the same elected subcommittee.

3. The elected subcommittee contains O(log3 n) processors, of which at most a (t/k+1/ logn) fraction are bad.

We call a subcommittee election successful if it satisfies the conditions of the lemma above.

4 A Quasi-Polynomial Asynchronous Byzantine Agreement Protocol
The high-level idea of our construction is the following. We want to reduce the number of processors under
consideration to a polylogarithmic number, in order to run the Heavy-BA protocol on the remaining processors,
and have it take sub-exponential time. The Elect-Subcommittee protocol provides us with a way of electing
such a small multiset of processors. However, since the Elect-Subcommittee protocol itself also invokes the
Heavy-BA protocol, it cannot be run on any multiset of processors of more than polylogarithmic size.

Hence, instead of immediately reducing the number of processors, we reduce the number repeatedly
(O(log n/ log log n) times) by a factor of (1− 1/ logn). This is done by assigning, in each iteration, the remaining
processors to committees of size k = Θ(log8 n), such that each processor participates in log3 n committees.
Each committee runs the Elect-Subcommittee protocol to elect a subcommittee of Θ(log3 n) processors. All
processors elected to a subcommittee proceed to the next round. Notice that this does indeed accomplish the
desired reduction in the number of processors.

In order to avoid basing decisions on the actual identities of processors (which could give an adversary
more power by choosing different identities), we instead determine the assignments to committees by a template
network. The template network consists of processor nodes P% and committee nodes C% in each layer &. Edges
from processor nodes to committee nodes indicate membership in the committee. Edges from committee nodes
to processor nodes in the next layer indicate that the committee’s election will determine which actual processors
play the role of the corresponding processor nodes. As the protocol proceeds, processor nodes are thus gradually
“assigned” processors who will serve in the role prescribed by that node.

To define the template network more formally, let &∗ be the minimum integer & such that n/ log% n ≤ log8 n;
note that &∗ = O(log n/ log log n). The layers of the network alternate between processor nodes and committee
nodes. The &th layer of processor nodes is a set P% of s% = n/ log% n nodes. The &th layer of committee nodes is a
set C% of r% = n/ log%+4 n nodes. The &∗th layer of committee nodes has a single node C∗.

Each committee node C ∈ C% (for & <& ∗) has log3 n outgoing edges to nodes in P%+1, such that each node in
P%+1 has exactly one incoming edge. For each node C, these edges are labeled from 1, . . . , log3 n: they determine
which of the log3 n processors elected to the subcommittee will fill the role of which processor nodes in layer &+1.

C also has k = Θ(log8 n) ordered slots. These slots will eventually be filled with identities of processors
who participate in the committee. The processors assigned to slots are determined by the edges into C from the
previous layer. Specifically, the edges between P% and C% are determined by a (1/ logn, 1/ logn) sampler H% where
r = r%, s = s% and d = Θ(log8 n). (The existence of such a sampler follows from Lemma 2.2.) There is an edge
from the ith node in P% to the jth node in C% iff i ∈ H%(j). (In layer &∗, there is an edge to C∗ from every node
in P%∗ .)



The reason for the use of a sampler is as follows: During the execution of the protocol, up to a (1
3 − ε+ o(1))

fraction of the processor nodes at each layer will be assigned to bad nodes. If bad nodes are disproportionately
represented in a committee, they can too strongly influence the outcome of the subcommittee election. By
definition, the sampler H% ensures that whatever set of processor nodes are assigned to bad nodes, at most a
1− 1/(2 logn) fraction of the committees will have more than a (1

3 − ε+ o(1)+1/ logn) fraction of bad members.
This in turn ensures that the committee’s execution of Elect-Subcommittee succeeds with high probability.
This intuition lies at the core of our formal proof below.

Remark 1. Notice that we assume that each processor has access to a copy of the same template network. This
can be accomplished either by pre-specifying it for the given size of the network n at the start of the protocol, or
by generating it in polynomial time. (See the discussion about samplers in Section 2.2.)

4.1 Views and Cores In the description above, we casually referred to a processor being “assigned” to a node
of the template graph. Given that these assignments are the result of a distributed protocol with an adversary,
this is not a well-defined notion. Instead, each processor p maintains views vp(P ) and vp(C) of each processor
node P or committee node C. A view vp(P ) of a processor node is either the name of a processor (which p
believes to be assigned to P ) or ⊥. The view vp(C) of a committee node is an ordered list of the processors which
p associates with C’s slots. These are the same as the processors p associates with the predecessors of C. Each
processor p updates its views throughout the protocol.

Due to delayed messages and adversarial behavior, the views of different processors p, p′ about a processor
node P might differ. Thus, we have to be careful about how we describe the execution of the protocol Elect-
Subcommittee for a committee C. Denote the slots in C by I = {1, 2, . . . , k}.

definition 4.1. (Core) A core of a committee is a set R of good processors p such that

1. every p believes itself to be in the committee, and

2. all processors in R agree on p’s identifier.

That is,
R = {p is good | v−1

p (p) ∩ I -= ∅ and for all p′ ∈ R : v−1
p′ (p) = v−1

p (p)}.

By inspecting the proof of Lemma 3.5, it follows that a large core is sufficient for a successful execution of
Elect-Subcommittee. This is captured in the following

Observation 1. With high probability, in any committee with a core set R such that |R| > (2
3 + ε) · k for some

fixed ε > 0, every p ∈ R will come to agreement on the identifiers of the processors in the elected subcommittee,
and consequently on the actual identities of those processors in the elected subcommittee which come from R.

Notice that the binary strings X(p)
i of length x in the protocol Elect-Subcommittee are now concatenated

in order of increasing slot number from I.

4.2 The Protocol The protocol consists of executions of the Elect-Subcommittee protocol in each
committee node C. Recall that each committee has size k = Θ(log8 n). Since processors participate in many such
committees (both per layer, and across layers), messages sent between processors are annotated with the name of
the committee node C whose election procedure the message contributes to. If a processor p receives a message
from a processor p′, annotated with the committee node C, yet p′ /∈ vp(C), then p simply disregards the message.

Initially, all processors have identical views of processor nodes in layer P0, and views ⊥ for all other processor
nodes. In order to proceed with the Elect-Subcommittee protocol for a committee node C, a processor p
requires that there be “enough” processors in its view of the committee node. We write |vp(C)| for the number
of actual processors (i.e., non-⊥ entries) in p’s view of C. If a processor is in multiple slots of C, it is counted
separately for each slot.

If p ∈ vp(C), then p intends to participate in the Elect-Subcommittee protocol at C. It waits until
|vp(C)| ≥ (1 − 3/ logn) · k, i.e., it knows the identities of at least a (1 − 3/ logn) fraction of the processors to
participate, and then sends its view vp(C) of C to all processors. Once p receives views of C from at least 2k/3



processors in vp(C), p revises its view for each slot to agree with the majority and sets its status σp(C) to ready.
It is possible that there is no majority view for one or more slots, or that the majority of views have vp′(P ) =⊥.
In either of these cases, p sets its revised view of that slot to ⊥.

If p is still in the revised vp(C), then p participates in the subcommittee election at C; otherwise, p waits
to hear from other processors about the results. After the election is run, the status σp(C) is set to fixed. The
formal statement of the Quasi-Poly-BA protocol appears as Protocol 2.

Protocol 3 The Quasi-Poly-BA protocol on good processor p

1: while there is a committee node C such that σp(C) is not fixed do
2: for all such nodes C in parallel do
3: if σp(C) is not ready then {find processors in this committee}
4: if |vp(C)| ≥ (1 − 3/ logn) · k then
5: if p ∈ vp(C) then
6: p sends vp(C) to all processors.
7: p waits until it receives vp′(C) from at least a 2k/3 processors p′ ∈ vp(C).
8: For each position of vp(C), p revises its view to agree with the majority of the vp′(C) received.
9: σp(C) is set to be ready.

10: else if C is in layer & for some & <& ∗ then {subcommittee election node}
11: if p ∈ vp(C) then
12: p runs Elect-Subcommittee with the other processors in vp(C) to elect a subcommittee.
13: When p has decided on election results, it sends the set of winning identifiers to all processors.
14: p waits to receive election result messages from at least 2k/3 processors in vp(C).
15: if the majority of received messages agree on the elected subcommittee then
16: p determines the elected subcommittee by taking the (agreeing) majority.
17: p uses vp(C) and the elected subcommittee to determine vp(P ) for layer-(& + 1) neighbors P of C,

and slots of layer-(&+ 1) committee nodes that these neighbors are assigned to.
18: else
19: p sets vp(P ) arbitrarily for layer-(& + 1) neighbors P of C, and for slots of layer-(& + 1) committee

nodes that these neighbors are assigned to.
20: σp(C) is set to be fixed.
21: else {C = C∗, actual Byzantine agreement performed}
22: if p ∈ vp(C) then
23: p runs Heavy-BA with the processors in vp(C).
24: p sends the agreed-upon bit value to all processors.
25: else
26: p waits to receive a bit from at least a 2k/3 processors in vp(C).
27: p takes the majority of received bit values as agreed upon.
28: σp(C) is set to fixed, and p terminates.

4.3 Proof of Correctness We will prove the following in this section:

Theorem 4.1. W.h.p., the protocol Quasi-Poly-BA terminates in quasi-polynomial time and achieves Byzan-
tine agreement.

The idea of the proof is to show that in each layer &, at most a 1
3 − ε + o(1) fraction of processor nodes

P ∈ P% is “bad”, in the sense that they do not contribute accurately to the execution of Elect-Subcommittee
protocols. This can be either because P is assigned a bad processor, or because of a previous execution of Elect-
Subcommittee which failed to provide consistent views of P to other nodes. We show that the latter only
happens to at most an O(1/ logn) fraction of committees in each layer, because committees are formed according
to a (1/ logn, 1/ logn) sampler. Even the accumulation of all such failures across all layers is not enough to bring
the fraction of bad processor nodes to more than 1

3 − ε + o(1) in any layer. Formally, we define the following:

definition 4.2. (Good, Bad, and Unreliable Nodes) 1. A processor node P ∈ P0 is good if there is a
good processor assigned to this node. All processor nodes P ∈ P0 are reliable.



2. A slot i of a committee node C is good iff its predecessor processor node is good. It is reliable iff its
predecessor processor node is reliable.

3. α% = 1
3 − ε + 10%

ε log n denotes the badness tolerance in layer &.

4. A committee node C ∈ C% for & ≥ 0 is good if the following are true:

• At least a (1 − α% − 1/ logn) fraction of its slots are good.
• At least a (1 − 3/ logn) fraction of its slots are reliable.

5. A processor node P ∈ P% for & > 0 is unreliable if its predecessor committee node is bad. Otherwise, it is
reliable.

6. A processor node P ∈ P% for & > 0 is good if it is reliable, and the predecessor node of C which is sent to
P according to the subcommittee election outcome is good.

7. A node that is not good is bad.

Figure 1 illustrates these definitions and their consequences.
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Figure 1: A depiction of part of the template network. Processor nodes are circles; committee nodes large
rectangles, and their slots are small squares, with their identifiers given. Processors are identified by letters; the
processors assigned to processor nodes and slots are drawn inside the nodes. A bad processor ‘B’ is identified
by its capitalized name. Bad processor or committee nodes are gray, as are bad slots within committee nodes.
Unreliable processor nodes or slots are light gray. The processor nodes assigned to processors ‘r’ and ‘g’ in layer
& are the result of a bad committee, and hence unreliable. The processor node containing ‘B’ is bad because its
processor is bad. The upper committee node is bad because too many of its slots come from bad processor nodes.
Hence, both processor nodes it assigns are unreliable. The outcome of the elections in the committee nodes are
the slot identifiers whose assigned processors are assigned to the processor nodes in the next layer. Because the
slot assigned to ‘g’ was bad, so is the processor node assigned to processor ‘g’ in layer & + 1.

The key lemma in establishing Theorem 4.1 is the following, capturing precisely the intuition we gave above.



Lemma 4.1. Let k = Θ(log8 n) be the size of committees. With high probability, the following hold for all & ≤ &∗

by time O(& · k2k · log2 k):

1. The fraction of good processor nodes in layer P% is at least 1 − α%.

2. For each good processor node P , there exists a processor p such that all views of P are either p or ⊥. (We
call p the identity of P .)

3. The fraction of good committee nodes in layer C% is at least 1 − 2/ logn.

Proof. The proof is by induction on &. For the base case, consider P0. All nodes are reliable, so only nodes
assigned to bad processors are bad. The fraction of good processor nodes is therefore at least 2/3 + ε = α0,
establishing (1). Property (2) follows because the initial assignment is common knowledge.

For the inductive step, assume that properties (1) and (2) hold up to layer &, and property (3) up to layer
&− 1, within time O(& · k2k · log2 k).

We first prove property (3) for layer &. Because each processor node is assigned by exactly one committee
node, the fraction of unreliable processor nodes in layer & is at most 2/ logn.

Recall that the edges between P% and C% are defined by a (1/ logn, 1/ logn) sampler. We apply its expansion
properties twice: once for the set of all unreliable processor nodes, and once for the set of all bad processor nodes.
We obtain that:

1. At most a 1/ logn fraction of committee nodes have more than a 2/ logn + 1/ logn = 3/ logn fraction of
unreliable slots.

2. At most a 1/ logn fraction of committee nodes have more than an α% + 1/ logn fraction of bad slots.

Thus, by definition of good committee nodes, at least a 1− 2/ logn fraction of the committee nodes in layer & are
good by the time their slots are assigned, establishing (3).

We now focus on any one good committee node C, and a processor p ∈ C. Processor p starts an election
protocol for C when it has non-⊥ views for at least a 1 − 3/ logn fraction of C’s predecessors. (Notice that this
happens eventually for good committee nodes, as at most a 1− 3/ logn fraction of slots are unreliable.) Thus, it
has non-⊥ views for at least a 1 − 3/ logn − (α% + 1/ logn) > 2/3 fraction of good predecessors of C, i.e., knows
their identities. In lines 7–9 of the protocol, p waits to receive views from 2k/3 processors in vp(C) and takes the
majority view for each slot. Since fewer than (1

3 − ε) · k slots of C are bad, and at most 3k/ logn are unreliable,
the 2k/3 processors include at least (k/3 + εk/2) good processors from good reliable slots. By property (2), for
good predecessors, all views are either p′ (for some unique p′) or ⊥. Thus, the view of p for any slot can become
⊥ only if — in addition to the at most k/3 bad processors — at least εk/2 good processors in the committee have
not yet determined the identity of that slot.

We use a counting argument to show that the number of such slots must be small. Each good processor
initially has at most 3k/ logn ⊥-entries in its view, for a total of at most 3k2/ logn such entries. For any slot to
be ⊥ after the majority vote, εk/2 good processors have to have ⊥ entries for that particular slot. Thus, at most
3k2/ log n

εk/2 = 6k
ε log n entries can be ⊥ after the majority vote. Thus, the core can exclude at most 6k

ε log n good
slots of C in addition to at most (α% +1/ logn) ·k bad slots. The core therefore contains at least a (1−α%− 7

ε log n)
fraction of the nodes in the committee.

We can therefore apply Lemma 3.5 (or, to be precise, Observation 1) with ε′ = ε/2. They imply that within
time O(k2k · log n), with high probability, the subcommittee election in committee C succeeds in the following
sense: Every good processor in the core outputs the same elected subcommittee of size log n, of which at most an
(α% + 7

ε log n + 1/ logn) fraction are not in the core. In particular, the fraction of bad successor nodes of C is at
most (α% + 8

ε log n).
By taking a union bound over all good committee nodes C, with high probability, at most an (α% + 8

ε log n)
fraction of their successors are bad. In addition, at most a 2/ logn fraction of the processor nodes in layer & + 1
are successors of bad committee nodes, making them unreliable and thus also bad. In total, the fraction of bad
processor nodes in layer & + 1 is thus at most (α% + 10

ε log n) = α%+1. This proves property (1).
Finally, to prove property (2), focus on one good processor node P ∈ P%+1. A view vp(P ) is only determined

by p when it receives the result of an election, or by the later majority vote. We show that all good processors



set their views vp(P ) to the same processor p′ when they set it for the first time. Then, the subsequent majority
vote can only result in outcomes p′ or ⊥. Let C ∈ C% be the unique (good) predecessor node of P . Then, under
the above high-probability event of successful subcommittee elections, all members of the core of C agreed on the
processor p′ assigned to P . Because all members of the core are from good processor nodes by definition, p by
induction hypothesis either knows their identities or has their identities as ⊥. If p sets its view of P to anything
except ⊥, it must have received messages from at least 2k/3 processors from vp(C). Of these, at least k/3 + εk/2
must come from the core; in particular, the majority is the selection of the core.

In particular, the last layer &∗ has the desired properties from which the theorem follows:

Proof of Theorem 4.1. Because &∗ = o(log n), Lemma 4.1 implies that w.h.p., the committee C∗ constituting
C%∗ is good. Similar to the proof of Lemma 4.1, C∗ thus has a core R of at least (1 − α% − 10

ε log n) · k good
processors. Because (1−α% − 10

ε log n) > 2/3, Heavy-BA guarantees that w.h.p., the processors of C∗ will reach
Byzantine agreement in quasi-polynomial time.

By property (2), all good processors will have the same view of each processor node participating in C∗. Since
they wait to hear from at least 2k/3 processors in C∗ and then take the majority, w.h.p., all good processors will
reach Byzantine agreement in time O(&∗ · k2k · log2 k), completing the proof.

5 The Polylogarithmic Time Protocol
Our goal in this section is to improve the running time from quasi-polynomial to polylogarithmic. The bottleneck
for the running time is the exponential Heavy-BA protocol used for Byzantine Agreement on the committees of
size k1 = k = Θ(log8 n). By replacing these invocations of Heavy-BA instead with recursive calls to essentially
Quasi-Poly-BA, we will obtain the desired speedup. At the first level of recursion, the size of the committees
is k2 = Θ(log8 k1) = Θ((log log n)8). At that point, Heavy-BA would take quasi-polylogarithmic time. To get
it all the way to polylogarithmic, we add one more level of recursion. At the third level, the committee size is
k3 = Θ(log8 k2) = Θ((log log logn)8). (For notational convenience later, we define k0 = n to be the number of all
processors.)

More specifically, we define a protocol Consensus(ρ, C,Σ), where ρ ∈ {1, 2, 3} is the level of the recursion, C
is the set of nodes participating in the consensus protocol, and Σ describes the “history” leading to this call. The
history of an invocation at level ρ contains the following for all levels ρ′ ≤ ρ in the recursion tree: the identifiers for
the committee nodes, the round of computation in Elect-Subcommittee, the identifier of the message, and the
identifier of the bit in the message. It thus uniquely determines where in the recursive history of the computation
this particular invocation is located. Intuitively, we can view it as a “stack” of the recursive protocol.

We describe Consensus(ρ, C,Σ) in terms of the changes compared to Quasi-Poly-BA.

• At levels ρ ∈ {1, 2}, the protocol starts with n resp. k1 processors. The template network structure describing
the protocol is exactly the same as for Quasi-Poly-BA with the appropriate number of processors. The
protocol is changed by replacing each call to Heavy-BA inside a committee C′ instead with a call to
Consensus(ρ+ 1, C′,Σ′), where Σ′ is obtained from Σ by appending C′ as well as all relevant information
about the round of the protocol, bit of the message, etc.

• At level ρ = 3, we can safely invoke Heavy-BA for consensus computations in committee nodes. Also,
since a committee size of Θ(log logn) is enough to safely run Heavy-BA, we reduce the number of layers &∗
of the network. This is necessary because we will apply tail bounds in each layer, which require “enough”
committee nodes in each layer.

When starting with k2 = Θ((log log n)8) nodes, we set &∗ such that the number of committee nodes in
layer &∗ − 2 is c1 log log n for some constant c1 that will be implicitly determined below. Notice that this
makes &∗ smaller than the value prescribed in Quasi-Poly-BA for k2 processors. Also notice that the
number of committees in layer &∗ − 1 is Θ(log log n/ log log log n), while the number in layers & ≤ &∗ − 3 is
Ω(log log n · log log log n).

One final change is necessary: for the committees in layer &∗−1, the sampler used in Elect-Subcommittee
for the final selection of the subcommittee (see Section 3.3, also for the definitions of r, a) is now an (ε/6, r−a)
sampler H ′ : [r] → [k2]d where d = O(log log log n). (Recall that the sampler in Section 3.3 would instead



be a (1/ log n, r−a) sampler of degree d = O((log log log n)3).) The existence of this sampler follows from
Lemma 2.1.

Remark 2. We remark here that the problem solved in the committee C∗ performing Byzantine Agreement is
slightly easier than the Byzantine Agreements required for agreeing on message bits, since there are no ‘∗’ entries.
While we could keep track of which recursive invocations could potentially involve ‘∗’ entries, we are instead using
the same protocol (Consensus or Heavy-BA) in all instances for clarity.

definition 5.1. (Successful Execution) We say that a call to a subprotocol Consensus(ρ, C,Σ) (with
k = kρ processors in C) for some ε > 0 is successful if it satisfies the following:

1. If at least a 2
3 + ε fraction of processors are good, then all good processors i ∈ C set their values vi to the

same value in {0, 1, ∗}.

2. If at least (2
3 + ε) · k good processors have the same value v ∈ {0, 1, ∗} initially, then all good processors i set

vi to v.

3. If the input values of at least (2
3 + ε) · k good processors are all contained in {0, ∗} or are all contained in

{1, ∗}, then upon termination, after a constant number of deterministic steps, the outputs of good processors
are all contained in {0, ∗} or all contained in {1, ∗}, respectively.

Our main theorem in this section guarantees successful execution of Consensus. Its proof will occupy all of
Section 5.1.

Theorem 5.1. For any C and Σ, and any ρ ∈ {1, 2, 3}, the execution of Consensus(ρ, C,Σ) is successful with
probability at least 1 − 1/ logc n for every constant c.

(Notice that the success probability is indeed polylogarithmic in n, not in kρ, even for much smaller sets of
processors.) By setting ρ = 1, we thus obtain that Consensus(1, {1, . . . , n}, ∅) succeeds with probability at least
1 − logc n for every constant c.

5.1 Correctness of the protocol The proof of correctness will be bottom up, establishing Theorem 5.1 for
ρ = 3, 2, 1. Note that Definition 5.1 is essentially the same as the standard definition of the correctness of
Byzantine agreement, albeit with a slightly less stringent requirement due to the ε term. We can combine the
analysis of both properties of Definition 5.1 as follows: If at least (2

3 + ε) ·k good processors have the same values,
then we will simply consider those as “good” processors, and treat all other processors as bad. By showing that
enough “good” processors remain, we will also have shown that the fraction of processors with the same value v
remains large. On the other hand, if there is no set of at least (2

3 + ε) · k good processors with the same value,
then there is nothing to prove for Condition (2), and we simply focus on the good processors.

We will be using the following variants of Chernoff Bounds:

Proposition 5.1. Let X =
∑

Xi be a sum of independent 0-1 random variables Xi, with µ = E [X ].

1. If y ≥ 2e · µ, then Prob[X > y] < 2µ−y.

2. If y ≥ e2 · µ, then Prob[X > y] < e−
1
2y log(y/µ).

Proof. Both forms can be readily derived from the standard Chernoff Bound Prob[X > (1+δ)µ] <
(

eδ

(1+δ)1+δ

)µ
.

In both cases, substitute δ = y/µ − 1. For the first bound, use that (1 + δ)1+δ ≥ (2e)δ by assumption. For the
second bound, substitute to obtain e−y log(y/µ)+y−µ, and then use that y ≤ 1

2y log(y/µ) by assumption on y.

Proof of Theorem 5.1. 1. We first prove the theorem for the recursion level ρ = 3. Even though the
number of nodes in the committee is k2 = Θ((log log n)8), we want to guarantee a success probability of
1− 1/ logc n for any c. This does not allow us to take a union bound over the success of each subcommittee
election. Instead, we use Chernoff Bounds to show that in each layer, the number of successful subcommittee
elections is close to the expected number, which in turn is enough to ensure success of the protocol.



First, focus on a layer & ≤ &∗ − 3 of the network. By definition of &∗, this means that there are
r% = Ω(log log n·log log log n) committee nodes in layer &. For any subcommittee election in such a committee
node (which involves k3 processors), Lemma 3.5 (with n = k2, k = k3) guarantees that with probability
at least 1 − 1/kc

2, the subcommittee election succeeds, in the sense that the fraction of bad processors
is increased by at most 1/ logk2. Thus, the expected number of unsuccessful subcommittee elections is
at most r%/kc

2. Furthermore, the random choices in all of these subcommittee elections are independent.
Therefore, by Proposition 5.1 (1) with y = c′r%/ log k2 = Ω(log log n) and µ ≤ r%/kc

2, with probability at
least 1 − 2µ−y ≥ 1 − 2−y/2 = 1 − 1/ logc′′ n, at least a 1 − O( 1

log k2
) fraction of the subcommittee elections

are successful. The exponent c′′ can be increased arbitrarily by increasing c′.

For layer & = &∗ − 2, the number of committee nodes is r% ≥ c1 log log n. In order to have at most a φ (a
suitably small constant to be defined below) fraction of subcommittee elections failing, we apply Proposition
5.1 (1) with y = φr% ≥ φc1 log log n, and µ ≤ r%/kc

2. Then, with probability at least 1 − 2−y/2 = 1/ logc′′ n,
at least a 1 − φ fraction of the subcommittee elections are successful. By increasing c1, we can make c′′ as
large as desired.

For layer & = &∗− 1, the number of committee nodes is r% ≥ c1
log log n

log log log n . Again, our goal is to have at most
a φ fraction of subcommittee elections failing. We apply Proposition 5.1 (2) with y = φr% and µ ≤ r%/kc

2.
Then, the upper bound on the failure probability is e−

1
2 φr" log(φkc

2) = 1/ logc′′ n for some c′′ that can be
made arbitrarily large by increasing c1. (Notice that we used here that log(φkc

2) = Θ(log log log n).)

By taking a union bound over all of the O(log n) layers, we obtain that with probability at least 1−1/ logc′′ n,
the failure rate in all layers & ≤ &∗ − 3 is at most 1/ log k2, and in layers & = &∗ − 2, &∗ − 1, it is at most φ.

By redefining α% (in Section 4.3) appropriately, accounting for the 1/ log k2 fraction of failed subcommittee
elections in each layer, we can now essentially redo the proof of Lemma 4.1. This proves that the fraction
of bad processor nodes in layer &∗ − 3 is at most (1

3 − ε) + o(1).

For the next two layers, we set φ = ε
6 . For each committee node C in layer &∗−1, the elected subcommittee

is determined by the modified (ε/6, r−a)-sampler H ′ : [r] → [k2]d (where r and a are defined in Section 3.3).
Each of the two layers &∗ − 1, &∗ − 2 contains at most an ε/6 fraction of bad committee nodes (causing a
corresponding increase in bad processor nodes), and the sampler increases the fraction of bad processor nodes
by at most another ε/6. Thus, the fraction of bad processor nodes in layer &∗ is at most 1

3 − ε+ ε/2 + o(1).

Recall that the sampler H ′ has degree d = O(log log log n), i.e., it outputs fewer processors than the sampler
H used in other layers. Because there were Θ(log logn/ log log log n) committees on level &∗ − 1, the total
number of processor nodes on level &∗ is O(log log n). Thus, we obtain a set of O(log log n) processor nodes
in layer &∗, of which at most a fraction 1

3 − ε/2+ o(1) are bad. By Proposition 3.2, with probability at least
1 − 1/ logc′′ n (for any constant c′′), the output of the final invocation of Heavy-BA on the O(log log n)
processors in the lone committee of layer &∗ satisfies all requirements. A union bound over all layers now
completes the proof.

2. At the level ρ = 2 of the recursion, there are k1 = Θ(log8 n) nodes, and subcommittees have size
k2 = Θ((log log n)8). Each invocation of Elect-Subcommittee runs for O(k2) rounds, requiring Byzantine
agreement for each of O(k2) bits of each of O(k2) messages sent in that round in order to simulate broadcast.
Thus, each Elect-Subcommittee invocation requires O(k3

2) executions of Byzantine agreement. The
number of committee nodes in each layer is O(k1/ log k1), and the number of layers is O(log k1). Thus, the
total number of invocations of Consensus(3, C,Σ) is O(k1k3

2) = O(log8 n(log log n)24) = O(log9 n). Since
each of these fails with probability at most 1/ logc′ n for any c′ by the previous case, a union bound over all
of the calls (setting c′ = c + 10) gives us that with probability at least 1 − 1/ logc+1 n, none of the calls to
Consensus(3, C,Σ) fails.

Under the condition that none of the Byzantine agreement calls fail, we can now mimic the analysis in
the proof of Lemma 4.1 and Theorem 4.1. This analysis guarantees that with high probability (at least
1 − 1/kc′′

1 = 1 − 1/ log8c′′ n for any c′′), the Byzantine agreement at level ρ = 2 succeeds. A union bound
over the success of all calls to Consensus(3, C,Σ) and the remainder of the execution now completes the
proof for ρ = 2.



3. At the level ρ = 1, subcommittees have size k1 = Θ(log8 n), and similar to the case of ρ = 2, each execution
of Elect-Subcommittee requires O(k3

1) = O(log24 n) correct executions of Consensus(2, C,Σ). Because
each such execution is correct with probability at least 1 − logc′′ n for any c′′ (by the analysis for ρ = 2),
each subcommittee election succeeds with probability at least 1− logc′ n for any c′ (setting c′′ = c′ +24 and
taking a union bound).
However, since there are now Θ(n) such subcommittee elections, a simple union bound over all of them (as
in the case ρ = 2) does not work any more. Instead, we use Chernoff Bounds much like in the analysis
for ρ = 3. Consider any layer & of the network, with r% = Ω(log4 n) committee nodes. The expected
number of unsuccessful subcommittee elections is at most r%/ logc′ n for any c′. By Proposition 5.1 (1) with
y = r%/ log n = Ω(log3 n) and µ ≤ r%/ log2 n, with probability at least 1− 2µ−y ≥ 1 − 2−y/2 ≥ 1 − 1/nc (for
any c), at least a 1 − 1/ logn fraction of the subcommittee elections are successful. Because the number of
levels is O(log n), a union bound guarantees that with probability at least 1− 1/nc, the fraction of failing
subcommittee elections in each layer is at most 1/ logn.
Under the event that these fractions of failing subcommittee elections are sufficiently small, we can again
(like in the proof for ρ = 3) redefine the α% appropriately to account for the 1/ logn fraction of failed
subcommittee elections in each layer. Then, we can essentially repeat the proof of Lemma 4.1, to prove that
the fraction of bad processor nodes in layer &∗ is at most (1

3 − ε) + o(1).
Finally, by the analysis for the case ρ = 2, the final execution of Consensus(2, C∗,Σ) for the actual
Byzantine agreement succeeds with probability at least 1 − logc n for any c, and a union bound over all
possible failures now concludes the proof of the theorem.

5.2 Time Analysis By Lemma 3.5, at the recursion level ρ = 3, each (successful) subcommittee election takes
time O(k32k3 log k2). There are O(log k2) layers of such subcommittee elections, giving us that layers 1, . . . , &∗−1
together take time at most O(k32k3 log2 k2) = O(log n). The final Byzantine Agreement in the committee node
C∗ takes time O(2log log n) = O(log n). Therefore, Consensus(3, C,Σ) overall takes time O(log n).

At the recursion level ρ = 2, the subcommittee election in any committee node C involves at most
O(k3

2) = O((log log n)24) calls to Consensus(3, C,Σ), each taking time O(log n). In the node C∗, we are now using
another call to Consensus(3, C∗,Σ), taking at most O(log n). The number of layers is O(log k1) = O(log log n),
so the total time is O(log n(log log n)25) = O(log2 n).

Finally, at recursion level ρ = 1, we have at most O(k3
1) = O(log24 n) calls to Consensus(3, C,Σ), each

taking time O(log2 n). Since there are O(log n) layers, the total time is at most O(log27 n), i.e., polylogarithmic.
Thus, we have proved:

Theorem 5.2. The protocol Consensus takes polylogarithmic time in the number of processors n.

6 Universe Reduction and Leader Election Protocols
We now show how to leverage the protocols from Sections 4 and 5 to give a protocol for leader election with
constant success probability and polylogarithmic time. Recall that in the leader election problem, all good
processors must output a common good processor p.

6.1 Universe Reduction First, observe that the Quasi-Poly-BA and Consensus protocols implicitly
provide a protocol for Universe Reduction: significantly reducing the number of processors under consideration
while hardly increasing the fraction of bad processors. Once the members of C∗

1 are determined at level ρ = 1,
instead of actually performing Byzantine agreement in C∗

1 , we do the same at level ρ = 2. That is, we determine the
members of C∗

2 at that level, and instead of performing Byzantine agreement with them, also modify Consensus
at level ρ = 3 to simply identify the members of C∗

3 . The result is a committee of size O(log log n). Using the
proof in Section 4, we obtain the following properties for the resulting protocol Polylog-Universe-Reduction:

Theorem 6.1. Let ε′ be any positive constant. Then, there is a positive constant ε such that the following holds
when Polylog-Universe-Reduction is given as input a set of n processors of which at most a 1

3 − ε′ fraction
is bad:



1. Polylog-Universe-Reduction runs in time polylogarithmic in n.

2. With high probability, all good processors p will output the same set S of k = O(log log n) processors such
that the fraction of bad processors in S is at most 1

3 − ε.

6.2 Leader Election The idea of our leader election protocol Polylog-Leader is to first run Polylog-
Universe-Reduction to reduce the universe size to O(log log n). Then, using O(log log log log n) invocations of
Elect-Subcommittee, the universe size is further reduced to a suitable constant K, while still maintaining a
fraction of at most 1

3 − ε bad processors, with constant probability. Each of the remaining K processors picks a
random leader. Using the Heavy-BA protocol, the committee then agrees on the identity of the leader, and all
good processors in the committee send a message with the identity of the leader to all other processors.

We start out with k0 = O(log log n) processors. For each i, we define ni = ek1/6
i , and run Elect-

Subcommittee on the committee of size ki to output a committee of size ki+1 = Θ(log3 ni) = Θ(
√

ki). Because
the committees all have size O(log log n), we can use Heavy-BA within Elect-Subcommittee, and Lemma
3.5 guarantees that with high probability 1− 1/nc

i , at most a 1/3− ε+ 1/ logni fraction of the processors in the
subcommittee are bad. In this way, after i∗ = O(log log log log n) iterations, ki∗ = K = O(1), and we can choose
i∗ to make K as large as we wish. Clearly, the total running time is polylogarithmic in n.

We bound the probability of failure over all iterations. The probability of failure in each iteration is at most
1/ni. Taking the union bound gives an overall probability of failure of no more than

∑i∗

i=0 1/ni. For sufficiently
large n, we have ki ≤ ni, so the sum is bounded by

∑i∗

i=0 1/ki ≤
∑i∗

i=0 1/K2i∗−i
=

∑i∗

i=0 K−2i ≤
∑∞

i=0 K−2i ≤
∑∞

i=0 K−i = 1
K−1 ,

giving a constant nonzero probability of success.
If all the subcommittee elections are successful, then the increase in the fraction of bad nodes for iteration i

is at most 1/ logni = 1/k1/6
i . Thus, the total increase is at most

∑i∗

i=0 1/k1/6
i ≤

∑i∗

i=0 K−2i/6 ≤
∑∞

i=0 K−i/6 = 1
K1/6−1

.

By choosing K sufficiently large, we can ensure that this is at most ε/2, so the fraction of bad nodes among the
final K is at most 1

3 − ε/2.
Finally, given that all the iterations are successful, we have a committee of constant size K of which at least

a (2/3 + ε/2) fraction are good and known to each other. The probability that each good processor outputs the
same good processor after running Heavy-BA is at least the probability that a (1

2 +ε/2) fraction of the processors
randomly chose the same good processor, which is clearly a nonzero constant. The random choice of a leader
and the running of Heavy-BA are independent of any random choices made in the previous phase. Overall,
Polylog-Leader has a probability of success which is a product of nonzero constants and we have:

Theorem 6.2. For any positive constant ε, if at most a fraction 1
3 − ε of processors are bad, Polylog-Leader

ensures that for some good processor p, with constant nonzero probability, all good processors will output p in time
polylogarithmic in n.

7 Conclusions and Open Problems
We have demonstrated that the assumption of an asynchronous full information model does not substantially affect
the ability to perform distributed computation, if one can assume a non-adaptive adversary and can tolerate a
small probability of failure.

Numerous problems remain. We think that our protocols may be made scalable if almost-everywhere
agreement is sought. Even for the synchronous model with private channels, it is not known whether a scalable
protocol is possible if everywhere agreement is required.

Can the Byzantine agreement protocol be made Las Vegas? Can the running time-probability of failure
tradeoff be improved to match the lower bounds? Can the probability of successful leader election be brought
closer to the known upper bound? Finally, it is still open if a subexponential time protocol for Byzantine agreement
is possible in the asynchronous full information model with an adaptive adversary.
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