
CSC 225: Fall 2017 Assignment #3
Due at beginning of class, Mon. Oct. 30

The boxes for this assignment:

Question 1 2 3 4 5 6 7

Marks

For any questions about Big Oh, Omega, or Theta in this class, use these definitions:
Assume thatT and f are functions mapping the natural numbers {0,1, 2, 3,. . .} i nto the
reals. Assumek is an integer,k > 0.
Definition (Big Oh): A function T (n) ∈ O(f (n)) if there exist constantsn0 ≥ 0, and
c > 0, such that for alln ≥ n0, T (n) ≤ c * f (n).
Definition (Omega): A function T(n) is inOMEGA(f (n)) if there exist constantsn0 ≥ 0,
andc > 0, such that for alln ≥ n0, T (n) ≥ c * f (n).
Definition (Theta): The setΘ(f (n)) of functions consists ofΩ(f (n)) ∩ O(f (n)).

1. BigOh notation.

(a) [5] Prove that f (n) =
n

i=1
Σ i k ∈ O (n k+1).

(b) [5] Prove that f (n) =
n

i=1
Σ i k ∈ Ω (n k+1).

(c) [5] Prove that f (n) = 4n5 − 16n4 − 34n3 − 13n2 is in Θ(n5).

2. Theaim of this question is to analyze the time complexity of the following build
heap routine:
heapify(r)
If r is not null

1. Heapify the left subtree.
2. Heapify the right subtree.
3. Bubble down the key at node r.

Assume n = 2k − 1 for some integer k. Then, the recurrence for the work is:
T (n) = log2(n + 1) + 2T ((n − 1) / 2), T (1) = 1. The point of this question is to
find a closed formula for the recurrence and to prove that your answer is correct.

(a) [5] Use repeated substitution to convert this recurrence into a sum.

(b) [5] Prove by induction thatS(r) =
r

i=1
Σ i 2i = (r − 1) 2r +1 + 2.

(c) [5] Use (b) to help find a closed formula for your sum from part (a).

(d) [5] Prove by induction that your formula forT (n) from (c) is correct.

(e) [5] What does this say about the Big Oh time complexity of this heapify routine?

-2-

3. To simplify the mathematics for this question, we will assume thatn = 2k − 1 for
some integer k. The median of a set ofn numbers,n odd, is the value that falls in
the middle when the values are sorted. Consider the following algorithm, Median-
Sort, for sorting:

1. Findthe median inO(n) time.

2. Divide the problem into three subproblems:
Problem 1: Keys with value less than the median.
Problem 2: keys with value equal to the median.
Problem 3: Keys with value greater than the median.

3. Solve Problems 1 and 3 recursively.

4. Marry the solutions by concatenating together the answers from problems 1,
2, and 3.

(a) [5] Assume the values to be sorted are distinct.Assume that the data is stored in a
linked list as used for assignments #1 and #2. Explain why
T (n) = n + 2 * T ((n − 1) / 2),T (1) = 1
is a reasonable choice for a recurrence relation for estimating the running time for
problems of size one or more (up to a constant factor). Your explanation should
include a discussion of the time complexities for steps 2, 3, and 4 using the linked
lists, but just assume without justification that Step 1 takesO(n) time.

(b) [5] Use the method of repeated substitution to solve the recurrence from part (a)
wheren = 2k − 1 for some integer k. Show all your work including the Step num-
ber (0, 1, 2, ...).

(c) [5] Prove by induction that your answer to part (b) is correct. Be careful here:
recall that our problem is only defined forn = 1, 3, 7, 15,. . . so induction that goes
from n to n +1 is inappropriate.

(d) [5] How long (in the Big Oh sense) does your MedianSort take to sort n data items
with only 3 distinct key values? For example, forn = 9 problem could be:
1 3 2 2 1 3 2 1 3
Justify your answer (How deep does the recursion go?).

-3-

For questions 4-7, justify all your answers.

4. Considerthe begin_program method from the next page.

(a) [4] Set up a recurrence relation for the running time complexity of this algo-
rithm (in terms of Big Oh).

(b) [3] what is the solution to your recurrence?

(c) [3] Give a function f (n) that is as simple as possible such that your formula
from (b) is inΘ(f (n)).

5. Considerthe begin_program method from the next page.

(a) [4] Set up a recurrence relation for the space complexity of this algorithm (in
terms of Big Oh).

(b) [3] What is the solution to your recurrence?

(c) [3] Give a function f (n) that is as simple as possible such that your formula
from (b) is inΘ(f (n)).

6. Considerthe middle_program method from the next page.

(a) [4] Set up a recurrence relation for the running time complexity of this algo-
rithm (in terms of Big Oh).

(b) [3] What is the solution to your recurrence?

(c) [3] Give a function f (n) that is as simple as possible such that your formula
from (b) is inΘ(f (n)).

7. Considerthe middle_program method from the next page.

(a) [4] Set up a recurrence relation for the space complexity of this algorithm (in
terms of Big Oh).

(b) [3] What is the solution to your recurrence?

(c) [3] Give a function f (n) that is as simple as possible such that your formula
from (b) is inΘ(f (n)).

-4-

The methods for questions 4-7:
public class Assign3
{

public void begin_program(int n)
{

int [] A;
int i;

if (n <= 1) return;

A= new int[n];
for (i=0; i < n; i++)

A[i]= i;

begin_program(n-1);
}

public void middle_program(int n)
{

int [] A;
int i;

if (n <= 1) return;

A= new int[n];
for (i=0; i < n; i++)

A[i]= i;

middle_program(n/2);

middle_program(n/2);

}
}

