
CSC 225: Assignment 2 Part B, Written Exercises
Due at the beginning of class on Monday Oct. 16, 2017

Instructions for all assignments:

1. Draw boxes for your marks on the top of the first page of your submission.Place a
0 in the corresponding box for any questions you omit. For this assignment:

Question 1 2 3 4 5 6

Marks

2. Questionsshould bein order.

3. Show your work unless otherwise stated.

4. Putyour name (last name underlined) and student number on all submissions.

Learning objectives

This assignment is an introduction to algorithm analysis. It reinforces skills presented on
assignment #1 (setting up and solving recurrences, and induction) as tools for algorithm
analysis.

1. Thisquestion refers to the implementation of abigInteger from Assignment #1.I
added three methods to theLinkedList class so thatbigInteger values can be com-
pared (given below). Let x be abigInteger value with n digits and lety be abigIn-
teger with n + k digits for somek ≥ 0. Thecompare method is called like this:
int cmp= x.compare(y);

(a) [2] Give an example of two big integers (leading zeroes are allowed) that
represent a worst case example for the running time of the compare method
whenn = 8 and k = 7.

(b) [3] Give a description of a family of worst case examples (expressed in terms
of n andk) such that on your examples, the number of calls tocompareDigit
is maximized.

(c) [4] How much time (in terms ofn andk) does thenonZeroDigit method take
on your worst case examples? Justifyyour answer.

(d) [4] Derive a recurrenceT (n) which represents the time complexity of the
compareDigit method on your worst case example. Explainwhere each part
of the recurrence is coming from.

(e) [4] Solve your recurrence from part (d) by repeated substitution, numbering
the steps starting at Step 0.

(f) [4] Prove that you have the correct solution to the recurrence by induction.

-2-

(g) [4] How much time does thecompare method take in the worst case (in
terms ofn andk)? Justifyyour answer. Keep in mind that ifk is large, for
example k = n5 then the dominant term could depend onk and whenk is
small, for example,k = 0, the dominant term could depend onn. As a result,
it is critical that your answer is a function of bothn andk.

The methods for Question 1:

/*
This method returns:
-1 if the bigInteger associated with the method is less than y
0 if the bigInteger associated with the method is equal to y
+1 if the bigInteger associated with the method is greater than y

*/
public int compare(LinkedList y)
{

int nv;

// If one has more digits than the other, check if any
// of the extra digits are non-zero- if so, the one with
// moredigits is bigger.

// Block 1

nv= n; // Change made from first version.
if (n > y.n)
{

if (nonZeroDigit(y.n)) return(1);
nv= y.n;

}
else if (y.n > n)
{

if (y.nonZeroDigit(n)) return(-1);
}

// Block 2

// Comparedigits starting with most significant ones.

return(compareDigit(nv, y));
}

-3-

public boolean nonZeroDigit(int nIgnore)
{

ListNode current;
int i;
current= start;
for (i=0; i < nIgnore; i++)

current= current.next;
while (current != null)
{

if (current.data != 0) return(true);
current= current.next;

}
return(false);

}

public int compareDigit(int nv, LinkedList y)
{

int dx, dy;
ListNode xcurrent, ycurrent;
int i;

if (nv ==0) return(0); // They are equal.

// Getxcurrent/ycurrent to point to cell nv of x/y.

xcurrent= start;
ycurrent= y.start;
for (i= 1; i < nv; i++)
{

xcurrent= xcurrent.next;
ycurrent= ycurrent.next;

}
dx= xcurrent.data;
dy= ycurrent.data;
if (dx < dy) return(-1);
if (dx > dy) return(1);
return(compareDigit(nv-1, y));

}

-4-

The aim of Questions 2-6 is to analyze the time complexities of three divide and
conquer methods,beginMax, middleMax, and endMax, for finding a cell with a maximum
key value on a linked list.The list can be split at thebeginning (the first sublist has size

1 and the second one has sizen − 1), or in themiddle (the first sublist has size


n

2



and

the second sublist has size


n

2


), or it can be split at theend (the first sublist has size

n − 1 and the second sublist has size 1).The three variants have similar programs.The
code given on the last page of this assignment does the split in the middle.To get the
other two variants, line B1 which sayslast = n/2; is replaced withlast = 1; (if the split is
at the beginning), orlast = n − 1; (if the split is at the end). Also, the conquer steps for
beginMax andendMax in lines C1 and C2 are recursive calls to beginMax andendMax
respectively.

As suggested in the text (pp. 182-184), one approach to estimating algorithm time
complexities is to identify an operation (or operations) such that the order of growth of
the running time of an algorithm is the same as the order of growth of the function repre-
senting the number of times the operation occurs on a given problem size.

To simplify the analysis, instead of choosing a proxy operation, I want you to count
the exact number of times that one of thedesignated statements A4, B2, B4, C1, C2, or
D1 is executed. Thisproperly accounts for the time complexities of the base case (it
takesO(1) time and we count executions of A4), the divide step of the algorithm (the
time it takes is proportional to the work done by the loop for which we count executions
of B2, plus a constant number of other steps for which we count executions of B4), and
the marriage (the work done is inO(1) and we count executions of D1). The recursive
calls themselves have O(1) overhead and this is accounted for by counting executions of
C1 and C2.

For a list of sizen, B(n) will be used to denote the number of times a designated
statement is executed forbeginMax, M(n) will be used to denote number of times a des-
ignated statement is executed formiddleMax and E(n) will be used to denote number of
times a designated statement is executed forendMax.

-5-

2. Theprogram provided is divided into four blocks (A, B, C, and D as indicated on
the code provided).

(a) [6] For each block/algorithm variant, fill in this chart with the number of times that
a designated statement is executed.

Split at: Beginning Middle End

Block A

Block B

Block C

Block D

Use floor/ceiling functions in your answer as required.Your answers for block C
should be expressed in terms of the functions B, M, and E. Except for blockC, the
chart includes only the number of designated statements executed at the top level of
recursion (the others are accounted for in the counts for block C).

(b) [9] Use your table from (a) to set up recurrence relations forB(n), M(n) and E(n).

Note: The correctness of your answers to Question 2-5 depend on getting correct
formulas in the chart for Question 2(a).If you are not sure if your formulas are
correct, then you can copy my program and run the three algorithm variants with
some additional code added to count the number of times each designated state-
ment is executed.

3. B(n) is equal to the number of timesbeginMax executes a designated statement.

(a) [5] Solve your recurrence forB(n) from question 2(b) by repeated substitu-
tion to get a closed formula.

(b) [5] Prove by induction that your answer to 3(a) correctly gives the number of
times that a designated statement is executed when calling the method with a
list of sizen for beginMax.

(c) [5] Choose a function f (n) that is as simple as possible such that
B(n) ∈ Θ (f (n)) and then prove that B(n) ∈ Θ (f (n)).

4. M(n) is equal to the number of timesmiddleMax executes a designated statement.

(a) [10] Assume thatn = 2k for some integer k ≥ 0. Solve your recurrence for
M(n) from question 2(b) by repeated substitution to get a closed formula.

(b) [10] Assume thatn = 2k for some integer k ≥ 0. Prove by induction that
your answer to 4(a) correctly gives the number of times that a designated
statement is executed when calling the method with a list of sizen for mid-
dleMax.

-6-

(c) [5] Choose a function f (n) that is as simple as possible such that
M(n) ∈ Θ (f (n)) and then prove that M(n) ∈ Θ (f (n)).

5. E(n) is equal to the number of timesendMax executes a designated statement.

(a) [5] Solve your recurrence forE(n) from question 2(b) by repeated substitu-
tion to get a closed formula.

(b) [5] Choose a function f (n) that is as simple as possible such that
E(n) ∈ Θ (f (n)) and then prove that E(n) ∈ Θ (f (n)).

6. Considerthe three variants from question 2 for finding a maximum key value on a
list.

(a) [2] Which of the three approaches is the fastest?

(b) [2] Which of the three approaches is the slowest?

(c) [6] A student suggests that an alternate proxy operation for this problem is to
count accesses to thedata fields of ListNodes instead. Is this a reasonable
alternative for estimating the time complexity of these algorithm variants?
Why or why not?

-7-

public class LinkedList
{ i nt n;

ListNode start,rear;

public ListNode middleMax(int level)
{

// Block A
A1 LinkedList listA, listB;
A2 ListNode rear1, start2, max1, max2;
A3 int i, last;

A4 if (n==1) return(start);

// Block B
B1 last=n/2; // beginMax sets last=1, endMax sets last= n-1

B2 rear1= start;
B3 for (i=1; i < last; i++)
B4 rear1= rear1.next;
B5 start2=rear1.next;
B6 rear1.next= null;
B7 listA= new LinkedList(last, start, rear1);
B8 listB= new LinkedList(n-last, start2, rear);

// Block C
C1 max1= listA.middleMax(level+1);
C2 max2= listB.middleMax(level+1);

// Block D
D1 listA.rear.next= listB.start;
D2 if (max1.data > max2.data) return(max1);
D3 else return(max2);

}
E0 public LinkedList(int size, ListNode first, ListNode last)

{ / / Block E
E1 n= size;
E2 start=first;
E3 rear= last;

}

