CSC225: Lab 3

Big-Oh

A function T(n) is in O(f(n)) if there exists an integer n_0 and a constant c > 0 such that for all integers $n \ge n_0$, $T(n) \le cf(n)$.

- 1. Prove that the function $T(n) = (n+1)^2$ is in $O(n^2)$.
- 2. The recurrence relation for mergesort is given by T(n) = 2T(n/2) + an, T(1) = b where $n = 2^k$ for some $k \ge 0$ and a and b are constants. Find a solution for this recurrence relation and a tight big-oh upper bound.
- 3. Say f(n) is in O(g(n)) and g(n) is in O(h(n)). Does this imply f(n) is in O(h(n))? If yes, can you prove it?

Big-Omega

A function T(n) is in $\Omega(f(n))$ if there exists an integer n_0 and a constant c > 0 such that for all integers $n \ge n_0$, $T(n) \ge cf(n)$.

- 1. Prove that the function $T(n) = n^2$ is in $\Omega((n+1)^2)$.
- 2. Prove that the function $T(n) = n^2$ is in $\Omega(nlogn)$.