CSC225: Lab 3

Big-Oh

A function $T(n)$ is in $O(f(n))$ if there exists an integer n_{0} and a constant $c>0$ such that for all integers $n \geq n_{0}, T(n) \leq c f(n)$.

1. Prove that the function $T(n)=(n+1)^{2}$ is in $O\left(n^{2}\right)$.
2. The recurrence relation for mergesort is given by $T(n)=2 T(n / 2)+a n$, $T(1)=b$ where $n=2^{k}$ for some $k \geq 0$ and a and b are constants. Find a solution for this recurrence relation and a tight big-oh upper bound.
3. Say $f(n)$ is in $O(g(n))$ and $g(n)$ is in $O(h(n))$. Does this imply $f(n)$ is in $O(h(n))$? If yes, can you prove it?

Big-Omega

A function $T(n)$ is in $\Omega(f(n))$ if there exists an integer n_{0} and a constant $c>0$ such that for all integers $n \geq n_{0}, T(n) \geq c f(n)$.

1. Prove that the function $T(n)=n^{2}$ is in $\Omega\left((n+1)^{2}\right)$.
2. Prove that the function $T(n)=n^{2}$ is in $\Omega(n \log n)$.
