CSC 225: Fall 2017 Assignment \#3

Due at beginning of class, Mon. Oct. 30
The boxes for this assignment:

Question	1	2	3	4	5	6	7
Marks							

For any questions about Big Oh, Omega, or Theta in this class, use these definitions:
Assume that T and f are functions mapping the natural numbers $\{0,1,2,3, \cdots\}$ into the reals. Assume k is an integer, $k>0$.
Definition (Big Oh): A function $T(n) \in O(f(n))$ if there exist constants $n_{0} \geq 0$, and $c>0$, such that for all $n \geq n_{0}, T(n) \leq c * f(n)$.
Definition (Omega): A function T(n) is in $\operatorname{OMEGA}(f(n))$ if there exist constants $n_{0} \geq 0$, and $c>0$, such that for all $n \geq n_{0}, T(n) \geq c^{*} f(n)$.
Definition (Theta): The set $\Theta(f(n))$ of functions consists of $\Omega(f(n)) \cap O(f(n))$.

1. Big Oh notation.
(a) [5] Prove that $f(n)=\sum_{i=1}^{n} i^{k} \in O\left(n^{k+1}\right)$.
(b) [5] Prove that $f(n)=\sum_{i=1}^{n} i^{k} \in \Omega\left(n^{k+1}\right)$.
(c) [5] Prove that $f(n)=4 n^{5}-16 n^{4}-34 n^{3}-13 n^{2}$ is in $\Theta\left(n^{5}\right)$.
2. The aim of this question is to analyze the time complexity of the following build heap routine:
heapify(r)
If r is not null
3. Heapify the left subtree.
4. Heapify the right subtree.
5. Bubble down the key at node r.

Assume $n=2^{k}-1$ for some integer k . Then, the recurrence for the work is: $T(n)=\log _{2}(n+1)+2 T((n-1) / 2), T(1)=1$. The point of this question is to find a closed formula for the recurrence and to prove that your answer is correct.
(a) [5] Use repeated substitution to convert this recurrence into a sum.
(b) [5] Prove by induction that $S(r)=\sum_{i=1}^{r} i 2^{i}=(r-1) 2^{r+1}+2$.
(c) [5] Use (b) to help find a closed formula for your sum from part (a).
(d) [5] Prove by induction that your formula for $T(n)$ from (c) is correct.
(e) [5] What does this say about the Big Oh time complexity of this heapify routine?
3. To simplify the mathematics for this question, we will assume that $n=2^{k}-1$ for some integer k. The median of a set of n numbers, n odd, is the value that falls in the middle when the values are sorted. Consider the following algorithm, MedianSort, for sorting:

1. Find the median in $O(n)$ time.
2. Divide the problem into three subproblems:

Problem 1: Keys with value less than the median.
Problem 2: keys with value equal to the median.
Problem 3: Keys with value greater than the median.
3. Solve Problems 1 and 3 recursively.
4. Marry the solutions by concatenating together the answers from problems 1, 2 , and 3 .
(a) [5] Assume the values to be sorted are distinct. Assume that the data is stored in a linked list as used for assignments \#1 and \#2. Explain why
$T(n)=n+2 * T((n-1) / 2), T(1)=1$
is a reasonable choice for a recurrence relation for estimating the running time for problems of size one or more (up to a constant factor). Your explanation should include a discussion of the time complexities for steps 2, 3, and 4 using the linked lists, but just assume without justification that Step 1 takes $O(n)$ time.
(b) [5] Use the method of repeated substitution to solve the recurrence from part (a) where $n=2^{k}-1$ for some integer k. Show all your work including the Step number $(0,1,2, \ldots)$.
(c) [5] Prove by induction that your answer to part (b) is correct. Be careful here: recall that our problem is only defined for $n=1,3,7,15, \cdots$ so induction that goes from n to $n+1$ is inappropriate.
(d) [5] How long (in the Big Oh sense) does your MedianSort take to sort n data items with only 3 distinct key values? For example, for $n=9$ problem could be:
132213213
Justify your answer (How deep does the recursion go?).

For questions 4-7, justify all your answers.
4. Consider the begin_program method from the next page.
(a) [4] Set up a recurrence relation for the running time complexity of this algorithm (in terms of Big Oh).
(b) [3] what is the solution to your recurrence?
(c) [3] Give a function $f(n)$ that is as simple as possible such that your formula from (b) is in $\Theta(f(n))$.
5. Consider the begin_program method from the next page.
(a) [4] Set up a recurrence relation for the space complexity of this algorithm (in terms of Big Oh).
(b) [3] What is the solution to your recurrence?
(c) [3] Give a function $f(n)$ that is as simple as possible such that your formula from (b) is in $\Theta(f(n))$.
6. Consider the middle_program method from the next page.
(a) [4] Set up a recurrence relation for the running time complexity of this algorithm (in terms of Big Oh).
(b) [3] What is the solution to your recurrence?
(c) [3] Give a function $f(n)$ that is as simple as possible such that your formula from (b) is in $\Theta(f(n))$.
7. Consider the middle_program method from the next page.
(a) [4] Set up a recurrence relation for the space complexity of this algorithm (in terms of Big Oh).
(b) [3] What is the solution to your recurrence?
(c) [3] Give a function $f(n)$ that is as simple as possible such that your formula from (b) is in $\Theta(f(n))$.

```
The methods for questions 4-7:
public class Assign3
{
    public void begin_program(int n)
    {
        int [ ] A;
        int i;
        if (n<= 1) return;
        A= new int[n];
        for (i=0; i < n; i++)
            A[i]= i;
        begin_program(n-1);
    }
    public void middle_program(int n)
    {
        int [ ] A;
        int i;
        if (n<=1) return;
        A= new int[n];
        for (i=0; i < n; i++)
            A[i]= i;
        middle_program(n/2);
        middle_program(n/2);
    }
}
```

