
CSC 225 Fall 2017: Assignment 6
Due at the beginning of class on Thursday Nov. 30

Question 1 2 3 4 5

Marks

1. Considerthe minDegreeVertex method below that returns the vertex number of a minimum
degree vertex of the graph.
public class Graph
{ i nt n; int [] [] A; int count;

public int minDegreeVertex(int level, int start_vertex, int end_vertex)
{

int u, v, du, dv, i, mid;

int size= end_vertex- start_vertex+1;

if (start_vertex == end_vertex) return(start_vertex);
mid= start_vertex + (end_vertex- start_vertex)/2;
u= minDegreeVertex(level+1, start_vertex, mid);
v= minDegreeVertex(level+1, mid+1, end_vertex);
du=0;
for (i=0; i < n; i++)
{

du+= A[u][i]; count++;
}
dv=0;
for (i=0; i < n; i++)
{

dv+= A[v][i]; count++;
}
if (du <= dv) return(u);
else return(v);

}

For this question,G is a simple (no loops or multiple edges) undirected graph withn vertices
and adjacency matrix A. The minDegreeVertex method is called like this:
minv= G.minDegreeVertex(0, 0, G.n-1);



-2-

(a) [5] The goal of part (a) to prove that the minDegreeVertex method returns the vertex
numberminv of a minimum degree vertex of the graph.To do this, prove by induction
that each call to the method returns the vertex number of a minimum degree vertexv in
the range start_vertex≤ v ≤ end_vertex. You may assume thatn = 2k for this question,
for some integer k. Since n = 2k , the subproblems solved are of sizes 2r for 0 ≤ r ≤ k.
The induction should be onsize (the size of a subproblem) and notn for this proof.

(b) [5] Give a recurrence relationC(n, s) that gives the number of times that G.count is
incremented when a subproblem of sizes is solved.
The size of a subproblem is given by:
size= end_vertex- start_vertex+1;

(c) [5] Assumen = 2k for some integer k. Solve your recurrence relation from (b) using
repeated substitution to get a closed formula for the value forC(n, 2r ) where 0≤ r ≤ k.

(d) [5] Either prove by induction that your closed formula from (c) gives the number of
times that G.count is incremented or carry out the steps of an induction proof until the
proof fails.

(e) [5] The value of G.count is the number of times that an entry of the adjacency matrix is
accessed by the method.Does this method do a minimum possible number of accesses
to entries of the adjacency matrix? Thisquestion is asking about an exact count and not
a Big Oh type of analysis. If you say yes, justify your answer. If you say no, give java
code for an algorithm that is optimal.

(f) [5] Let M(n) be the minimum number of accesses required to entries of the adjacency
matrix in the worst case. IsM(n) ∈ Θ (C(n, n))? Justifyyour answer.

2. For question 2, print the last page of this assignment and show your solutions on it.For parts
(a) and (b), suppose this data is inserted into a hash table of size 17 in the order given.

574 460 107 374 871 421 513

579 207 29 2 811 81 5

Use the hash function (syntax as for C or Java)
hash(x)= (((x / 100) % 10) + ((x / 10) % 10) + (x % 10) ) % 17;
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(a) [7] Draw a picture of the final data structure assuming that collisions are handled using
buckets (each hash value has a linked list containing the data values hashing to that posi-
tion). Assumethat insertions are done at the front of the list when a data value is added
to a bucket.

(b) [8] Suppose instead the data values are contained in the array H[0..16], and that colli-
sions are resolved by finding the first empty slot past the location that a key hashes to
(wrap around from H[16] back to H[0]).Draw the contents of H after these insertions.
Use NULL to indicate empty positions in the hash table.

3. Supposethat a hashing strategy is designed so that it starts with an initial hash table size of H=
8. You may assume that only insertions are performed (no deletions).Any time the hash table
is going to be more than 50 percent full (when an attempt is made to add itemH /2 + 1 to a ta-
ble of sizeH), the hash table size is doubled to 2H , and then theH /2 keys in the previous hash
table are rehashed usingH /2 extraneous key insertions into the new table of size 2H . The key
insertions used to initially place each key into the hash table are callednecessary key inser-
tions (these are not extraneous).

(a) [5] Derive a recurrence relation E(H) for the number of extraneous key insertions that
have occurred in total up until the point in time that the hash table size is H.Explain
where the terms in the recurrence relation are coming from.

(b) [5] Solve your recurrence relation from (a) using repeated substitution.

(c) [5] The table of sizeH can be used until up ton = H /2 keys hav ebeen inserted.Choose
a function f(n) that is as simple as possible such thatE(H) is in Θ( f (n)) and then prove
that E(H) ∈ Θ ( f (n)).

(d) [5] Is the number of extraneous hashes a good choice for a proxy operation for evaluating
the amount of work that has been done in maintaining the hash table? Justify your
answer. If your answer is yes, then explain what also has to be done besides extraneous
hashes in order to maintain the hash table and why the total amount of work is propor-
tional to the number of extraneous hashes. If your answer is no, explain what is not being
taken into account.
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4.(a) [10]Perform BFS (Breadth First Search) on the graph given below. Start at vertex 0. When
traversing the neighbours of a vertex, traverse themin numerical order. Show all your work
including the contents the queue, the parent array, the BFI (breadth first index) and the level.
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Queue:

Parent:

BFI:

Level:

(b) [5] Mark the edges of the BFS tree on the picture and orient them so that the edge is directed
from the child to the parent.
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5.(a) [15] Perform DFS (Depth First Search) on the graph given below. Start at vertex 0. When
traversing the neighbours of a vertex, traverse themin numerical order. Show all your work
including the contents of the stack (at each step), the parent array and the DFI array.
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here

0 1 2 3 4 5 6 7 8

Parent:

DFI:

Stack contents at each step (at step i, the ith edge is added to the DFS tree):

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

(b) [5] Mark the edges of the DFS tree on the picture and orient them so that the edge is directed
from the child to the parent.
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Use this page for question 2:
hash(x)= (((x / 100) % 10) + ((x / 10) % 10) + (x % 10) ) % 17.

x 574 460 107 374 871 421 513

hash(x)

x 579 207 29 2 811 81 5

hash(x)

(a) Thelinked lists:
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(b) The hash table:
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