CSC 320 Midterm Exam #2 Summer 2002

1. For parts (a), (b), and (c) below, you must choose three DIFFERENT languages from the five given here and are required to find a regular expression, a context-free grammar, and a DFA for them respectively. Choose carefully to minimize your effort.

The five languages to choose from:

 $L_1 = \{a^p : p \text{ is prime }\}.$ $L_2 = \{b a^n b a^{3n} b\}$ $L_3 = \{w \in \{a, b\}^*$: the number of a's in w is even and the number of b's is even $\}$. $L_4 = \{w \in \{a, b\}^*$: the number of a's in w is equal to the number of b's in w}. $L_5 = \{w \in \{a, b\}^* : w \text{ contains } baba \text{ or } abaab\}$

Fill in your choices for each part:

Part	Requirement	Language chosen
(a)	Regular Expression	
(b)	Context-free Grammar	
(c)	Deterministic Finite Automaton	

- (a) [10 marks] Give a regular expression for one of the languages.
- [10 marks] Give a context-free grammar for one of the languages. (b)
- [10 marks] Draw the transition diagram of a DFA for one of the languages (include (c) comments).
- [20] The exclusive or of two languages L_1 and L_2 , denoted $L_1 \oplus L_2$, is defined to 2. be $\{w : (w \in L_1 \text{ or } w \in L_2) \text{ and } w \text{ is not in } L_1 \cap L_2\}.$ Prove that regular languages are closed under exclusive or by describing a construction for a DFA $M = (K, \Sigma, \delta, s, F)$ for $L_1 \oplus L_2$ given DFA's $M_1 = (K_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$ for L_1 and L_2 respectively. Hint: a construction similar to the ones derived for union and intersection on assignment #2 works.

- 3. Circle **True** or **False** and justify your answer. **No marks will be given unless** there is a correct justification.
 - (a) [5 marks] ϕ^* is a regular expression for a language containing no strings. True False
 - (b) [5 marks] Every subset of a regular language is regular. True False
 - (c) [5 marks] If $x \notin L_1$ and $y \notin L_2$ then $x y \notin L_1 \cdot L_2$. True False
 - (d) [5 marks] The set containing all DFA's over the alphabet $\{a, b\}$ is countable. True False
 - 4.(a) [10 marks] State precisely the pumping lemma for regular languages.
 - (b) [10 marks] Describe all ways of factoring $w = a^r b^s c^{r+s}$ as x y z where y is not equal to the empty string.
 - (c) [10 marks] Apply the pumping lemma to $w = a^r b^s c^{r+s}$. to prove that $L = \{a^n b^m c^p : n + m \le p\}$ is not accepted by a DFA with k = 2(r+s) states.