CSC225: Lab 4

Big-Omega

A function $T(n)$ is in $\Omega(f(n))$ if there exists an integer n_{0} and a constant $c>0$ such that for all integers $n \geq n_{0}, T(n) \geq c f(n)$.

1. Prove that the function $T(n)=n^{2}$ is in $\Omega\left((n+1)^{2}\right)$.
2. Prove that the function $T(n)=n^{2}$ is in $\Omega(n \log n)$.
3. Prove that the function $T(n)=2 n^{2}-3 n-49$ is in $\Omega\left(n^{2}\right)$.
4. Prove that the function $T(n)=-5 n+n^{2}$ is in $\Omega\left(n^{2}\right)$.

Big-Theta

A function $T(n)$ is in $\Theta(f(n))$ if there exists an integer n such that for all integers $n \geq n_{0}, T(n)$ is in $O(f(n))$ and $T(n)$ is in $\Omega(f(n))$.

1. Prove that the function $T(n)=(n+1)^{2}$ is in $\Theta\left(n^{2}\right)$.
2. Prove that the function $T(n)=b n+a n \log n$ is in $\Theta(n \log n)$ for a,b are integer constants ≥ 0.
